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Abstract

This study proposes a finite-time anti-disturbance observer-based reliable (Q, S, R) − θ dissipative feedback control technique 
for a class of Takagi-Sugeno fuzzy switched systems in conjunction with time-varying state/input delays and multiple disturbances. 
In contrast to previous findings, the external disturbances in this study are considered to be multiple disturbances, which are 
classified into matched and mismatched disturbances since the underlying system can be affected by various forms of disturbances 
[21], [25]. In order to deal with the matched disturbances that are brought about by exogenous systems, an anti-disturbance observer 
has been established. As well, (Q, S, R) − θ dissipative performance handles the mismatched part, which includes the concepts 
of H∞, passivity, mixed H∞ and passivity performance in a unified structure. In addition, unlike previous works in which the 
failure of the actuator is assumed to be deterministic [37], [38], the failure probability of the actuator in this work is determined 
using a distinct random variable with a probabilistic distribution in the range of [0, 1]. Furthermore, in accordance with parallel 
distributed compensation method and reliable control design with stochastic theory, the desired fuzzy-rule based control protocol 
is developed. Moreover, distinct from the asymptotic and exponential stability that are defined over an infinite interval of time 
[4], [14], the finite-time notion is considered in this work, where it prevents the states from exceeding a specific range within a 
fixed interval. A set of adequate requirements are derived utilising the Lyapunov stability theory and average dwell time technique 
to ensure the finite-time boundedness of the system under consideration. In the end, effectiveness of the theoretical findings is 
validated by means of simulation results.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

Switched systems that are made up of a finite number of subsystems, have extensive interests in both theoretical and 
practical view point due to their substantial applications in multiple fields like power systems, vehicle industry, flight 
control systems, manipulator robots and so on [1–3]. More specifically, the subsystems are employed to capture the 
dominant dynamics of the system in different operation modes, which are activated by the respective switching signal. 
The switching rule regulates the coordination between those subsystems and precisely defines a specific subsystem 
being activated during a certain interval of time. Very interestingly, the authors in [1] proposed a fault-tolerant control 
strategy for switching time-delay systems by utilising average dwell-time approach and Lyapunov stability theory. On 
flip side, it should be noted that most industrial problems are nonlinear in nature and it induces more complexities in 
the system analysis and design in contrast with linear systems. Therefore, the majority of researchers have recently 
focused on the study of nonlinear switched systems. As a result, some interesting studies have been documented on 
nonlinear switched systems in the existing literatures [4–6]. Among the various methods proposed to handle nonlin-
ear systems, Takagi-Sugeno (TS) fuzzy model approach has received attention among many researchers [7–11]. In 
the fuzzy model approach, the nonlinear systems can be equivalently re-drafted as a number of linear systems in-
tegrated with different weights. In particular, a robust stabilization problem of TS fuzzy systems in the presence of 
time-varying delays has been investigated in [7]. However, only limited number of results on the stability analysis of 
TS fuzzy switched systems (TSFSSs) have been reported in the existing literatures [12–17]. Specifically, in [16], the 
passivity analysis and feedback passification for TS fuzzy switched systems is studied via sampled-data implemen-
tation. However, we are aware of very few literatures concerning TS fuzzy switched systems, which has piqued our 
interest in this area. In view of this, it is necessary to further strengthen the theoretical analysis on the stabilization 
problems of TSFSSs.

On another point of note, the external disturbances may normally exist in practice, which results in inadequate sys-
tem performance or even instability. In this connection, an abundance effort is devoted by the researchers in the 
development of disturbance rejection and attenuation for various kind of dynamical systems [18–20]. Moreover, 
estimating the disturbance or its influence from measurable variables is termed disturbance estimation and attenu-
ating the disturbance’s effect on the regulated output is known as disturbance attenuation. Particularly, disturbance 
observer-based control (DOBC) protocol served as an efficient tool for disturbance rejection in virtue of its robust-
ness, efficiency, and practicability, wherein the external disturbance signals are estimated with respect to the known 
information. For example, in [19], the robust control problem for uncertain systems with external disturbances that 
is generated by an exogenous system is studied. Besides, it is worth pinpointing that in complex engineering sys-
tems, multiple disturbances with heterogeneous characteristics exist which are inevitable. Regrettably, in existence of 
multiple disturbances, DOBC fails to attain disturbance estimation with high precision. To overcome this, recently 
composite anti-disturbance control protocol has been proposed for various dynamical systems [21–25], which attenu-
ate the outer loop disturbances (mismatched disturbances) and at the same time, reject the inner loop ones (matched 
disturbances). To be precise, matched disturbances enter the system via the control input path while mismatched 
disturbances enter through separate channels from the control input path. In the narration, one of the disturbances 
present in the input channel along with perturbations is generated by an exogenous system whose information is par-
tially known is estimated via DOBC (anti-disturbance observer). To be explicit, anti-disturbance observers evaluate 
external disturbances based on known plant information. Another one is norm bounded with unknown information, in 
which the impact of disturbances are reduced in the reference output using some elegant control schemes, namely, reli-
able control [1], H∞ control [12], adaptive control [5] and so on. Specifically, the composite anti-disturbance control 
scheme attains both disturbance rejection and disturbance attenuation by combining DOBC schemes with conven-
tional control schemes. Remarkably, in [21], the authors developed composite anti-disturbance control for stochastic 
nonlinear systems. Moreover, a novel anti-disturbance control strategy was developed for singular Markovian jump 
systems with infinitely unobservable states and multiple disturbances in [23].

Dissipative theory serves as a prominent role in the analysis and control design of dynamical systems, because 
many real-world problems need to be dissipative for accomplishing satisfactory noise attenuation. Precisely, the en-
ergy attenuation level of the system is characterized by the rate of dissipation of stored energy. Moreover, the theory 
of dissipative concept includes H∞, passivity and L2 performances as special cases based on energy-related consider-
ations. In view of this, it is considered to be a more general criterion and also witnessed wide range of applications in 
science and engineering domains [26–28]. For instance, the authors in [27] examined the stabilization problem of TS 
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fuzzy systems by developing fuzzy-dependent dynamic output feedback-based dissipative control law. Additionally, 
the study on time delay systems have received more attention during recent years, since the existence of time delays 
in state and control vector are inherent feature in real process such as in chemical processes, pneumatic and hydraulic 
systems and industrial processes [29–34]. Specifically, in [31], the problem of stability and stabilization for TS fuzzy 
systems with time-varying delays has been studied. Based on state feedback and parallel distributed compensation 
strategy, an adaptive control scheme is developed for active suspension systems with input time delay and unknown 
nonlinear dynamics in [34]. Hence, in this study, both state and input delays are taken into account while studying the 
stabilization problem of TSFSSs, enhancing the system’s suitability for real-world situations.

At the same time, as a consequence of increasing complexities in control systems, the faults in actuators and sen-
sors are a common occurrence and lead to unsuccessful transmission of control signals. Notably, in many practical 
circumstances, the actuator faults are brought on by malfunction of hardware or software components, material ageing 
and data deformation. By virtue of these flaws, the characteristics of actuator faults may fluctuate over time. However, 
neglecting such faults eventually dispense unsatisfactory system performance. In order to counteract this effect, a 
controller has to be designed which particularly has the ability to conserve the systems stability even in the presence 
of actuator faults. Recently, fault-tolerant control for dynamical control systems has received great attention among 
researchers [35–38]. Unfortunately, most of the literatures addressed the deterministic actuator faults, however in re-
ality, the actuator faults may occur randomly on account of abrupt changes in the environment. In light of both theory 
and practical viewpoint, the stochastic actuator faults are more general than the deterministic one. As a result, a slew 
of works have been reported on this issue [39], [40]. Therefore, it is more meaningful and important to consider the 
actuator faults with stochastic nature for TSFSSs. It should be mentioned that the asymptotic stability [4], [14], [27]
which is hardly defined over infinite interval of time, did not confine any restrictions to system parameters. Nonethe-
less, in many practical systems like telecommunication networks and molecular reaction systems, the operating time 
needs to be short. On such grounds, the fast cognizance of system states are essential, that is the assurance of the sta-
bility in finite-time span [41–44]. For example, the work [41] studied the switched systems with external disturbances 
such that it guarantees H∞ finite-time stability. By using coupling memory sampled-data control approach, finite-time 
stability and finite-time boundedness of TS fuzzy semi-Markov jump systems was studied in [43].

