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Abstract. Malicious software, or malware, has posed serious and evolving security threats to Internet users. Many anti-
malware software packages and tools have been developed to protect legitimate users from these threats. However, legacy
anti-malware methods are confronted with millions of potential malicious programs. To combat these threats, intelligent
anti-malware systems utilizing machine learning (ML) models are useful. However, most ML models have limitations in
performance since the training depth is usually limited. The emergence of Deep Learning (DL) models allow more training
possibilities and improvement in performance. DL models often use gradient descent optimization, i.e., the Back-Propagation
(BP) algorithm; therefore, their training and optimization procedures suffer from local sub-optimal solutions. In addition,
DL-based malware detection methods often entail single classifiers. Ensemble learning overcomes the shortcomings of
individual techniques by consolidating their strengths to improve the performance. In this paper, we propose an ensemble DL
classifier stacked with the Fuzzy ARTMAP (FAM) model for malware detection. The stacked ensemble method uses several
heterogeneous deep neural networks as the base learners. During the training and optimization process, these base learners
adopt a hybrid BP and Particle Swarm Optimization algorithm to combine both local and global optimization capabilities for
identifying optimal features and improving the classification performance. FAM is selected as a meta-learner to effectively
train and combine the outputs of the base learners and achieve robust and accurate classification. A series of empirical studies
with different benchmark data sets is conducted. The results ascertain that the proposed ensemble method is effective and
efficient, outperforming many other compared methods.

Keywords: Ensemble learning, fuzzy ARTMAP, deep learning, malware detection, particle swarm optimization, backpropa-
gation algorithm

1. Introduction

The Internet has become an indispensable part of
our daily activities as computers and digital tech-
nologies have become increasingly ubiquitous. Many
of us rely on Internet services on a daily basis,
e.g., e-banking, e-commerce, instant communication,
education, and entertainment [1]. All these activi-
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ties open up opportunities for cyber-crimes, leading
to an increase in spending on digital system protec-
tion. In this respect, malware (malicious software) is
often used to launch cyber-attacks on victims’ com-
puters. Various types of malware are available, e.g.
Trojans, viruses, horses, worms, ransomware, and
rootkits. They have received due attention from the
communities, as they present a major threat to cyber-
security. In 2018, for example, Symantec recorded
246,002,762 new malware variants, and Kaspersky
detected 5,321,142 malicious Android packages [2].
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There are more and more malware variants that
attempt to subvert antivirus tools and bypass many
malware detection systems. Indeed, cyber-attacks
have resulted in trillions of dollars in damage to the
global economy [1, 3].

To protect computer users, threats from malware
attacks should be detected as soon as possible.
Researchers have developed machine learning (ML)-
based classification methods for detecting malware
[4]. While ML models achieve impressive results,
they may perform poorly in detecting complex mal-
ware variants [3, 5]. In addition, many ML models
suffer from a limited training depth. The advent of
deep learning (DL) models has paved the way for
improving training capabilities and performance. DL
models have been employed to overcome the lim-
itations of existing malware detection methods [6].
They offer several major strengths over standard
ML models, which include automatic generation of
high quality features and ability to deal with large
data sets [7]. In the literature, various DL models,
such as the Recurrent Neural Network (RNN) and
Graph Convolutional Network (GCN) [4, 8], and
hybrid DL-ML method [9] have been devised for mal-
ware detection. Even though good results have been
reported, there is still room for improvement. This
is because DL models often use the gradient descent
technique, i.e., the Back-Propagation (BP) algorithm
[10], for network optimization, which suffers from
local sub-optimal solutions [10, 11]. Moreover, DL-
based malware detection methods often entail the use
of single classifiers.

Ensemble methods can be coupled with ML/DL
models to improve their classification performance
[12–14]. The underlying principle is to combine mul-
tiple ML/DL models and leverage the advantages of
each model for compensating the individual short-
comings, leading to an improved performance [12,
13]. As a generalization of the standard ensemble
method, a stacked ensemble model operates at two
levels; the first-level learners, i.e., base learners, and
the final-level learner, i.e., a meta-learner. The base
learners provide processed information for building
the next-level learners. The meta-learner leverages
a combination of algorithms to make a final predic-
tion by integrating all predictions of the base learners
[15, 16]. In the stacked ensemble model, the selec-
tion of a meta-learner is crucial as it makes the final
decision. The stacked ensemble learning method has
demonstrated its efficacy in various domains, e.g.
Android malware detection [8], slope stability anal-
ysis [14], enhancement of water quality [16], and

