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ABSTRACT 

 

 

Nimonic C-263, a nickel-based alloy, has gained prominence in aerospace and high-
temperature applications due to its exceptional properties. However, its low thermal 
conductivity poses challenges during machining, leading to rapid tool wear and reduced tool 

life. Traditional flood lubrication methods have been insufficient in addressing these issues. 
The difficulty in machining Nimonic C-263 alloy arises from the extreme heat generated due 
to its low thermal conductivity, impacting tool wear and fatigue life. Conventional flood 
lubrication methods have proven inadequate in mitigating the challenges posed by machining 

this alloy. This research focuses on evaluating the impact of cutting parameters on tool life 
during turning of Nimonic C-263 superalloy using cryogenic coolant, specifically Carbon 
dioxide (CO2) gas. A Physical Vapor Deposition (PVD) cemented carbide insert is employed 
as the cutting tool on a Computer Numerical Control (CNC) Haas ST-20 lathe machine. 

Response Surface Methodology (RSM) is utilized to design experiments that investigate the 
influence of feed rate, cutting speed, and depth of cut on the longevity of coated carbide 
inserts. The tool life calculation was based on tool wear progression and the cumulative tool 
travels per minutes. The study reveals that cutting speed significantly influences tool life, 

followed by feed rate and depth of cut according to Analysis of Variance (ANOVA). The 
experiment demonstrates that the Physical Vapor Deposition (PVD) coated carbide insert 
exhibits a maximum tool life of 26.81 minutes and a minimum of 3.56 minutes. The 
developed mathematical model validated as the percentage error 8.08%. 61 mm/s of cutting 

speed, 0.15 m/rev of feed rate and 0.5 mm of depth of cut are the optimum parameter of the 
cryogenic cooling machining of Nimonic C-263. Flank wear and fracture wear are identified 
as primary tool failure mode affecting cutting tools, with abrasion and diffusion being tool 
wear mechanisms observed.  
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KAJIAN UJIKAJI KE ATAS KESAN JANGKA HAYAT SEMASA PEMESINAN ALOI 

NIMONIC C-263 MENGGUNAKAN PENYEJUK KRIOGENIK 
 

ABSTRAK 

 

 

Nimonic C-263, sejenis aloi berasaskan nikel, telah mendapat keutamaan dalam aplikasi 
aeroangkasa dan suhu tinggi disebabkan sifat-sifatnya yang luar biasa. Walau 
bagaimanapun, kekonduksian haba yang rendah menyebabkan cabaran semasa pemesinan, 

menyebabkan haus alat yang cepat dan mengurangkan jangka hayat alat. Kaedah pelinciran 
banjir tradisional tidak mencukupi dalam menangani isu-isu ini. Kesukaran dalam 
pemesinan aloi Nimonic C-263 timbul daripada haba yang melampau yang dihasilkan 
disebabkan kekonduksian haba yang rendah, memberi kesan kepada haus alat dan jangka 

hayat kelesuan. Kaedah pelinciran banjir konvensional terbukti tidak mencukupi dalam 
mengurangkan cabaran yang dihadapi semasa memotong aloi ini. Penyelidikan ini memberi 
tumpuan kepada menilai kesan parameter pemotongan ke atas jangka hayat alat semasa 
pusingan Nimonic C-263 superaloi menggunakan bahan penyejuk kriogenik, khususnya gas 