Based on the observations mentioned above and impelled by the advantages of composite anti-disturbance reli-
able control protocol, this study intends to establish (Q, S, R) − θ dissipativity-based conditions for TSFSSs with 
state/input delay and multiple disturbances. As a consequence, stochastic finite-time boundedness corresponding to 
the addressed TSFSSs are accomplished. More precisely, primary contributions of this article are given as:

1) A unified disturbance rejection and stabilization problem of TSFSSs with time-varying state delay, input delay, 
stochastic actuator faults and multi-source disturbances is formulated. Precisely, the well-known fuzzy-model 
based approach [7–11] is utilized to grip the nonlinear switched systems.

2) The multi-source disturbances split up into matched and mismatched disturbances. For the purpose of estimating 
the matched disturbance, a novel switched disturbance observer is fabricated. At the same time, the mismatched 
disturbance which is norm bounded is attenuated by (Q, S, R) − θ dissipative performance.

3) Moreover, a generalised actuator fault representation is provided in which the faults are considered to happen at 
random and stochastic variables satisfying the Bernoulli distribution are defined to describe the fault rates.

4) Motivated by the works in [21–25], by combining a reliable fuzzy-rule based state feedback controller with the 
disturbance observer’s output, a composite anti-disturbance controller is developed to balance the effects of both 
types of disturbances and achieve the system’s desired results.

5) In narration, the controller is designed without sharing the same premise variables as the system model, which 
reduces the design complexity and enhances the design flexibility.

2. Problem formulation and preliminaries

2.1. System description

By exploiting TS fuzzy modeling approach, the dynamics of the switched nonlinear plant with state delay, input 
delay and multiple disturbances is described by TSFSSs with f rules in the following format:
Plant rule �i : IF ξ1(t) is �i , ξ2(t) is �i , . . ., and ξf (t) is �i THEN
ψ(t) ψ(t)1 ψ(t)2 ψ(t)f
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⎧⎪⎨
⎪⎩
ẋ(t)= Aψ(t)ix(t)+Adψ(t)ix(t − τ(t))+Bψ(t)i[uf (t − h)+ d(t)] +Bwψ(t)iw(t),
z(t)= Cψ(t)ix(t)+ Cwψ(t)iw(t),
x(t0)= φ(t0), t0 ∈ [−max(ε, h),0],

(1)

where ξg(t) and �iψ(t)g , g = {1, . . . , f }, are the premise variables and its corresponding fuzzy rule �i
ψ(t) = {1, . . . , p}, 

i = {1, 2, . . . , Nψ(t)}, here the function ψ(t) : R+ → M = {1, 2, . . . , m} signifies the switching law which is a piece-
wise constant function of time and takes its values in a finite set and m > 1 denotes the number of operating modes, 
p indicates the number of IF-THEN rules, and Nψ(t) is the number of inference rules in the ψ -th switched system; 
x(t) ∈ Rn represents the system’s state; z(t) ∈ Rp is the system’s output; uf (t) ∈ Rm describes the control vector; h
is a positive constant that denotes the time delay occurred in the control input vector; τ(t) describes the time-varying 
delay in state dynamics with known upper bound ε > τ(t) > 0 and satisfies τ̇ (t) ≤ τ̂ < 1; d(t) ∈ Rv denotes the 
disturbance signal occurred in control input; w(t) ∈ Rq indicates the norm-bounded external disturbance; Aψ(t)i , 
Adψ(t)i , Bψ(t)i , Bwψ(t)i , Cψ(t)i and Cwψ(t)i denote the system matrices with suitable dimensions.

For notational convenience, in the rest of this paper, we denote ψ(t) = σ , Āσ i = ∑Nσ
i=1 h̄σ i(ξ(t))Aσ i , Ādσ i =∑Nσ

i=1 h̄σ i(ξ(t))Adσ i , B̄σ i =∑Nσ
i=1 h̄σ i(ξ(t))Bσ i , B̄wσi =

∑Nσ
i=1 h̄σ i(ξ(t))Bwσi , C̄σ i =

∑Nσ
i=1 h̄σ i(ξ(t))Cσ i and C̄wσi =∑Nσ

i=1 h̄σ i(ξ(t))Cwσi .
Now, the compact form of the system (1) under consideration based on fuzzy blending is given in the following 

form:{
ẋ(t) = Āσ ix(t)+ Ādσ ix(t − τ(t))+ B̄σ i[uf (t − h)+ d(t)] + B̄wσiw(t),
z(t) = C̄σ ix(t)+ C̄wσiw(t),

(2)

where h̄σ i(ξ(t)) = ρσi (ξ(t))∑N
i=1 ρσi (ξ(t))

is the normalized grade of membership and ρσi(ξ(t)) = ∏f

g=1 �ig(ξg(t)) is 

the membership function corresponding to the fuzzy term �iσg . It also obeys the conditions ρσi(ξ(t)) ≥ 0 and ∑Nσ
i=1 ρσi(ξ(t)) = 1, for all t > 0.
Notably, it is considered that the unknown disturbance d(t) that appeared via controller path u(t) was produced by 

dint of exogenous system given by{
χ̇ (t)= Wσχ(t)+Hσ η(t),

d(t)= Vσχ(t),
(3)

where χ(t) ∈ Rl represents exogenous system’s state vector; η(t) ∈L2[0, ∞) signifies the modeling error and pertur-
bations in the exogenous system, which confines the model accuracy; Wσ , Hσ and Vσ are known matrices.

In line with the systems (2) and (3), prompted by the works in [19]-[20], the disturbance observer (DO) to estimate 
the exogenous system (3) is designed as follows:⎧⎪⎨

⎪⎩
ϕ̇(t)= [Wσ +Lσ B̄σ iVσ ]χ̂ (t)+Lσ [Āσ ix(t)+ Ādσ ix(t − τ(t))+ B̄σ iuf (t − h)],
χ̂(t)= ϕ(t)−Lσ x(t),
d̂(t)= Vσ χ̂(t),

(4)

where ϕ(t) denotes the state vector of DO; Lσ indicates suitable dimensioned DO gain matrix, which will be deter-
mined later; χ̂(t) and d̂(t) specifies the estimations of signals χ(t) and d(t). As a follow up, the disturbance estimation 
error is defined by subtracting the exogenous system in (3) with its observer system (4), that is eχ (t) = χ(t) − χ̂ (t). 
Then, we obtain the following format of error dynamics;

ėχ (t)= [Wσ +Lσ B̄σ iVσ ]eχ (t)+Lσ B̄σ iw(t)+Hσ η(t).

2.2. Control design

In the follow-up, a fuzzy rule controller �j

ψ(t)
based on parallel distributed compensation strategy of the sequel 

structure is established for achieving the desired system performances. In this way, the composite anti-disturbance 
4
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controller is designed as follows:
Control rule �j

ψ(t): IF ξ1(t) is �jψ(t)1, ξ2(t) is �jψ(t)2, . . ., and ξf (t) is �jψ(t)f THEN

uf (t − h)=G
Nσ∑
j=1

h̄σj (ξ(t))Kσj x(t − h)− d̂(t)

=
k∑

=1

β
�


Nσ∑
j=1

h̄σj (ξ(t))Kσj x(t − h)− d̂(t), (5)

where Kσj indicates the state feedback control gain matrix to be determined, G = diag{β1, . . . , βk} is the actuator 
fault matrix with β
 ∈ [0, 1], 
 = 1, 2, . . . , k are k unrelated random variables and �
 = diag{0, . . . ,0︸ ︷︷ ︸

l−1

, 1, 0, . . . ,0︸ ︷︷ ︸
m−l

}.

Based on the techniques in [39], [40] and also to graft the stochastic process onto the actuator faults, we assume 
that β
 has the probability density function p
(β
) over the interval [0, 1] and the expectation and variance of fault β

are respectively denoted as ϑ
 and δ2


 . As a consequence, the expectation of the fault matrix G is given by Ḡ = E{G}
and from (5), we obtain{

E{G − Ḡ} = 0,

E{G − Ḡ}T H{G − Ḡ} =∑k

=1 δ

2

�

T

 H�
, for H> 0.

(6)

In the sort of control law defined in (5) and denoting ω̄(t) = [
wT (t) ηT (t)

]T
, E1 = [

B̄wσi 0
]
, E2 =[

Lσ B̄wσi Hσ

]
and E3σ i =

[
C̄wσi 0

]
, the closed-loop form of system (1) can be obtained in the following compact 

form;⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ(t)= [Āσ ix(t)+ B̄σ i(G − Ḡ)K̄σj x(t − h)+ B̄σ i ḠK̄σj x(t − h)+ Ādσ ix(t − τ(t))

+B̄σ iVσ eχ (t)+E1ω̄(t)],
ėχ (t)= [Wσ +Lσ B̄σ iVσ ]eχ (t)+E2ω̄(t),

z(t)= [C̄σ ix(t)+E3σ iω̄(t)],
(7)

where K̄σj =∑Nσ
j=1 h̄σj (ξ(t))Kσ i . Further, the prime assumptions and definitions that pave a way in easing the anal-

ysis of the desired result are listed out as follows:

Assumption 1. The external disturbance w̄(t) is supposed to be time-varying and hence, it fulfils 
∫ Tf

0 w̄T (s)w̄(s)ds ≤
wf , where wf is a positive scalar.