stock market categorization [17]. ML models are
often used in ensemble methods as the base learn-
ers as well as meta-learner. Nonetheless, certain ML
models suffer from the overfitting issue with respect
to training samples, leading to a reduction in the over-
all performance [18]. In this respect, Fuzzy ARTMAP
(FAM) is a supervised Adaptive Resonance Theory
(ART) neural network that is useful for dealing with
the overfitting problem [19, 20]. This study aims to
overcome the limitations of traditional ML meth-
ods in detecting complex malware variants through
the use of DL models and an ensemble framework.
DL models suffer from a limitation in terms of their
optimization process, i.e., local optima of the BP
algorithm, while single DL-based classifiers are also
susceptible to local sub-optimal solutions [10, 11].
To address these issues, we investigate the use of a
stacked ensemble method with multiple DL models to
enhance generalization and performance. Addition-
ally, we leverage the incremental learning property of
ART-based models to prevent overfitting by allowing
the meta classifier (FAM) to adapt to new knowledge
from incoming data streams while retaining previ-
ously learned knowledge. This reduces the chance of
overfitting by capturing only the essential knowledge
from new data while avoiding irrelevant information
and noise [18]. Ensemble models also mitigate errors
and biases as well as reduce variance by introducing
diversity. The heterogenous DL models used in the
ensemble method are trained and optimized with a
hybrid PSO and BP algorithm. This further reduces
the possibility of overfitting, while improving gener-
alization. Indeed, the combination of DL and FAM in
an ensemble framework offers an effective approach
to malware detection, as demonstrated in the empiri-
cal studies.

In this paper, we propose an Ensemble Deep
Learning model stacked with Fuzzy ARTMAP
(EDL-FAM) for malware detection. The proposed
EDL-FAM method combines the advantages of both
DL models and FAM in addressing the overfitting
problem. A group of heterogeneous Deep Neural Net-
work (DNN) models is utilized as the base learners
at the first level. Each DNN employs a hybrid BP
and Particle Swarm Optimization (PSO) algorithm
for tuning its parameters. The aim is to find the opti-
mal solution and improve the capability in malware
detection. PSO is capable of searching for global
optimal solutions [21, 22], while BP is effective in
finding accurate local solutions [23]. Therefore, a
hybrid PSO-BP approach entails the advantages of
both global and local search capabilities to optimize
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the DNN parameters. To realise robust and accurate
classification, FAM is deployed as a meta-learner to
combine the outputs from the base learners. The con-
tributions of this paper are summarized, as follows:

– An ensemble method based on the DNN mod-
els stacked with FAM is proposed for malware
detection and classification;

– A two-level learning process comprising a group
of base learners and a meta-learner is devised.
Several heterogeneous DNN models are adopted
as the first-level base learners. They are trained
with a hybrid optimization method based on PSO
and BP that combines both local and global
search capabilities. FAM is used as a meta
learner to effectively combine the output from
the base learners.

The remaining part of this paper is organized as
follows. Section 2 presents the related studies in
the literature. The proposed ensemble method, i.e.
EDL-FAM, is introduced in Section 3. Section 4
presents the experimental results, analysis and dis-
cussion, while Section 5 draws conclusions, along
with suggestions for future research.

2. Literature review

Malware data require a careful analysis to iden-
tify malicious behaviours, e.g. malware structure,
infection risk, and spread speed. Various techniques
have been developed to detect malware, covering sig-
natures, behaviours, heuristics, and model-checking
aspects. Signature-based techniques generate a set of
bits to identify malware structure and analyse suspi-
cious files for identifying malware signatures [24].
Behaviour-based techniques monitor the characteris-
tics of data samples and determine whether they are
benign or malware [1]. Malware behaviours can be
traced by detecting registry changes, system calls,
files, Application Program Interface (API) calls, and
computer networks. A system-centric behavioural
model was used to explore the interaction of mal-
ware with system resources, aiming to dynamically
identify malware [25]. In the heuristic approach, ML
models were embedded with heuristic rules to han-
dle malware detection tasks [26]. In [27], a dynamic
heuristic method used a Naı̈ve Bayes classifier to
compute the API call frequencies and detect suspi-
cious files. Model-checking methods leverage linear
temporal logic to extract the representative features
of malicious and benign samples and encode them as

flow relations [2]. In [28], a model-checking method
was developed. The method converted all executable
programs and software into a pushdown system.
Overall, these malware detection methods suffer from
different limitations. The signature-based methods
are unable to discover different malware variants
[29]; the behaviour-based methods yield compro-
mised performance when handling complex malware
variants; the model-checking and heuristic-based
methods produce low performances when detecting
malware created by obfuscation and packaging mech-
anisms. Moreover, the existing methods are deemed
ineffective in detecting new and emerging malware
variants [3].

While DL models have been employed in various
domains, there is room to further develop an effec-
tive DL-based method for malware detection [3]. An
DL framework for malware detection was proposed
in [30] to analyse and identify static and dynamic
malware. DL has also been integrated with image pro-
cessing techniques to detect malware. In [4], DL was
used to learn the representations of Android software
and identify malware. In addition, GCN and RNN
models have been utilized to automatically learn and
identify semantic and sequential patterns. In [31],
an automatic detection method based on Stacked
Autoencoders (SAEs) and Deep Belief Networks
(DBNs) was developed to detect unknown and new
Android malware. In [32], a GCN model was devised
to detect the relationships among system calls, lead-
ing to discovery of malicious Android data. In [33], an
Android malware detection method was developed,
along with GCN based on Jumping-Knowledge (JK)
and its variants, namely GCN-JK, GraphSAGE-JK,
and GIN-JK. In [34] a Generative Adversarial Net-
work (GAN)-based Android malware classifier was
used to create an API graph embedding solution.