Karbon dioksida (CO2). Sisipan karbida simen salutan Wap Fizikal (PVD) digunakan 
sebagai alat pemotong pada mesin larik Kawalan Berangka Komputer (CNC) Haas ST-20. 
Kaedah Permukaan Tindak Balas (RSM) digunakan untuk mereka bentuk eksperimen yang 
menyiasat pengaruh kadar suapan, kelajuan pemotongan, dan kedalaman potongan ke atas 

ketahanan sisipan karbida bersalut. Pengiraan jangka hayat alat berdasarkan kemajuan 
haus alat dan jumlah perjalanan alat per minit. Kajian ini mendedahkan bahawa kelajuan 
pemotongan sangat mempengaruhi jangka hayat alat, diikuti oleh kadar suapan dan 
kedalaman potongan mengikut Analisis Varians (ANOVA). Eksperimen menunjukkan bahawa 

mata alat karbida bersalut Pemendapan Wap Fizikal (PVD) mempamerkan jangka hayat alat 
maksimum 26.81 minit dan minimum 3.56 minit. Model matematik yang dibangunkan 
disahkan sebagai ralat peratus 8.08%. 61 mm/s kelajuan pemotongan, 0.15 mm/rev kadar 
suapan dan 0.5 mm kedalaman potongan adalah parameter optimum pemesinan penyejukan 

kriogenik Nimonic C-263. Haus rusuk dan haus pecah dikenal pasti sebagai mod kegagalan 
alat utama yang menjejaskan alat pemotong, dengan lelasan dan resapan sebagai mekanisme 
haus alatan diperhatikan. 
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CHAPTER 1 

 

 

 
INTRODUCTION 

 
 
 

 

This chapter discusses the project background, problem statement, purpose, scope, 

importance and report's organization.  

 
1.1      Project Background 

 

Recently, a variety of applications for nickel-based superalloys have emerged, 

particularly in gas turbines and vital parts of aircraft engines as shown in Figure 1.1. (Thakur 

et al., 2016; Wang et al., 2017; Nasr et al., 2020) and  mentioned that these alloys can be used 

in the defence, nuclear power, aerospace, as well as power plant industries as of their 

exceptional mechanical capabilities at excellent temperature strength, which includes tensile 

strength, high hardness, thermal stability, oxidation as well as thermal fatigue resistance to 

corrosion. Even in long-term, hot situations with tremendous stress, they can still work 

successfully. The aerospace industry was among the forerunners in the development of 

superalloy because jet engines which are stronger and more efficient, may result from the 

ability of the engine to tolerate greater temperatures (Kale and Khanna, 2017). 

The excellent mechanical properties of Nimonic C-263, as well as other nickel-based 

alloys at high temperatures, including greater strength and increased hardness, have led to 

increased attention on their machining process (Tu et al., 2022). Nimonic C-263, in 

particular, is known for its admirable mechanical properties, including tensile strength, 

thermal fatigue resistance to corrosion, thermal stability, high hardness, as well as oxidation, 
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which makes it a popular choice in the defence, aerospace as well as nuclear industries. 

Regardless of its excellent properties, Nimonic C-263 is a hard-to-cut material that has poor 

machinability, as mentioned by Jadhav et al. (2020). Due to the development of multiple 

phases at high temperatures, a chemical affinity for tool materials, a tendency to work harden, 

as well as the presence of hard and abrasive particles in its microstructure, the Nimonic 

C-263 material presents a variety of challenges during machining (Koyilada et al., 2016).  

 

 

Figure 1.1 Engine parts made from nickel-based superalloy (Yin et al., 2020) 

 

Work hardening and low thermal conductivity result in a heat concentration at the 

contact point between the cutting tool chip and the chip, resulting in thermomechanical stress. 

Materials with low thermal conductivity tend to retain heat rather than dissipate it efficiently. 

This leads to a rapid increase in temperature at the cutting edge of the tool during machining 

processes. Elevated temperatures accelerate tool wear by promoting thermal degradation and 

reducing the tool's hardness and wear resistance. As a result, the tool will deteriorate quickly. 

This has an impact on tool life and results in significant surface deterioration (Velmurugan 



 

3 
 

et al., 2018). Because of the low thermal conductivity of nickel-based alloys, the cutting tool 

generates greater heat, particularly during harsh machining. The heat created while cutting 

raises the temperature of the cutting tool, which directly impacts the workpiece's surface 

quality and increases tool wear, which can lead to a reduction in cutting tool life. This wear 

can result in dimensional inaccuracy, surface damage, and severe corrosion cases on the 

workpiece, ultimately affecting the overall quality of the machined part (Ogedengbe et al., 

2019). The temperature at the cutting tip, between the cutting tool and the workpiece, can 

reach 1000°C or higher, which influences not only the rate of tool wear but also the surface 

integrity of the workpiece, including residual stress, hardness, and surface roughness (Zhu et 

al., 2022). 