Definition 1. [42] System (1) is said to be stochastically finite time stable with respect to (c1, c2, Tf , α, F) if 
sup

−max(ε,h)≤t0≤0
{E{xT (t0)Fx(t0)}, {E{eTχ (t0)Feχ (t0)}, {E{ẋT (t0)F ẋ(t0)}} ≤ c1 =⇒ E{xT (t)Fx(t)} < c2 where c2 >

c1 and F > 0 denotes the symmetric matrix.

Definition 2. [26] System (1) is said to be strictly (Q, S, R)-dissipative with respect to (c1, c2, Tf , α, F) if for any 
t ≥ 0 and some scalar θ > 0, under zero initial state, the following condition is satisfied:

E
{ Tf∫

0

(zT (t)Qz(t)+ 2zT (t)Sw(t)+wT (t)Rw(t))ds
}

≥ θ E
{ Tf∫

0

wT (t)w(t)ds
}
, (8)

where Q ≤ 0, S and R are given real matrices. In addition, the matrices Q and R are symmetric in nature.

Remark 1. Notably, the (Q, S, R)-dissipative performance comprises H∞, passivity, mixed H∞ and passivity as 
special cases. It is eminent that if we consider Q = −I , S = 0 and R = γ 2I then (Q, S, R) dissipativity is reduced 
into H∞ performance. When Q = 0, S = I and R = γ I then it can be reduced to strictly passivity. Also, if Q = �I , 
S = (1 −�) and R = γ 2�I , where � ∈ (0, 1) such that (Q, S, R) dissipativity is deduced into mixed H∞ and passivity 
case.
5
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3. Main results

3.1. Stochastic finite-time boundedness analysis

Now, we focus to solve finite-time stability problem for the considered TSFSS (1) by using the devised control 
strategy (5). To be particular, in the context of linear matrix inequalities, a set of sufficient conditions to guarantee 
the desired outcomes of the closed-loop system (7) is obtained. This is accomplished by constructing appropriate 
Lyapunov-Krasovskii functional.

Primarily, in Theorem 1, adequate criterion is developed in a way to assure the stochastic finite-time boundedness of 
addressed closed-loop system having controller and observer gain matrices as known. Further, by taking into account 
the dissipative performance, we extend the results established in Theorem 1 to obtain Theorem 2 with unknown 
controller and observer gain matrices. To be precise, the main difference between two theorems is that in Theorem 1, 
stochastic finite-time boundedness with known gain matrices is established, whereas in Theorem 2, the stochastic 
finite-time dissipativity analysis with unknown gain matrices is procured.

Theorem 1. Let the control and observer gain matrices Kσ i and Lσ , respectively be known. For given positive scalars 
ε, h, μ, c1, c2, wf , α, Tf and symmetric matrix F , the closed-loop form of the considered system (2) is said to be 
stochastically finite-time bounded such that if there exist positive definite matrices Prσ (r = 1, . . . , 7) such that the 
following constraints hold:{

�ii < 0, (i = 1,2, . . .Nσ )

�ij + �ji < 0, (i, j = 1, . . .Nσ ), i �= j
(9)

Prσ < μPrς , μ > 1, ∀ σ,ς ∈M, σ �= ς, (10)

�c1 +wf [eαTf − 1]< eαTf λ1c2, (11)

where

�ij =
⎡
⎢⎣[�ij ]8×8 �

ij
a

T
�
ij
b

T

∗ �
ij

a1 0
∗ ∗ �

ij
b1

⎤
⎥⎦ ,

�
ij
a =

⎡
⎢⎣

0 0 δ1hBσ i�1Kσ i 0 0 0 0 0
...

...
...

...
...

...
...

...

0 0 δkhBσ i�kKσ i 0 0 0 0 0

⎤
⎥⎦ ,�ij

b =
⎡
⎢⎣

0 0 δ1εBσ i�1Kσ i 0 0 0 0 0
...

...
...

...
...

...
...

...

0 0 δkεBσ i�kKσ i 0 0 0 0 0

⎤
⎥⎦ ,

�
ij
a1 = diag{−P−1

6σ , . . . ,P
−1
6σ }︸ ︷︷ ︸

k

, �
ij
b1 = diag{−P−1

7σ , . . . ,P
−1
7σ }︸ ︷︷ ︸

k

,

�
ij

1,1 = 2P1σAσ i + P3σ + P4σ + P5σ − P6σ − P7σ + αP1σ , �ij

1,2 = P1σBσ iVσ , �ij

1,3 = P1σBσ i ḠKσ i + P6, 

�
ij

1,4 = P1σAdσ i + P7σ , �ij

1,6 = P1σE1, �ij

1,7 = hAT
σ i , �

ij

1,8 = εAT
σ i , �

ij

2,2 = 2P2σWσ + 2P2σLσBσ iVσ , �ij

2,6 =
P2σE2, �ij

2,7 = hVTσ BTσ i , �
ij

2,8 = εVTσ BTσ i , �
ij

3,3 = −P3σ − P6σ , �ij

3,7 = hKT
σ i ḠTBTσ i , �

ij

3,8 = εKT
σ i ḠTBTσ i , �

ij

4,4 =
−(1 − ε̂)P4σ − P7σ , �ij

5,5 = −P5σ , �ij

6,6 = −αI , �ij

6,7 = hET
1 , �ij

6,8 = εET
1 , �ij

7,7 = −P−1
6σ , �ij

8,8 = −P−1
7σ , 

P̆rσ = F
−1
2 PrσF

−1
2 , λ1 = λmin(P̆1σ ) and λs = λmax(P̆rσ ), s = {2, 3, . . . , 7}, r = {1, 2, . . . , 7}.

Further, the average dwell-time satisfies

ζa > ζ ∗
a = T lnμ

ln(λ1c2)− ln(�c1 +wf [eαTf − 1])+ αTf
, (12)

where μ > 1.

Proof. In order to prove the stochastic finite-time boundedness of the closed-loop system (7), we construct the 
Lyapunov-Krasovskii functional in the following form:
6
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Vσ (t)=
3∑

ν=1

Vνσ (t), (13)

where

V1σ (t)=
[
x(t)

eχ (t)

]T [P1σ 0
0 P2σ

][
x(t)

eχ (t)

]
,

V2σ (t)=
t∫

t−h
xT (s)P3σ x(s)ds +

t∫
t−τ(t)

xT (s)P4σ x(s)ds +
t∫

t−ε
xT (s)P5σ x(s)ds,

V3σ (t)= h

0∫
−h

t∫
t+s

ẋT (u)P6σ ẋ(u)duds + ε

0∫
−τ(t)

t∫
t+s

ẋT (u)P7σ ẋ(u)duds.

Using the infinitesimal operator £{.} defined in [39] and taking mathematical expectation on both sides, we obtain

E{£V1σ (t)} =E{2xT (t)P1σ ẋ(t)+ 2eTχ (t)P2σ ėχ (t)}
=2xT (t)P1σ

[
Ãσ ix(t)+ B̃σ i ḠK̃σ ix(t − h)+ Ãdσ ix(t − τ(t))+ B̃σ iVσ eχ (t)+E1ω̄(t)

]
+ 2eTχ (t)P2σ

[
(Wσ +Lσ B̃σ iVσ )eχ (t)+E2ω̄(t)

]
, (14)

E{£V2σ (t)} ≤E{xT (t)P3σ x(t)− xT (t − h)P3σ x(t − h)+xT (t)P4σ x(t)− (1 − ε̂)xT (t − τ(t))P4σ x(t − τ(t))

+ xT (t)P5σ x(t)− xT (t − ε)P5σ x(t − ε)}
=E{xT (t)(P3σ +P4σ +P5σ )x(t)− xT (t − h)P3σ x(t − h)− (1 − ε̂)xT (t − τ(t))P4σ x(t − τ(t))

− xT (t − ε)P5σ x(t − ε)}, (15)

E{£V3σ (t)} =E{h2ẋT (t)P6σ ẋ(t)− h

t∫
t−h

ẋT (s)P6σ ẋ(s)ds + ε2ẋT (t)P7σ ẋ(t)− ε

t∫
t−τ(t)

ẋT (s)P7σ ẋ(s)ds}.