Hybrid methods have been employed to improve
malware detection performance. In [9], a DL model
was combined with Random Forest (RF) to dis-
cover malignant data samples. A semi-supervised DL
model was developed to detect obfuscated malware
and identify its variants [35]. DL processing, feature
engineering, and image transformation were used for
such tasks. A Long Short-Term Memory (LSTM)
and a CNN model were combined in [36] to detect
malicious activities in Android software. It used Call-
Graph as well as dynamic and static analyses for
malware detection and classification. An exploratory
analysis was carried out in [37] to identify impor-
tant features for improving the performance of Drebin
malware detectors. In [38], a fast Android malware



A
U

TH
O

R
 C

O
P

Y

10480 M. Nasser Al-Andoli et al. / An ensemble deep learning classifier stacked with fuzzy

detection method using Dalvik-Opcode features and
permission features was designed. The method first
reduced features dimensionality to scale down time
complexity of the method, and then performed mal-
ware detection with a CatBoost classifier.

Ensemble methods overcome the shortcomings of
individual models and consolidate their strengths in
problem solving. Several ensemble-based malware
detection methods are available in the literature. In
[13], a new Android malware identification method
with an ensemble learning technique was devel-
oped for collaborative malware detection using a
combination of intents and permissions. A meta-
ensemble-based Android malware detection method
was designed in [39], which applied static analyses
for detecting malicious applications. An automated
and configurable hybrid analysis method for malware
detection was developed in [40]. Denoted Anatomist,
it analysed Android application behaviours using an
integration of static analysis and dynamic instrumen-
tation. An ensemble method to malware detection by
averaging the outputs of several classification meth-
ods was introduced in [40]. In [41], an extrinsic
random-based ensemble method for Android mal-
ware detection was proposed. The model outputs
were averaged to improve the malware detection
performance. An Android malware prediction using
ensemble ML models was devised in [42] to select
the best performer in malware detection. In [43],
an Android malware detection method with multi-
faceted deep generative adversarial network model
was proposed. Various ML models were assessed in
[44] by applying an ensemble learning method for
detecting Android malware. Overall, the abovemen-

tioned methods indicate that the ensemble approach
is effective for undertaking malware detection tasks.

From the literature analysis, the existing DL-based
malware detection methods often entail single clas-
sifiers. The reported DL methods typically adopt
gradient optimization with BP, which can result in
sub-optimal generalization. Moreover, most of the
existing ML/DL-based ensemble malware detection
methods are not equipped with an incremental learn-
ing capability. Stacked ensemble methods are also
often based on standard ML and neural network mod-
els, which suffer from limitations on generalization
and overfitting issues [18, 20]. To close this research
gap, an ensemble DNN models with their parame-
ters optimized using a hybrid PSO-BP algorithm is
proposed in this paper. In addition, FAM is deployed
as the meta learner to combine the outputs from the
ensemble DNN models, aiming to improve perfor-
mance generalization for malware detection.

3. Methodology

In this section, the proposed EDL-FAM method is
explained in detail. Firstly, data pre-processing and
cleansing is conducted. Then, several heterogeneous
DNN models are formed as the base learners to per-
form the first-level data classification. The outputs are
merged and sent to the meta-learner (FAM) to conduct
the final-level data classification. The ensemble DNN
models are trained using a hybrid PSO-BP algorithm.
Figure 1 shows a schematic diagram of EDL-FAM. A
summary of EDL-FAM is presented in Algorithm 1.

Fig. 1. A schematic diagram of EDL-FAM.
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3.1. Pre-processing

During the pre-processing phase, the Python
Numpy library is used for data pre-processing and
cleansing. Missing and invalid data samples are firstly
replaced by the associated average values. Next, the
data samples are normalized with the z-score normal-
ization [45], as defined in Equation 1.

z − score = (x − μ)

σ
, (1)

where variables x,σ, � are the original value, standard
deviation, and mean value, respectively. The z-score
is a widely used pre-processing technique in ML and
data analysis. It is used to standardize the data sample
values such that they have a mean of zero and a stan-
dard deviation of one. As such, data samples from
populations with varying means and standard devia-
tions can be standardized, simplifying comparisons
among different variables [45].

The dimension reduction task is conducted to
reduce the computational load in dealing with high
dimensional data. It transforms a data sample from
a high dimensional space into a low dimension one,
in such a way that the new representation retains the
meaningful features of the data sample. In this study,
the procedure of averaging a set of neighbouring fea-
tures and reducing them to single feature is conducted
[46]. The number of adjacent features is governed by
a hyper-parameter F ∈ [1, a], where a represents the
original features. The new feature dimension (Fsize )
is defined in Equation 2:

Fsize = a

F
. (2)

After going through data normalization and dimen-
sionality reduction, the original data set with a
features is reduced to one with F features, where
F < a.