In order to prolong the life of the cutting tool, it is essential to take the 

necessary measures to limit the heat generated on the tool and workpiece surface. It is 

recommended to use cutting fluid for cooling and lubrication while machining nickel-based 

alloys in order to dissipate the heat generated during machining, hence reducing tool wear 

and extending tool life. Exploring various types of cooling techniques can further aid in 

reducing the temperature in the cutting zone (Babu et al., 2024). Techniques such as 

cryogenic cooling, minimum quantity lubrication (MQL) and air/oil mist cooling have shown 

promise in effectively managing heat during machining processes as shown in Figure 1.2.  

Cryogenic cooling involves the use of extremely cold gases or liquids to cool the 

cutting zone rapidly, minimizing heat generation and enhancing tool life. On the other hand, 

MQL systems deliver a small amount of lubricant directly to the cutting zone, reducing 

friction and heat buildup while minimizing fluid usage. Additionally, air/oil mist cooling 

combines compressed air with a fine mist of oil to provide efficient cooling and lubrication, 

offering benefits similar to traditional cutting fluids but with reduced environmental impact 

and cost (Boubekri and Shaikh, 2014). 
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Figure 1.2 Heat generated under different cutting conditions (Babu et al., 2024) 

 

Cryogenic cooling is an alternative to conventional cooling in machining that can 

boost the productivity of nickel-based alloy machining. Utilizing either liquid nitrogen (LN2), 

or liquid carbon dioxide (CO2), cryogenic machining involves freezing the cutting tool to 

extremely low temperatures of roughly −196 °C (Shokrani et al., 2013). Cryogenic machining 

is the process of metal removal operation utilizing cryogen-like liquefied nitrogen and carbon 

dioxide acting as coolants (Deshpande et al., 2018). In order to reject heat and reduce tool 

wear, cryogenic machining necessitates the incorporation of a cryogenic coolant right in the 

cutting zone. In a recent investigation by Babu et al. (2024), it was demonstrated that in the 

machining of Nimonic 80 under various machining conditions, cryogenic Low Quantity 

Lubrication (CLQL) emerged as a highly effective technique for prolonging tool life when 

compared to alternative methods. The study revealed that cryogenic machining resulted in a 
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substantial reduction of 68% in flank wear, surpassing the performance observed with oil-

based Low Quantity Lubrication (LQL) conditions at 56% and nanofluids LQL conditions at 

39%. This highlights the significant advantage of employing cryogenic CLQL in enhancing 

tool longevity and optimizing machining processes for improved efficiency and performance.  

Utilizing liquid carbon dioxide as a cryogenic medium can improve chip surface 

quality by eliminating particle adherence (Ross and Manimaran, 2019). Researchers and 

machining industries are developing interest in the use of cryogenic coolants as cutting fluids 

due to their eco-friendliness, recyclability, and lack of negative effects on the machining 

operators (Ravi and Gurusamy, 2020). Cryogenic cooling reduces the cutting temperature in 

the metal cutting process by using cryogenic fluids as coolants, which can greatly enhance 

machining quality and save the cost of manufacturing. In contrast to conventional cutting 

fluids, carbon dioxide (CO2) offers a range of advantages as a coolant. CO2 is characterized 

by its non-toxic and non-flammable nature, along with the absence of hazardous waste 

generation. Additionally, CO2 is easily accessible and can be sourced from the by-products of 

various processes, rendering it a cost-efficient and environmentally sustainable coolant option 

as highlighted in studies by Jerold and Kumar (2011). 