(16)

As a continuation, by substituting the system portrayed in (7), the first and third terms of (16) is re-written as

h2E{ẋT (t)P6σ ẋ(t)} =
[
Ãσ ix(t)+ B̃σ i ḠK̃σ ix(t − h)+ Ãdσ ix(t − τ(t))+ B̃σ iVσ eχ (t)+E1ω̄(t)

]T
h2P6σ[

Ãσ ix(t)+ B̃σ i ḠK̃σ ix(t − h)+ Ãdσ ix(t − τ(t))+ B̃σ iVσ eχ (t)+E1ω̄(t)
]

+E{xT (t − h)K̃T
σ i(G − Ḡ)T B̃Tσ ih2P6σ B̃σ i(G − Ḡ)K̃σ ix(t − h)},

(17)

ε2E{ẋT (t)P7σ ẋ(t)} =
[
Ãσ ix(t)+ B̃σ i ḠK̃σ ix(t − h)+ Ãdσ ix(t − τ(t))+ B̃σ iVσ eχ (t)+E1ω̄(t)

]T
ε2P7σ[

Ãσ ix(t)+ B̃σ i ḠK̃σ ix(t − h)+ Ãdσ ix(t − τ(t))+ B̃σ iVσ eχ (t)+E1ω̄(t)
]

+E{xT (t − h)K̃T
σ i(G − Ḡ)T B̃Tσ iε2P7σ B̃σ i(G − Ḡ)K̃σ ix(t − h)}.

(18)

Then, by using (6), the second term in (17) and (18) can be re-formulated as follows:

E{xT (t − h)K̃T
σ i(G − Ḡ)T B̃Tσ ih2P6σ B̃σ i(G − Ḡ)K̃σ ix(t − h)}

= xT (t − h), K̃T
σ i

k∑

=1

δ2
l �

T
l B̃Tσ ih2P6σ B̃σ i�lK̃σ ix(t − h), (19)
7
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E{xT (t − h)K̃T
σ i(G − Ḡ)T B̃Tσ iε2P7σ B̃σ i(G − Ḡ)K̃σ ix(t − h)}

= xT (t − h)K̃T
σ i

k∑

=1

δ2
l �

T
l B̃Tσ iε2P7σ B̃σ i�lK̃σ ix(t − h). (20)

By applying Jensen’s inequality, (16) is re-written as

−h
t∫

t−h
ẋT (s)P6σ ẋ(s)ds ≤

[
x(t)

x(t − h)

]T [−P6σ P6σ
∗ −P6σ

][
x(t)

x(t − h)

]
, (21)

−ε
t∫

t−τ(t)
ẋT (s)P7σ ẋ(s)ds ≤

[
x(t)

x(t − τ(t))

]T [−P7σ P7σ
∗ −P7σ

][
x(t)

x(t − τ(t))

]
. (22)

Further, by summing the inequalities (13)-(22), we can get

E{£V (t)} + αE{V (t)} − ω̄T (t)αω̄(t)≤
Nσ∑
i=1

Nσ∑
j=1

h̄σ i(ξ(t))h̄σj (ξ(t))
[
ϒT (t)�̂ijϒ(t)

]
, (23)

where

�̂ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̂
ij

1,1 �̂
ij

1,2 �̂
ij

1,3 �̂
ij

1,4 0 �̂
ij

1,6

∗ �̂
ij
2,2 0 0 0 �̂i

2,6

∗ ∗ �̂
ij
3,3 0 0 0

∗ ∗ ∗ �̂
ij
4,4 0 0

∗ ∗ ∗ ∗ �̂
ij

5,5 0

∗ ∗ ∗ ∗ ∗ �̂
ij

6,6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ϒT (t) = [
xT (t) eTχ (t) xT (t − h) xT (t − τ(t)) xT (t − ε) ω̄T (t)

]T
, where �̂ij

1,1 = 2P1σAσ i +P3σ +P4σ +
P5σ +AT

σ ih
2P6σAσ i −P6 +AT

σ iε
2P7σAσ i −P7σ +αP1σ , �̂ij

1,2 = P1σBσ iVσ , �̂ij
1,3 = P1σBσ i ḠKσ i +P6σ , �̂ij

1,4 =
P1σAdσ i + P7σ , �̂ij

1,6 = P1σE1, �̂ij

2,2 = 2P2σWσ + 2P2σLσBσ iVσ + VTσ BTσ ih2P6σBσ iVσ + VTσ BTσ iε2P7σBσ iVσ , 

�̂
ij

2,8 = P2σE2, �̂ij

3,3 = −P3σ+KT
σ i ḠTBTσ ih2P6σBσ i ḠKσ i +KT

σ i

∑k
i=1 δ

2
l �

T
l BTσ ih2P6σBσ i�lKσ i+KT

σ i ḠTBTσ iε2P7σ

Bσ i ḠKσ i+KT
σ i

∑k
ı=1 δ

2
l �

T
l BTσ iε2P7σBσ i�lKσ i−P6σ , �̂ij

4,4 = −(1 − ε̂)P4σ +AT
dσ ih

2P6σAdσ i+AT
dσ iε

2P7σAdσ i−
P7σ , �̂ij

5,5 = −P5σ , �̂ij

6,6 =ET
1 h

2P6σE1 +ET
1 ε

2P7σE1 − αI .
To this we add the use of the Schur complement in the above inequality (23), which yields the matrix in (9). 

Consequently, if the inequality (9) holds, then

E{£Vσ (t)} + αE{Vσ (t)} ≤ ω̄T (t)αω̄(t). (24)

After integrating the previous inequality from tn to t , one arrives at the following result:

E{Vσ (t)} ≤ e−α(t−tn)
[
E{Vσ (tn)} +wf [eα(t−tn) − 1]

]
. (25)

It can be seen from (10) that

E{Vσ (tn)} ≤ μE{Vσ (t−n )},where μ> 1. (26)

Now, from (25) and (26), we derive

E{Vσ (t)} ≤μ e−α(t−tn)E{Vσ (t−n )+wf [eα(t−tn) − 1]}
≤μ2e−α(t−tn−1)E{Vσ (t−n−1)+wf [eα(t−tn−1) − 1]}
≤ . . .≤ μNσ (0,Tf )e−αTfE{Vσ (0)+wf [eαTf − 1]}, (27)
8
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where ta−tb
ζ ∗
a

≥Nσ (0, Tf ) denotes the number of switchings in the σ -th subsystem over [0, Tf ) and ζ ∗
a represents the 

average dwell-time.

Consider P̆rσ = F
−1
2 PrσF

−1
2 for any symmetric matrix F and from (13), we obtain

E{Vσ (t)} ≥ E[xT (t)P1σ x(t)] ≥ λmin(P̆1σ )E[xT (t)Fx(t)] = λ1E[xT (t)Fx(t)]. (28)

On the other hand, under zero initial condition, we have

E{V (0)} =E
{
xT (0)P1σ x(0)+ eTχ (0)P2σ eχ (0)+

0∫
−h

xT (s)P3σ x(s)ds +
0∫

−ε(0)
xT (s)P4σ x(s)ds

+
0∫

−ε
xT (s)P5σ x(s)ds + h

0∫
−h

0∫
s

ẋT (u)P6σ ẋ(u)duds + ε

0∫
−ε(0)

0∫
s

ẋT (u)P7σ ẋ(u)duds
}

≤
[
λmax(P̆1)+ λmax(P̆2)+ hλmax(P̆3)+ ελmax(P̃4)+ ελmax(P̆5)+ h3

2
λmax(P̆6)+ ε3

2
λmax(P̆7)

]
× sup

−max(ε,h)≤t0<0
E
{
xT (t0)Fx(t0), e

T
χ (t0)Feχ (t0), ẋ

T (t0)F ẋ(t0)
}

=
[

2λ2 + hλ3 + ε(λ4 + λ5)+ h3

2
λ6 + ε3

2
λ7

]
c1

=� c1. (29)

By combining (27) to (29), we have

λ1E[xT (t)Fx(t)] ≤ μ
Tf
ζa e−αTf

[
� c1 +wf [eαTf − 1]

]
. (30)

If (11) and (12) hold, we can compute

E[xT (t)Fx(t)] ≤ c2. (31)

In accordance with Definition 1, it is easy to conclude that the closed-loop system (7) is stochastically finite-time 
bounded with respect to (c1, c2, Tf , α, F). Thus, the theorem’s proof is completed. �

Further, by taking gain matrices to be unknown and considering the dissipative performance, the necessary condi-
tions are developed in the following theorem which assures the stochastic finite-time boundedness of the closed-loop 
system (7) and satisfies the desired (Q, S, R) − θ dissipative performance index.