3.2. Ensemble classification

3.2.1. DNN models (Base learners)
The stacked ensemble model performs two-level

learning. The first-level classification involves a num-
ber of base learners while the second-level involves a
meta-learner. The base learners comprise DNN mod-
els and the meta-learner model is FAM.

Once the data features are cleansed and prepared,
they are sent to the base (DNN) learners. Each
DNN model is executed independently. The input
features are processed by each DNN model, and

a prediction is produced at the final layer (n ∗ d),
where d and n indicate the target class and the
number of samples, respectively. The DNN hidden
layers between the input and output layers use func-
tions h = f (W1x + b1), h1 = f1(W2h1 + b2), . . .
o = f1(Wl+1h1 + bl+1), where x, h, o, l are the sam-
ple features, the hidden layer output, the final layer
output, and the number of layers, respectively. The
DNN layers are dense, and a Rectified Linear Unit
(ReLU) activation function is used in the hidden lay-
ers. In the ensemble DNN models, two activation
functions are employed in the last hidden layer, i.e.,
sigmoid and Softmax functions. Both are used sepa-
rately.

The base DNN learners are trained and opti-
mized with a hybrid metaheuristic (PSO) and gradient
decent (BP) algorithm. PSO supports constructive
collaboration among all particles to search for a
global optimal solution. BP has the ability to produce
a non-linear mapping through local search. PSO-BP
yields solutions better than those from individual
methods.

Specifically, BP employs the Weighted Cross
Entropy (WCE) as a loss function to adjust the DNN
trainable parameters, θ, in a minimization mode. The
loss function (Jθ) is computed using Equation 3:

Jθ = 1

n

∑n

i=1
[Xi log(Yi)+

(1 − Xi) log(1 − Xi)],
(3)

where n is the number of samples, Xi and Yi are the
original and predicted class labels. Parameters θ are
updated in local search with BP using Equations 4
and 5:

θij
α = θij

α − γ
∂

∂θ
ij
α

Jθ(X, Y ), (4)

∂

∂θ
ij
α

Jθ (X, g(f (X))) =

N∑
i=1

∂

∂θ
ij
α

Jθ (Xi, g(f (Xi))) =

N∑
i=1

∂

∂z
j
α

Jθ (Xi, g(f (Xi)))
∂

∂θ
ij
α

zj
α =

N∑
i=1

δj
αXT

i ,

(5)
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where γis the learning rate, N is the number of neu-
rons, and � refers to the activation values of the hidden
layer, H, and the output layer, Y. The contribution of
each sample in the optimization process leas to the
total error δ

j
α = ∂

∂z
j
α

Jθ (Xi, g(f (Xi))).

The local optimization output from BP is Mθ ,
which is computed using Equations 3 to 5. Once local
optimization with BP is performed, Mθ is re-used
for PSO optimization. The PSO algorithm obtains
Mθ and generates a pool of particles Ps. Particles Ps

are distributed to several regions of the search space.
Next, each particle Pi moves with velocity Vθi over
iterations t to update its position. The PSO functions
are defined as follows (Equations 6 and 7):

V
(t+1)
θi = λv

(t)
θi + c1r1

[
pbest(t)

θi
− M(t)

θi

]
+

c2r2

[
g

best(t)
θ − M(t)

θi

]
, i ∈ [1, Ps],

(6)

M
(t+1)
θi = M

(t)
θi + V

(t+1)
θi , i ∈ [1, Ps] , (7)

For each particle, Pi , the best local solution is updated
with Equation 8.

Pbest
θi = Mθi|f (Mθi) = min

{
f

(
Mθi,j

)}
j=1,2,3,...,t+1

, (8)

In Equations 6 to 8, r1 and r2 are two randomly cho-
sen numbers in the interval [0, 1]; Mθi is the output of
a local replica; λ determines the Ps movement iner-
tia; c1 is the cognitive parameter and c2 is the social
parameter, while t, v, gbest, and Pbest are the number
of iterations, velocity, global best particle and local
best particle, respectively. The best global particle is
computed by averaging Pbest or the best local parti-
cle with the highest rank. The global best particle is
computed using Equation 9.

gbest
θ

=

min

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎣Pbest

θi
|f (Pbest

θi
) = min

{
f (Pbest

θi
)
}

i=1,2,3,...,Ps

⎤
⎦ ,

[
1

Ps

∑Ps

i=1
Pbest

θi

]

⎞
⎟⎟⎟⎟⎟⎠

.