This study delves into the intricate relationship between tool life and the machining 

process of Nimonic C-263 alloy when employing cryogenic coolant. By exploring this 

dynamic, the research aims to not only enhance the understanding of machining practices for 

advanced materials but also to offer practical insights for optimizing tool longevity and 

efficiency in industrial applications. The anticipated findings are poised to fill a critical gap in 

knowledge within the field of high precision machining industry, providing a foundation for 

future advancements in machining technologies. Through a systematic analysis of the data 

collected, this study seeks to contribute valuable information that can guide decision-making 
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processes in industries working with high-performance alloys like Nimonic C-263, ultimately 

driving innovation and efficiency in machining operations. 

 
1.2       Problem Statement  

 

A nickel-based alloy such as Nimonic C-263 has poor machinability due to its low 

thermal diffusivity, high strength at higher temperatures, tendency to harden, coarse and stiff 

particles in its microstructure, and chemical affinity towards cutting tool materials. In 

conventional machining, nickel-based alloys have approximately one-fifth to one-third the 

strength of steel due to their lower heat conductivity coefficient. The cutting heat cannot be 

rapidly transferred, and the temperature in the cutting zone can reach over 1200  °C 

instantaneously (Mohan et al., 2022). At elevated temperatures, the nickel-based alloy's 

elastic modulus decreases (Gowthaman and Jagadeesha, 2019). During cutting, the rebound 

degree of the treated surface and the contact stress, both increases. Simultaneously, the actual 

contact area between the tool flank and the processed face of the workpiece increased, as did 

tool flank wear. In addition, the cutting force, cutting performance, material brittleness, as 

well as tensile strength all decrease, impacting the alloy brittleness in the cutting area (Wang 

et al., 2017).   

Traditional machining methods struggle to efficiently dissipate heat and control 

temperatures during cutting processes on Nimonic C-263 alloy. Cryogenic coolant emerges 

as a viable solution to the intricate challenges encountered in machining Nimonic C-263 alloy 

when compared to dry machining, flood machining, and minimum quantity lubrication 

(MQL) methods. Hence, to reduce the temperature, cryogenic coolant has been introduced to 

overcome the machining difficulties. Carbon dioxide cryogenic coolant has been introduced 

in this study due to its superior cooling effect rather than liquid nitrogen (Jamil et al., 2021). 

Carbon dioxide owing higher temperature than nitrogen can help prevent catastrophic failure 
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during early stage of the machining. Extreme cool temperature can affect the property of the 

cutting insert in term of brittleness.  

Other than cooling strategy, the optimization of cutting parameters in the turning 

machining process is crucial, as they directly impact the quality of the finished product. 

Cutting speed, feed rate and depth of cut are the primary variables that influence the 

machining process. However, there is a significant research gap in optimizing these 

parameters to achieve optimal productivity, quality and cost-effectiveness. Specifically, there 

is a need for further investigation into how to optimize cutting speed, feed rate and depth of 

cut to reduced tool wear and enhanced tool life, which can significantly improve the overall 

machining process. 

Previous studies have investigated the effects of various cutting parameters on tool 

wear and surface integrity when turning Nimonic C-263 using different cutting tools and 

coolants. However, there is a lack of research specifically focusing on the use of CO 2 

cryogenic coolant and its impact on tool life during the turning of this superalloy.  Hence, the 

current study, the effect of cryogenic cooling during machining on tool life, tool wear 

progression and tool wear mechanisms was investigated. The PVD coated carbide insert is 

used during the turning process of Nimonic C-263 and carbon dioxide is used as cryogenic 

coolant.  

 
1.3       Objectives  

 

The objectives are the following: 

1. To evaluate the effect of cutting parameters (cutting speed, feed rate and depth of cut) 

on tool life during turning of Nimonic C-263 Superalloy using cryogenic coolant. 

2. To determine the optimized cutting parameters and develop mathematical model for 

tool life. 

3. To analyse tool failure mode and tool wear mechanism on the cutting tool. 