3.2. Stochastic finite-time dissipativity analysis

Theorem 2. With Assumption 1, let us consider the closed-loop system (7). Then, given with the positive scalars ε, h, 
μ, c1, c2, wf , α, Tf and θ , symmetric matrix F and matrices Q, S, R are constants such that Q ≤ 0, R = RT and 
S = ST , if there exist symmetric matrices Pr > 0 (r = 1, 2, . . . , 7) and appropriate dimensioned matrices Y1σ i , Y2σ
and the below-listed inequalities hold:{

�ii < 0, (i = 1,2, . . .Nσ )

�ij + �ji < 0, (i, j = 1, . . .Nσ ), i �= j
(32)

κF−1 <Pσ < F−1, (33)

0< P̄jσ < 2F−1, j = {3,4, . . . ,7}, (34)[
ϑ̄

√
2ε(1 + ε2

2 )+ 2h(1 + h2

2 )c1

∗ −κ

]
< 0, (35)
9
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where

�ij =
⎡
⎢⎣ [�ij ]9×9 �

ij
a

T
�
ij
b

T

∗ �
ij
a1 0

∗ ∗ �
ij
b1

⎤
⎥⎦ ,

�
ij
a =

⎡
⎢⎣

0 0 δ1hBσ i�1Y1σ i 0 0 0 0 0
...

...
...

...
...

...
...

...

0 0 δkhBσ i�kY1σ i 0 0 0 0 0

⎤
⎥⎦ ,�ij

b =
⎡
⎢⎣

0 0 δ1εBσ i�1Y1σ i 0 0 0 0 0
...

...
...

...
...

...
...

...

0 0 δkεBσ i�kY1σ i 0 0 0 0 0

⎤
⎥⎦ ,

�
ij
a1 = diag{−2Pσ + P̄6σ , . . . ,−2Pσ + P̄6σ }︸ ︷︷ ︸

k

,�
ij
b1 = diag{−2Pσ + P̄7σ , . . . ,−2Pσ + P̄7σ }︸ ︷︷ ︸

k

,

�
ij
1,1 = 2Aσ iPσ + P̄3σ + P̄4σ + P̄5σ − P̄6σ − P̄7σ +αPσ , �ij

1,2 = Bσ iVσ , �ij
1,3 = Bσ i ḠY1σ i + P̄6σ , �ij

1,4 = Adσ iPσ +
P̄7σ , �ij

1,6 = E1 − 2PσCTσ iS, �ij
1,7 = hPσAT

σ i , �
ij
1,8 = εPσAT

σ i , �
ij
1,9 = PσCTσ iQ̄

1
2 , �ij

2,2 = 2P2σWσ + 2Y2σBσ iVσ , 

�
ij

2,6 = P2σE2, �ij
2,7 = hVσBσ i , �ij

2,8 = εVσBσ i , �ij
3,3 = −P̄3σ − P̄6σ , �ij

3,7 = hYT
1σ i ḠTBTσ i , �

ij
3,8 = εYT

1σ i ḠTBTσ i , 
�
ij
4,4 = −(1 − ε̂)P̄4σ − P̄7σ , �ij

4,7 = hPσAT
dσ i , �

ij
4,8 = εPσAT

dσ i , �
ij

5,5 = −P̄5σ , �ij

6,6 = −2ET
3σ iS −R+ θI , �ij

6,7 =
hET

1 , �ij

6,8 = εET
1 , �ij

6,9 = ET
3σ iQ̄

1
2 , �ij

7,7 = −2Pσ + P̄6σ , �ij
8,8 = −2Pσ + P̄7σ , �ij

9,9 = −I and ϑ̄ = 2c1 + [(wf −
c2)e

αTf − wf ]κ , then the closed-loop system (7) is stochastically finite-time bounded with a desired (Q, S, R) − θ

dissipativity performance index. Moreover, the controller and observer gain matrices are calculated by utilizing the 
following relation Kσ i = Y1σ iP−1

σ and Lσ = P−1
2σ Y2σ .

Proof. By taking the same Lyapunov-Krasovskii functional and by following the similar lines of Theorem 1, the proof 
of Theorem 2 can be obtained. Precisely, for any non-zero disturbance ω̄(t), we define

J(t)= zT (t)Qz(t)+ 2z(t)T Sω̄(t)+ ω̄T (t)(R − θI)ω̄(t). (36)

From the above-mentioned relation, one has

E{£Vσ (t)} + αE{Vσ (t)} − J(t) < ϒT (t)[�́ij ]7×7ϒ(t), (37)

where �́ij

1×1 = �̂
ij

1,1 − CTσ iQCσ i, �́ij

1×2 = �
ij

1,2, �́
ij

1×3 = �
ij

1,3, �
ij

1×4 = �
ij

1,4, �
ij

1×6 = �
ij

1,6 − 2CTσ iS, �́ij

2×2 = �
ij

2,2, 

�
ij

2×6 =�
ij

2,6, �
ij

3×3 =�
ij

3,3, �
ij

4×4 =�
ij

4,4, �
ij

5×5 =�
ij

5,5, �
ij

5×6 = −ET
3σ iQE3σ i − 2ET

3σ iS−R+ θI and the remain-
ing elements are same as in (23).

The matrix described above can be rewritten using the Schur complement lemma as follows:

�́ij =
⎡
⎢⎣ [�́ij

ℵ ]9×9 �
ij
a

T
�
ij
b

T

∗ �
ij

a1 0
∗ ∗ �

ij
b1

⎤
⎥⎦ ,

where

�́ij =
⎡
⎢⎣�́

ij
ℵ �

ij
a

T
�
ij
b

T

∗ �
ij
a1 0

∗ ∗ �
ij

b1

⎤
⎥⎦ ,

where
10
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�́
ij
ℵ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
ij

1,1 �
ij

1,2 �
ij

1,3 �
ij

1,4 0 �
ij

1,6 − 2CTσ iS �
ij

1,7 �
ij

1,8 CTσ iQ
1
2

∗ �
ij
2,2 0 0 0 �

ij

2,6 0 0 0

∗ ∗ �
ij
3,3 0 0 0 0 0 0

∗ ∗ ∗ �
ij
4,4 0 0 0 0 0

∗ ∗ ∗ ∗ �
ij

5,5 0 0 0 0

∗ ∗ ∗ ∗ ∗ −2ET
3σ iS −R + θI �

ij

6,7 �
ij

6,8 ET
3σ iQ

1
2

∗ ∗ ∗ ∗ ∗ ∗ −P−1
6σ 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −P−1
7σ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, pre- and post-multiplying aforementioned matrix with diag{P−1
1σ , I, P

−1
1σ , P

−1
1σ , P

−1
1σ , I, . . . , I︸ ︷︷ ︸

2m+4

} and its trans-

pose. Besides, by letting Pσ = P−1
1σ , PσP
σPσ = P̄
σ and utilizing the relation −2Pσ + P
σ = −PσP
σPσ , 


 = {3, . . . , 7}, we acquire the matrix (32) given in theorem statement.

At the same time, we know that P̆rσ = F
−1
2 Prσ F

−1
2 . The following relations can be acquired by applying the 

congruence transformation, P̆σ = F
1
2 PσF

1
2 and λmax(P̆σ ) = 1

λmin(P̆1σ )
, it ensures that I < F

−1
2 P1σF

−1
2 < 1

κ
I , we 

have λ2 <
1
κ

and λ > 1. Further, 0 < F
−1
2 PυσF

−1
2 < 2(F

−1
2 P1σF

−1
2 )2 < 2

κ2 I , υ = {3, 4, . . . , 7}. Thus by employing 
the above relations, we deduce (33) and (34). Now by using the prior mentioned relations in (11), we get the following 
inequality;[

2

κ
+ 2h

κ2

(
1 + h2

2

)
+ 4ε

(
1 + ε2

4

)]
c1 +wf

[
eδTf − 1

]
< eδTf c2, (38)

wherein by taking Schur complement, it can be equivalently written as (35). The proof for this theorem is now com-
plete. �

Suppose that there is no time-varying delay in TSFSS (1) under consideration, then we have the following closed-
loop system:⎧⎪⎨

⎪⎩
ẋ(t)= [Ãσ ix(t)+ B̃σ i(G − Ḡ)K̃σ ix(t − h)+ B̃σ i ḠK̃σ ix(t − h)+ B̃σ iVσ eχ (t)+E1ω̄(t)],
ėχ (t)= [Wσ +Lσ B̃σ iVσ ]eχ (t)+E2ω̄(t),

z(t)= [C̃σ ix(t)+E3σ iω̄(t)].
(39)

Corollary 1. Let us consider the system (39) with Assumption 1. Suppose that we are given with the positive scalars 
α, h, c1, c2, wf , Tf , μ, θ , symmetric matrix F , if there exist symmetric matrices Pr > 0 (r = 1, 2, 3, 6), appropriate 
dimensioned matrices Y1σ i and Y2σ in a way that the below given conditions are satisfied;{

�ii < 0, (i = 1,2, . . .Nσ )

�ij + �ji < 0, (i, j = 1, . . .Nσ ), i �= j
(40)

κF−1 <Pσ < F−1, (41)

0< P̄qσ < 2F−1, q = {3,6}, (42)[
2c1 + [(wf − c2)e

αTf −wf ]κ 2h(1 + h2

2 )c1
∗ −κ

]
< 0, (43)

where

�ij =
[

[ ij ]6×6  
ij
a

T

∗  
ij

]
,

a1

11



R. Sakthivel, R. Abinandhitha, S. Harshavarthini et al. Fuzzy Sets and Systems 471 (2023) 108673
 
ij
a =

⎡
⎢⎣

0 0 δ1hBσ i�1Y1σ i 0 0 0
...