(9)
The fitness function is calculated with the average

values of the loss function (i.e., WCE) from local
BP optimization (JθM = (Jθ1, Jθ2, Jθ3, ..., Jθm)) in
Equation 3, as indicated in Equation 10:

f (JθM) = 1

Ps

∑Ps

i=1
Jθi (10)

where Ps refers to the number of particles. Once the
fitness function is improved in a minimization mode,
Pbest

iθ and gbest
iθ are updated using Equations (6) to (9).

Optimization of DNN models is repeated until a
high performance is achieved at the first-level classifi-
cation. Then, each DNN base learner sends its output
a to the merging step, in which all DNN outputs
are combined into single vector. Finally, the merged
output is sent to FAM, i.e. the meta-learner, to per-
form the final-level data classification, as explained
in Section 3.2.2.

3.2.2. Fuzzy ARTMAP (Meta-learner)
FAM is a neuro-fuzzy model developed by Car-

penter and Grossberg [19]. It combines the concepts
of ART and fuzzy set theory to provide an incre-
mental learning algorithm capable of addressing the
stability-plasticity dilemma in pattern recognition.

FAM consists of two modules, namely ARTa and
ARTb . Both modules are bridged with a map field
[19] linking the generated clusters from the input
domain (ARTa ) and the output domain (ARTb). Each
ARTa /ARTb consists of three layers: the normaliza-
tion layer, input layer, and output layer, denoted by
F0, F1, and F2, respectively. Figure 2 shows the FAM
structure.

In the F0 layer, ARTa receives a d-dimensional
input vector a and normalizes it through a
complement-coding process to a 2d-dimensional
input vector A, as in Equation (11):

A = (a, ac) = (a1, ..., aM, 1 − a1, ..., 1 − aM)
(11)

where a is the original input vector and ac is the com-
plement of a. The complement-coding procedure also
takes place in ARTb simultaneously, where B=(b, bc).

Complement-coding preserves the norm of indi-
vidual input vector and prevents category pro-
liferation by concatenating an input with its
complement-coded part. The complement-coded
input vector A (as well as B) is forwarded to the input
layer F1 of each ART module. The F2 layer is a pro-
totype layer consisting of a set of prototype nodes
that represents knowledge learned and coded based
on training data.

In ARTa , the degree of similarity between A and
each prototype node in the F2 layer is computed using
a choice function, as defined in Equation (12):
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Fig. 2. The structure of Fuzzy ARTMAP.

Tj(A) =
∣∣∣∣∣∣

A ∧ wa
j∣∣∣wa

j

∣∣∣ + αa

∣∣∣∣∣∣ , (12)

where wa
j is the weight of the j-th prototype node

in the F2 layer, and aais the choice parameter of
ARTa . The norm | · | performs the summation of
vector elements whereas the fuzzy AND operator ∧
compares two vectors and returns a vector contain-
ing the element-wise minimum. In accordance with
the winner-take-all principle, the node with the high-
est activation value from Equation 12 is selected as
the winning node J, while all other nodes are de-
activated.

Once a wining node is selected, a vigilance test is
executed to check the degree of similarity between A
and the weight vector of node J against a vigilance
parameter, ρa ∈ [0, 1], where:∣∣∣∣A ∧ wa

J

A

∣∣∣∣ ≥ ρa, (13)

If the vigilance test is not satisfied, node J is de-
activated. A new search cycle to find another winning
node is conducted. In other words, the search process
continues until the chosen winning node J is able
to satisfy Equation (13). The same search cycle and
vigilance test take place in ARTb to confirm a winning
node for the target class vector.

The winning node from ARTa sends a predicted
class (encoded in wab

J ) to ARTb through the map field.
A map field vigilance test (Equation 14) takes place
to check if the predicted class matches the target class

(encoded in yb).
∣∣yb ∧ wab

J

∣∣∣∣yb
∣∣ ≥ ρab, (14)

where ρab denotes the output of ARTb , and ρab is
normally set to a value close to 1 for classification
problems. When the map field vigilance test is not
satisfied, a mismatch occurs between the winning
nodes from both ART modules, and a match-tracking
procedure is triggered in ARTa to increase ρa using
Equation (15):

ρa =
∣∣A ∧ wa

J

∣∣
|A| + δ, (15)

where δ is a small positive value (e.g., 0.0001). Upon
executing match tracking, the current winning node
in ARTa is de-activated. A new node is created in F2
if none of the existing F2 nodes in ARTa is able to
satisfy the ARTa vigilance test as well as map field
vigilance test.