...
...

...
...

...

0 0 δkhBσ i�kY1σ i 0 0 0

⎤
⎥⎦ , ija1 = diag{−2Pσ + P̄6σ , . . . ,−2Pσ + P̄6σ }︸ ︷︷ ︸

k

,

and  ij1,1 = 2Aσ iPσ + P̄3σ − P̄6σ + αPσ ,  ij1,2 = Bσ iVσ ,  ij1,3 = Bσ i ḠY1σ i + P̄6σ  
ij
1,4 = E1 − 2PσCTσ iS,  ij1,5 =

hPσAT
σ i ,  

ij

1,6 = PσCTσ iQ̄
1
2 ,  ij2,2 = 2P2σWσ + 2Y2σBσ iVσ ,  ij2,4 = P2σE2,  ij2,5 = hVσBσ i ,  ij3,3 = −P̄3σ − P̄6σ , 

 
ij

3,7 = hYT
1σ i ḠTBTσ i ,  

ij

4,4 = −2ET
3σ iS−R+ θI ,  ij4,5 = hET

1 ,  ij4,6 =ET
3σ iQ̄

1
2 ,  ij5,5 = −2Pσ + P̄6σ  

ij

6,6 = −I , then 
the closed-loop system drafted in (39) is stochastically finite-time bounded. Moreover, the gain matrices are computed 
via Kσ i = Y1σ iP−1

σ and L̂σ = P−1
2σ Y2σ .

Remark 2. The authors in [15] discussed the dynamic output feedback H∞ control problem for TSFSSs. Meanwhile 
in [16], the problem of passivity and feedback passification for TSFSSs is investigated. It should be pinpointed out that 
in the above said words, the stabilization issue for TSFSSs has been discussed with one type of merged disturbance. 
However due to complex environment, multiple heterogeneous disturbances may exist in the system model. Thus, in 
our present work, we have considered the stabilization problem of TSFSSs with multiple disturbances, time-varying 
state delay, input delay in a single framework. Additionally, because the modes and patterns of actuator failures are 
basically random in nature, the actuator fault may manifest in a stochastic way. Nonetheless, in [37] and [38], the
actuator fault is considered to be constant, which is not practically sufficient. Hence, we have examined into a model 
where actuator failures occur at random manner and fault rates are described using stochastic variables which follow a 
Bernoulli distribution. In addition, unlike asymptotic and exponential stability [4] and [14] which are defined across an 
indefinite length of time, the finite-time stability concept is explored in this study. Specifically, the finite-time stability 
prevents the states from exceeding a particular range within a predetermined time frame and it is distinguished from 
those other types of stability.

4. Simulation verification

In the subsequent part, simulation results of two numerical examples are provided to demonstrate the practical 
applicability and effectiveness of the theoretical conclusions stated in the previous sections. More specifically, by the 
virtue of Example 1, simultaneously stochastic finite-time boundedness of the considered system (7) is guaranteed. 
Furthermore, mass spring damper model is considered as an Example 2 to endorse the implementation of the designed 
control law in practice.

Example 1. In this example, a 2-rule TSFSS with two operating modes in the format of (1) is taken into account. The 
following are the system matrices that correspond to them:
Subsystem 1:

A11 =
[−0.2 0.1

1.2 −0.2

]
,A12 =

[−0.6 0.2
1 −0.5

]
,Ad11 =

[−0.1 0
−0.3 0.02

]
,Ad12 =

[
0.23 0.1
0.03 −0.2

]
,

B11 = B12 =
[

0.5 0.4
0.8 0.7

]
,Bw11 = Bw12 =

[
0.12 0

0 0.13

]
,C11 =

[
0.3 0.1
0.3 0.1

]
,C12 =

[
0.1 0.2
0.1 0.2

]
.

Subsystem 2:

A21 =
[−0.5 0.7

1 −0.3

]
,A22 =

[−1 0.4
0.9 −0.4

]
,Ad21 =

[−0.3 −0.1
0.3 0.1

]
,Ad22 =

[−0.13 0
0.1 0.35

]
,

B21 = B22 =
[

0.5 0.4
0.8 0.7

]
,Bw21 = Bw22 =

[
0.12 0

0 0.13

]
,C21 =

[
0.4 0.2
0.3 0.1

]
,C22 =

[
0.1 0.3
0.1 0.2

]
.

Moreover, the associated matrices of the exogenous system (3) with two operating modes are taken as follows:
Subsystem 1:

W1 =
[−7.5 7.5

7.5 −7.5

]
,H1 =

[
1.3 7
1 4

]
,V1 =

[
1 0
0 1

]
.

12



R. Sakthivel, R. Abinandhitha, S. Harshavarthini et al. Fuzzy Sets and Systems 471 (2023) 108673
Table 1
Gain matrices with its corresponding index γ for distinct disturbance attenuation performances.

(Q,S,R)− θ dissipativity H∞ Passivity Mixed H∞ and Passivity

K11 −
[

1.2506 0.4961
0.5325 0.4677

]
−
[

1.0585 0.2636
0.2662 0.8742

]
−
[

1.3318 0.7310
0.6676 0.1633

]
−
[

1.0380 0.2880
0.2934 0.8991

]

K12 −
[

1.0524 0.5443
0.6929 0.6332

]
−
[

0.9744 0.4415
0.4833 0.5284

]
−
[

1.0158 0.6159
0.7402 0.5956

]
−
[

0.9417 0.4633
0.4934 0.5649

]

K21 −
[

0.4629 0.4931
0.7051 0.6555

]
−
[

0.6065 0.4994
0.5055 0.9005

]
−
[

0.2635 0.5618
1.0142 0.4784

]
−
[

0.6245 0.5167
0.5275 0.9271

]

K22 −
[

0.1758 0.2955
0.7386 1.1232

]
−
[

0.3792 0.3719
0.4071 1.0816

] [
0.2028 −0.2481

−1.1936 −1.1577

]
−
[

0.3877 0.3926
0.4261 1.1214

]

L1 −
[

9.4007 12.7214
6.9777 12.7767

]
−
[

3.5321 5.6167
3.0749 5.2843

]
−
[

9.3500 10.7956
7.0326 10.8117

]
−
[

3.0666 3.5115
2.0375 3.8128

]

L2 −
[

8.7273 17.4028
9.3504 22.8026

]
−
[

4.2397 6.7100
3.6601 5.8052

]
−
[

7.8715 11.4720
6.7381 18.1956

]
−
[

4.0953 6.0902
3.5542 5.8185

]
γ 0.5 0.71 0.62 0.95

Subsystem 2:

W2 =
[−7.6 8

8 −7.6

]
,H2 =

[
2 1
3 5

]
,V2 =

[
1 0
0 1

]
.

On the flip side, the disturbance signals are given by w1(t) = 0.01 sint, w2(t) = 0.01 cos(πt), η1(t) =
2 sin(5πt) + 3 cos(7πt) + 0.4 cos(2πt) and η2(t) = cos(5πt) + 0.7 sin(πt). The membership functions are chosen 

as h̄11(x1(t)) = h̄21(x1(t)) = sin2(x1(t))
25 and h̄12(x1(t)) = h̄22(x1(t)) = 1 − sin2(x1(t))

25 . The time-varying state delay 
function is taken as 0.2 + 0.2sin(t). In addition, we suppose that the stochastic behavior corresponding to the fault 
model obeys Bernoulli distributed white sequence, we have{

Prob{β
 = 1} = E{β
} = "
,

P rob{β
 = 0} = 1 −E{β
} = 1 − "
,

where "
 are non-negative real valued scalars. Notably, if the value of "
 increases, then the range of possible actuator 
failure will be decreased, that is, the value of "
 = 1 ensures the good condition of actuators. Further, the expectation 
and variance of fault are calculated by making use of the following relation ϑ = "
 and δ2

k = "
(1 −"
), 
 = 1, . . . , k. 
Take k = 2 for simulation purpose and as a consequence, we consider "1 = 0.8 and "2 = 0.9.