If the map field vigilance test is satisfied, a learning
phase ensues. The weight vector of the winning node,
wJ , in ARTa is updated using Equation (16):

wnew
J = β

(
A ∧ wold

J

)
+ (1 − β) wold

J , (16)

where β ∈ [0, 1] is the learning rate.
The FAM algorithm is shown in Algorithm 2.
FAM within EDL-FAM helps mitigate overfitting

and improve generalization through the following
two aspects:
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Algorithm 1: EDL-FAM
Input: Data samples
Output: Classification of each sample as malware or benign
1: //Preprocessing data: Refer to Section 3.1
2: Handling missing and invalid values
3: Normalization with Equation 1
4: Reducing sample features with Equation 2
5: //Ensemble classification:
6: // a) DNN models (Base learners):

Refer to Section 3.2.1
7: for i = 1 to e
8: for i = 1 to t
9:
10: Forall (p in Ps):
11: Generate DNN models
12: Optimize DNN models with PSO-BP
13: Produce output of DNN models
14: end for
15: end for
16: Generate prediction values for the entire data set
17: // b) Form the input for Meta-learner:
18: Out base = Combine the outputs of all base learners
19: // c) Fuzzy ARTMAP (Meta-learner):
20: labels = FAM(Out base) Refer to Section 3.2.2
21: Return malware and benign samples.

1. Incremental Learning: FAM utilizes the incre-
mental learning principle to adjust its model
structure, i.e. prototype nodes in the F2 layer.
Comparing with the batch learning scheme, the
risk of overfitting in FAM is minimised with its
incremental learning property. This is because
the FAM structure is able to adapt to new incom-
ing data streams based on a sample-by-sample
basis. As such, instead of establishing a pre-
defined number of hidden nodes as in standard
feedforward neural networks, FAM creates new
nodes whenever it is necessary in accordance
with the vigilance setting to incorporate new
information, therefore mitigating the risk of
overfitting.

2. Ensemble Learning: As the meta-learner, the
outputs from multiple DNN models are com-
bined by FAM to reach a final prediction. This
helps improves generation by focusing on the
DNN outputs and avoiding potential outliers
and noise in the original data samples [18].
Ensemble models are also effective in reduc-
ing errors, biases, and variance by incorporating
diversity and reducing redundancy, leading to
a parsimonious FAM model to avoid overfit-
ting and achieve enhanced generalization and
improved performance.

Algorithm 2: FAM
Input: Outputs from Base learners
Output: Classification labels
1: //Complement Coding
2: In F0, ARTa receives a d-dimensional input vector a
3: Normalize a and Produce A with Equation (11)
4: //Category Choice (ARTa )
5: Input vector A is propagated to the F2 layer
6: //foreach i (i = 1 to a) in ARTa , do:
7: // foreach wj (j = 1 to N) in F2, do:
8: Compute Tj () with Equation (12)
9: Find the category node
10: Perform vigilance test with Equation (13)
11: if (Vigilance is met), then:
12: Select winning category
13: else:
14: De-activate node j
15: Add a new node in F2 if all existing nodes fail to

pass the vigilance test
16: end //end //end
17: //Category Choice (ARTb )
18: Repeat category choice of ARTa (lines) for ARTb
19: //Map Field Prediction
20: Do map-filed prediction with Equation (14)
21: If (the map-filed prediction is not satisfied):
22: Perform match-tracking procedure with Equation (15)
23: else
24: //Map Field Learning
25: The weight vector of the winning node is updated with

Equation (16).
Return classification labels

4. Experimental studies and results

A set of experiments is presented in this sec-
tion to demonstrate and validate the performance of
EDL-FAM. The obtained results are analysed and
discussed comprehensively.

4.1. Data sets

The proposed EDL-FAM model is evaluated with
four malware data sets, viz.,:

1. CICMalDroid20201. This is a recent Android
Malware data set, which consists of 9,803 mal-
ware samples and 1,795 benign samples.

2. DikeDataset2. It consists of 1,082 benign and
10,841 malicious Portable Executable (PE) and
Object Linking and Embedding (OLE) files.

3. Drebin3. This is a common data set used to
detect Android malicious software. It consists
of 10,000 samples, comprising 4,500 benign

1https://www.unb.ca/cic/datasets/maldroid-2020.html
2https://github.com/iosifache/DikeDataset
3 https://www.sec.cs.tu-bs.de/∼danarp/drebin/



A
U

TH
O

R
 C

O
P

Y

M. Nasser Al-Andoli et al. / An ensemble deep learning classifier stacked with fuzzy 10485

and 5,500 malwares from 179 different malware
families.

4. Network Traffic Android Malware (NTAM)4.
This data set consists of network layer features
for malware detection applications. It consists
of 7,845 samples, with 3,141 malware and 4,704
benign samples.

4.2. Experimental settings

Coded using the Python programming language,
EDL-FAM is executed on a computer with an Intel
Core-i7 processor, Ubuntu 20.04 operating system,
and 8 GB RAM. For the base learners (i.e., DNNs),
the number of iterations, batch size, and learning rate
are set to 100, 256, and 0.001, respectively. Five DNN
models are used to form an ensemble model for per-
formance evaluation. For the PSO parameters, c1, c2,
the inertia weight, the number of particles are set to
0.5, 0.3, 20, 0.9, respectively. Each particle’s position
is initialised randomly between 0 and 1. The hyper-
parameter F in Equation 2 is set to 1 for NTAM, and
DikeDataset, while that for CICMalDroid2020 and
Drebin is set to 3 and 5, respectively. The parame-
ter setting is chosen after several trails, which allows
EDL-FAM to achieve the best results. The data set is
divided into a training set and a test set with a ratio
of 4 to 1. The experiment is repeated ten times, and
the average results are computed.

For performance comparison, six commonly used
ML models are used to form ensemble classifiers,
namely Ensemble Decision Tree (EDT), Ensemble
Random Forest (ERF), Ensemble Gradient Boost-
ing (EGB), Ensemble Ada Boost (EAB), Ensemble
Support Vector Machine (ESVM), and Ensemble
K-Nearest Neighbors (EKNN). In addition, DT,
RF, GB, AB, KNN, and SVM are combined to
form a heterogeneous ML-based ensemble classifier
(denoted as HML-EC). The ScikitLearn Python pack-
age is employed to implement these ML methods
with the default parameter settings in the package.
Furthermore, three state-of-the-art DL-based single
classifiers are used for comparison, i.e., DBN-SAE-
MD [31], CNN-MD [30], and CNN-LSTM-MD [36].

Since the Drebin data set is commonly used
for malware detection, we conduct another eval-
uation to compare EDL-FAM with several DL
and ML methods, which are based on single and
ensemble classifiers. Specifically, seven state-of-the-

4https://www.kaggle.com/datasets/xwolf12/network-traffic-
android-malware

art single classifiers published in 2020-2022 are
employed, i.e., GCN-AMD [32], GCN-JK [33],
GIN-JK [33], SAGE-JK [33], VGAEMalGAN [34],
DeepDiveDrebin [37], and FMulAMD [38]. Nine
state-of-the-art ensemble methods are also used, i.e.,
PIndroid [13], FSEC-MD [39], TA-AMD [40], ERE-
AMD [41], EAMP-EML [42], MDGAN-MD [43],
Stacking DT-SVM-LR [44], Blending DT-SVM-LR
[44].

4.3. Evaluation metrics

Accuracy, precision, recall, and F1-score metrics
are adopted for performance evaluation and compar-
ison. These metrics are computed based on the True
Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN) rates, as in Equations
(17) to (20):

Accuracy = TP + TN

TP + TN + FP + FN
. (17)

Precision = TP

TP + FP
. (18)

Recall = TP

TP + FN
. (19)

F1 − score = Recall × Precision

Recall + Precision
. (20)

4.4. Experimental assumptions

We make the following experimental assumptions
pertaining to performance evaluation of EDL-FAM
for malware detection: (1) The data sets used for
evaluation, namely Drebin, CICMalDroid2020, and
NTAM, are sufficiently diverse and representative of
various malware instances; (2) It is adequate to use
two target classes (benign and malicious) for per-
formance evaluation in malware detection; (3) It is
effective to use random over-sampling technique to
tackle the imbalanced class distribution issue in the
data sets for experimentation; (4) It is representa-
tive to replace missing/invalid data samples with the
associated average values, and to normalize all data
samples using z-score normalization; (5) it is suffi-
cient to use accuracy, precision, recall, and F1-score
for evaluation, as each indicator assesses a different
aspect of classification performance.
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4.5. Results and discussion

The results of EDL-FAM pertaining to the
CICMalDroid, Dike, Drebin, and NTAM data sets are
summarized in Tables 1 to 5, where the bold scores
indicate the best performance.

4.5.1. Results of EDL-FAM
Table 1 summarizes the EDL-FAM results, along

with those of FAM, DNN-Sigmoid, and DNN-
Softmax models. EDL-FAM achieves the best
accuracy rates of 97.41%, 98.82%, 99.1%, and
99.49% for the CICMalDroid, Dike, Drebin, NTAM
data sets, respectively. Table 1 also shows that
DNN-Sigmoid performs well, while DNN-Softmax
performs the worst in terms of the performance indi-
cators. FAM yields acceptable results, but is inferior

to DNN-Sigmoid. Unlike DNN-Sigmoid, the poor
performance of DNN-Softmax is because of its ineffi-
ciency in tackling binary classification problems [47],
as per the four data sets used in this experimental
study.

4.5.2. Results of EDL-FAM and ML-based
ensemble methods

Table 2 presents the results of EDL-FAM and seven
ML-based ensemble methods pertaining to the (a)
CICMalDroid, (b) Dike, (c) Drebin, and (d) NTAM
data sets. In general, EDL-FAM returns better results
than those from all compared ML-based ensem-
ble methods, i.e., EDT, ERF, EGB, EAB, EKNN,
ESVM, and HML-EC. HML-EC achieves the best
performance among the ML-based ensemble meth-
ods. On the other hand, ERF has the lowest accuracy

Table 1
Malware detection performance of EDL-FAM, Fuzzy ARTMAP, DNN-Sigmoid, and DNN-Softmax performed on (a) CICMalDroid, (b)