The remaining parameters are chosen as ε = 0.4, τ̂ = 0.2, h = 0.3, c1 = 0.5, c2 = 2.2, wf = 0.4, Tf = 10, α = 0.1, 
F = I , Q = −1.5, S = 0.8, R = 1.4I and θ = 0.5. Based on the values considered above and with initial conditions 
x(t0) = [1 − 1]T and χ(t0) = [50 − 50]T , t0 ∈ [−max(ε, h), 0], the necessary criterion given in Theorem 2 is solved. 
The gain matrices for the controller and observer are tabulated in Table 1 based on the feasible solutions obtained. 
Precisely, Table 1 displays the desired gain matrices and its corresponding disturbance attenuation index γ under 
(Q, S, R) − θ dissipative, H∞, passivity and mixed H∞ and passivity performance.

In addition, we obtain the average dwell time as ζ ∗
a = 1.1095. Then, with respect to the gain values mentioned in 

Table 1, the corresponding graphs of the addressed TSFSS (1) in response of developed composite anti-disturbance 
controller (5) are plotted in Figs. 1-8. To be particular, in Fig. 1, response of state trajectories x1(t) and x2(t) in the 
presence and absence of term d̂(t) in the developed controller’s design (5) is exhibited. As seen in Fig. 1, we observe 
that the proposed controller stabilized the system states. Further, accuracy of the constructed disturbance observer is 
validated by plotting d(t), its estimated term d̂(t) and error d(t) − d̂(t) depicted in Fig. 2. Additionally, the devised 
anti-disturbance observer-based reliable control signal’s trajectory is pictured in Fig. 3. In respect of the optimal values 
of the finite-time parameters c1 and c2, the trajectories of xT (t)Fx(t) are given in Fig. 4 which signifies the finite-
time boundedness of the addressed system. The corresponding switching signal is pictured in Fig. 5. Additionally, the 
developed control method is compared to the (Q, S, R) − θ dissipative approach to demonstrate its advantages over 
existing methods. Hence, in Fig. 6, the comparative plot between the developed controller and traditional (Q, S, R) −θ
13
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Fig. 1. Response of state dynamics of the closed-loop system (7) with and without d̂(t). (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 2. Disturbance estimation and its error response.

Fig. 3. Control responses.

dissipative controller is provided. From this figure, we can conclude that the satisfactory results for the undertaken 
system are attained by using the method provided in this work.

Now, to distinguish the efficiency between the proposed control scheme and its deduced schemes for attenuating 
the norm-bounded disturbances which are analyzed by selecting the values of Q, S, R as specified in Remark 1. Based 
on the three sets of gain values given in Table 1, the simulations are carried out and as a result, the state responses of 
the considered TSFSS (1) under distinct disturbance attenuation performances, namely H∞, passivity and mixed H∞
and passivity, are presented in Fig. 7. Further, to show the relationship between the coefficient matrices of exogenous 
system (3) and the accuracy of disturbance rejection, the gain matrices corresponding to different parameters of Wσ
14
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Fig. 4. Trajectory of xT (t)Fx(t).

Fig. 5. Switching signal.

Fig. 6. Evolution of ||x(t)||.

and Vσ (refer Table 2) are computed and given with Table 3. Based on the obtained gain matrices (refer Table 3), the 
disturbance estimation error is plotted in Fig. 8.

In this way, it is worthy to conclude that the results established in this work assure the simultaneous disturbance 
estimation and finite-time boundedness of the system under consideration in the existence of stochastic faults in 
actuators and multiple disturbances.

Example 2. Precisely, this example illustrates the practical applicability of the established result given in Corollary 1. 
In this context, the well-known mass-spring damping model is adopted from [45], whose dynamics are given as:
15
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Fig. 7. State responses.

Table 2
Different values of Wσ and Vσ for distinct exogenous systems (3).

W1 W2 V1 V2

Case 1

[
0 3

−3 0

] [
0 4

−4 0

] [
0.1 0
0 0.1

] [
0.2 0
0 0.2

]

Case 2

[ −3 4.25
−4.5 4

] [ −3 2.5
−2.8 4

] [
1 8

−1 4

] [
2.6 1
−3 5

]

Case 3

[
1 5

−5 1

] [
1 2

−2 1

] [
3 0
0 3

] [
4 0
0 4

]

Case 4

[
2 7

−7 2

] [
3 4

−4 3

] [
5 −0.1
0 5

] [
6 −0.2
0 6

]

Table 3
Observer and controller gain matrices for different values Wσ and Vσ in Table 2.

Case 1 Case 2 Case 3 Case 4

K11 −
[

1.2506 0.4961
0.5325 0.4677

]
−
[

1.0439 0.2849
0.2887 0.9078

]
−
[

1.0382 0.2893
0.2936 0.8898

]
−
[

1.0468 0.2773
0.2807 0.9066

]

K12 −
[

1.0524 0.5443
0.6929 0.6332

]
−
[

0.9404 0.4634
0.4892 0.5676

]
−
[

0.9513 0.4632
0.4959 0.5492

]
−
[

0.9501 0.4587
0.4877 0.5618

]

K21 −
[

0.4629 0.4931
0.7051 0.6555

]
−
[

0.6294 0.5217
0.5299 0.9339

]
−
[

0.6209 0.5177
0.5264 0.9222

]
−
[

0.6269 0.5153
0.5230 0.9289

]

K22 −
[

0.1758 0.2955
0.7386 1.1232

]
−
[

0.3937 0.3978
0.4273 1.1222

]
−
[

0.3876 0.3896
0.4228 1.1098

]
−
[

0.3938 0.3912
0.4226 1.1206

]

L1 −
[

9.4007 12.7214
6.9777 12.7767

]
−
[

15.8852 31.8991
1.9394 43.5853

] [
5.3339 −23.6550

32.1781 −67.0403

] [
11.4260 −47.8228
51.176 −109.7251

]

L2 −
[

8.7273 17.4028
9.3504 22.8026

] [−2.6398 −36.3609
15.1905 −69.9072

] [−9.3269 −16.1178
14.8586 −46.8133

] [−5.1744 −40.9465
32.2876 −89.4340

]

mẍ + Ff + Fs = u(t),

where m denote spring’s mass, Ff and Fs represents spring’s friction force and restoring force with nonlinear or 
uncertain terms, respectively and u(t) represents the control input vector. Prompted by [45], the above system is 
equivalently re-drafted in the form of (39) as a 2-rule TSFSS associated with stochastic actuator faults, input delay 
and multiple disturbances. Then, the related system matrices with two switching modes borrowed from [45] are given 
as follows:

A11 =
[

0 1
−0.02 0

]
,A12 =

[
0 1

−0.02 −0.225

]
,A21 =

[
0 1

−1.5275 0

]
,A22 =

[
0 1

−1.5275 −0.225

]
,

16
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Fig. 8. Disturbance estimation error for the distinct cases given in Table 2.

Table 4
Gain matrices with its corresponding index γ for distinct disturbance attenuation performances.

(Q,S,R)− θ dissipativity H∞ Passivity Mixed H∞ and Passivity

K11 − [
1.7433 2.1111

] − [
1.5457 2.0163

] − [
1.5548 2.0107

] − [
1.5501 2.0055

]
K12 − [

1.9042 2.1038
] − [

1.5704 1.9755
] − [

1.5887 1.9741
] − [

1.5841 1.9673
]

K21
[

0.4202 −1.8332
] [

0.5458 −1.7832
] [

0.5715 −1.7842
] [

0.5691 −1.7776
]

K22
[

0.1357 −1.8467
] [

0.5336 −1.7504
] [

0.5432 −1.7605
] − [

0.5409 −1.7530
]

L1

[
6.4863 −14.1735

−4.1048 −26.0232

]
−
[

1.1528 3.9306
1.8218 7.9508

]
−
[

1.0169 5.5050
2.3066 10.9606

] [
1.1166 −6.2000

−2.3447 −11.4913

]

L2 −
[

0.1096 11.5006
3.9423 22.2345

] [
0.8899 −3.8021

−1.6010 −7.0122

] [
0.6633 −5.1808

−2.0370 −9.7269

]
−
[

0.6759 −5.4608
−2.0914 −10.2343

]
γ 0.4 0.82 0.6 0.87

B11 = B12 = B21 = B22 =
[

0
1

]
,

The membership functions are selected as h̄11(x1(t)) = 1 − x2
1 (t)

2.25 ; h̄21(x2(t)) = 1 − x2
2 (t)

2.25 ; h̄12(x1(t)) = x2
1 (t)

2.25 and 

h̄22(x2(t)) = 1 − x2
2 (t)

2.25 .
Further, the external disturbances and its corresponding coefficient matrices are selected as w(t) = 0.001 tant,

η(t) = 0.4 cos(3πt) + 0.7 sin(5πt). Bw11 = Bw12 = Bw21 = Bw22 =
[

0
1

]
, C11 = [

0.3 0.1
]
, C12 = [

0.3 0.4
]
, 

C21 = [
0.3 0.1

]
, C22 = [

0.3 0.4
]
, Cw11 = 0.2, Cw12 = 0.3, Cw21 = 0.2, Cw22 = 0.3.

In addition to that, the coefficient matrices of the exogenous system (3) with two switching modes are considered 
as follows:

W1 =
[

1 12
−12 1

]
,H1 =

[
0.01
0.02

]
,V1 = [

1 2
] ;

W2 =
[

1 13
−13 1

]
,H2 =

[
0.01
0.02

]
,V2 = [

1 2
]
.

In order to solve the obtained sufficient stability conditions (40)-(43), the rest of the values are selected as h = 0.1, 
c1 = 0.2, c2 = 5.2, wf = 0.4, Tf = 10, α = 0.1, F = I , Q = −1.2, S = 0.8, R = 1.8I and θ = 0.4. The assumption 
regarding the stochastic faults in actuators is same as in previous example along with k = 1 and " = 0.8. Then, by 
solving the conditions in Corollary 1, the gain matrices are computed and displayed in Table 4.

In addition to the above, the average dwell time is obtained as ζ ∗
a = 0.4961. The outcomes are depicted in Figs. 9-16

under these calculated controller and observer gain matrices together with the same initial conditions considered in the 
17
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Fig. 9. Evolution of state trajectories with and without d̂(t).

Fig. 10. Disturbance estimation and its error.

Fig. 11. Control responses.

previous example. Precisely, Fig. 9 presents state responses of (39) in the presence and absence of the term d̂(t) in the 
developed controller (5). From this figure, the efficiency and importance of the proposed composite anti-disturbance 
observer-based control scheme is revealed. In Fig. 10, the response of the disturbance d(t) and its estimation is 
presented, wherein the exact estimation is accomplished. Fig. 11 signifies the control input response. Further, the 
evolution of all the system states converge to zero within the optimal bound values c1 and c2, which is clearly revealed 
from Fig. 12. The corresponding switching mode and norm-bounded disturbance signal of the considered system are 
respectively doodled in Fig. 13 and 14. Therefore, it is concluded that the considered mass-spring damper system 
represented by (39) is stochastically finite-time bounded. In addition to that, similar to the prior example, Fig. 15 is 
drawn to demonstrate the supremacy of the proposed control protocol with the traditional (Q, S, R) − θ dissipative 
method, where the satisfactory performance is accomplished via the developed control law. Besides, the response of 
state trajectories x1(t) and x2(t) under H∞, passivity, mixed H∞ and passivity performances are plotted in Fig. 16. 
18
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Fig. 12. Evolution of xT (t)Fx(t).

Fig. 13. Switching signal.

Fig. 14. Disturbance.

As a next step, we’ll verify the proposed method with the existing results as in [46]. It is seen from Fig. 17 that, 
in comparison to the methodology in [46], the response of ‖ x(t) ‖ using the developed control technique quickly 
converges to zero. Moreover, from Table 5, it is clear that the minimum disturbance attenuation level computed in this 
article is comparatively is lesser than that of in [46]. Overall, these simulation results reveal the practical significance 
of the proposed control law and also its robustness against the traditional disturbance attenuation method.
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Fig. 15. Response of ||x(t)||.

Fig. 16. State responses.

Fig. 17. Evaluation of ‖ x(t) ‖.

As a result of the above study, we can conclude that the considered mass-spring damper system in the form of (39)
is stabilized by virtue of the designed composite anti-disturbance controller (5).
20
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Table 5
Minimum disturbance attenuation level.

Methods γmin Improvement

Reference [46] 0.67 40.29%
Corollary 1 0.4

Fig. 18. Evolution of state trajectories with d(t).

Example 3. In order to demonstrate the superiority of the proposed control scheme in comparison to the existing 
literature, a comparative analysis is presented in this example. In particular, we take into consideration Lorenz system 
given by the following equations [47]:

ẋ1(t)= −px1(t)+ px2(t)+ u(t)

ẋ2(t)= rx1(t)− x2(t)− x1(t)x3(t)

ẋ3(t)= x1(t)x2(t)− qx3(t) (44)

where p = 10, q = 8/3, r = 28 and v = 25.
Having one switched system and two fuzzy rules, following is the matrix representation of the system (39) with 

regard to the above system:

A1 =
⎡
⎣−p p 0

r −1 v

0 v −q

⎤
⎦ ,A2 =

⎡
⎣−p p 0

r −1 v

0 −v −q

⎤
⎦ ,B1 = B2 =

⎡
⎣1

0
0

⎤
⎦ .

Moreover, the membership functions are chosen as h̄1(x1(t)) = 1
2 (1 + x1(t)

2 ); h̄2(x1(t)) = 1 − h̄1(x1(t)).
Now, the exogenous system matrices are given by

W =
[

0 4
−4 0

]
,V = [

0.4 0.5
] ;H =

[
0.2
0.6

]
.

The remaining matrices are chosen as

C1 =
⎡
⎣0.2

0.1
0.1

⎤
⎦ ,C2 =

⎡
⎣0.3

0.4
0.1

⎤
⎦ ,Bw1 = [

0.1 0.2 0.1
]T
,Bw2 = [

0.1 0.2 0.2
]T
.

The rest of parameter values are selected as same in Example 2. Then, we solve the LMIs in Corollary 1 to obtain 
the desired gain matrices:
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Fig. 19. Evolution of state trajectories without d̂(t).

Fig. 20. Disturbance and its estimation with error.

K1 = [−161.1512 −64.0852 −0.5785
]
,K2 = [−161.8399 −63.7862 −11.4287

]
and

L=
[−12.6407 8.2961 −1.5277
−23.3395 15.2994 −2.7372

]
.

For the purpose of simulation, the disturbances are picked by w(t) = 0.1 ∗ sin(t) and η(t) = sin(t) + cos(t). Further, 
the initial conditions are x(0) = [

0.1 0.3 −0.2
]
. To be specific, Fig. 18 depicts the system (44)’s state response, 

which illustrates that the underlying system is stabilised by means of the designed controller. Moreover, the considered 
system’s state outcomes without the estimated term d̂(t) in the developed controller are shown in Fig. 19. As seen in 
these figures, the efficacy of the developed control scheme is revealed. Further, the disturbance d(t) and its estimation 
d̂(t) with the disturbance estimation error is plotted in Fig. 20. In addition to this, the proposed control technique is 
compared with that of the existing method in [47]. Precisely, the comparison plot for the response of ‖ x(t) ‖ of the 
developed controller and the existing controller [47] is plotted in Fig. 21. From this graph, we infer that the approach 
presented in this paper yields satisfactory results for the considered system.
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Fig. 21. Response of ‖ x(t) ‖.

5. Conclusion

This study focused on solving the disturbance rejection based stabilization problem for TSFSS in conjunction with 
multiple disturbances, state/input delays and stochastic actuator faults. Specifically, to account the stochastic behavior 
of actuator faults, the random variables that obey Bernoulli distribution are examined. The composite disturbance 
observer approach based (Q, S, R) − θ dissipative performance is designed to achieve both the disturbance rejection 
and attenuation, respectively. To be precise, a unified control protocol is proposed for obtaining the required result by 
combining the output of anti-disturbance observer and parallel distributed compensation based reliable controller with 
input delay. Based on these settings, the stochastic finite-time boundedness of the states of the system (1) is confirmed 
by the virtue of Lyapunov stability theory. Further, numerical examples with simulation results are given to verify the 
efficiency of the proposed control design. Specifically, mass-spring-damper model is considered to authenticate the 
applicability of the theoretical outcomes. Further, the anti-disturbance control problem for stochastic switched IT2 
fuzzy systems with multiple disturbances, time-varying delays and actuator saturation is an unexplored work, that will 
be studied as our future work.
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