Dike, (c) Drebin, and (d) NTAM data sets

(a) CICMalDroid (b) Dike
Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Fuzzy ARTMAP 89.35 89.77 97.78 93.6 96.28 97.32 98.58 97.94
DNN-Sigmoid 94.74 95.42 98.46 96.91 97.12 98.24 98.59 98.42
DNN-Softmax 85.32 86.71 90.89 95.51 90.23 90.23 95.31 94.86
EDL-FAM 97.41 97.96 98.97 98.46 98.82 99.07 99.63 99.35

(c) Drebin (d) NTAM
Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Fuzzy ARTMAP 84.05 83.35 87.36 85.31 98.15 98.68 96.62 97.64
DNN-Sigmoid 96.1 97.49 95.09 96.28 99.33 99. 2 99.36 99.12
DNN-Softmax 82.0 81.8 84.9 83.3 87.95 85.96 84.27 85.11
EDL-FAM 99.1 99.09 99.27 99.18 99.49 99.84 98.87 99.35

Table 2
Comparison with seven ML-based ensemble methods on (a) CICMalDroid, (b) Dike, (c) Drebin, and (d) NTAM data sets

(a) CICMalDroid (b) Dike
Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

EDT 93.0 95.2 96.6 95.9 95.4 95.6 95.4 95.6
ERF 89.0 94.9 92.0 93.4 96.4 96.7 96.4 96.7
EGB 90.8 93.3 96.1 94.7 95.2 95.2 95.2 95.2
EAB 93.6 93.6 99.4 96.4 96.5 97.3 96.5 97.3
EKNN 93.5 96.9 95.4 96.1 94.1 94.4 94.1 94.4
ESVM 93.2 93.6 98.9 96.1 95.9 96.3 95.9 96.3
HML-EC 94.3 95.6 97.8 96.7 97.5 97.9 97.5 97.9
EDL-FAM 97.41 97.96 98.97 98.46 98.82 99.07 99.63 99.35

(c) Drebin (d) NTAM
Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

EDT 95.4 94.3 97.3 95.7 95.1 99.3 88.3 93.5
ERF 96.3 96.8 96.7 96.7 96.9 97.6 96.0 96.8
EGB 90.6 89.0 94.5 91.7 96.7 96.1 97.2 96.6
EAB 90.9 91.2 92.3 91.8 96.1 95.6 96.5 96.1
EKNN 88.4 96.6 80.8 88.4 95.0 95.6 94.3 94.5
ESVM 95.6 98.7 92.8 95.8 96.7 96.8 96.6 96.7
HML-EC 96.7 97.0 96.9 96.9 97.7 98.0 97.4 97.6
EDL-FAM 99.1 99.09 99.27 99.18 99.49 99.84 98.87 99.35
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Fig. 3. The performance of EDL-FAM at different numbers of epochs of the base learner models.

rate with the CICMalDroid data set, while EKNN
has the lowest accuracy rate with both Dike and
Drebin data sets. Meanwhile, EAB and EKNN report
the worst accuracy scores with the NTAM data set.
In addition, HML-EC outperforms other ML-based
ensemble classifiers (EDT, ERF, EGB, EAB, EKNN,
and ESVM).

The impact of the base learners on the overall EDL-
FAM performance is investigated, as shown in Fig. 3.
The performance of EDL-FAM varies with different
number of epochs of the base learners. Good training
and optimization of the base learners lead to improved
EDL-FAM performance. As an example, increasing
the number of epochs of the base learners, i.e., DNN-
Sigmoid and DNN-Softmax, can enhance EDL-FAM
in terms of accuracy, precision, recall, and F1-score.

4.5.3. Results of EDL-FAM and DL methods
A comparison among EDL-FAM and five DL-

based malware detection methods is conducted. The
compared methods are DBN-SAE-MD [31], CNN-
MD [30], and CNN-LSTM-MD [36], and two DNN
models with Sigmoid and Softmax activation func-
tions.

From Table 3(a), EDL-FAM performs well with the
CICMalDroid data set, outperforming all compared
methods (CNN-MD, DBN-SAE-MD, CNN-LSTM-
MD, DNN-Sigmoid, and DNN-Softmax) in all
four performance metrics. DNN-Sigmoid and CNN-
LSTM achieve the best results among the compared
methods. On the other hand, DNN-Softmax pro-
duces the lowest performance in accuracy, precision,
and recall, while DBN-SAE-MD yields the low-
est F1-score. For the Dike data set, the results in
Table 3(b) indicate that EDL-FAM achieves the best
performance with the highest rates pertaining to accu-
racy, precision, F1-score and recall. The results in
Table 3(c) and (d) indicate that EDL-FAM outper-
forms all DL methods for the Drebin and NTAM data
sets, respectively. CNN-LSTM and DNN-Sigmoid
return the best results among the compared methods,
which are close to those of EDL-FAM. DNN-
Softmax yields the worst performance in all four
performance indicators.

A set of confusion matrices has been generated
to further illustrate the EDL-FAM performance. Fig-
ure 4 shows the confusion matrices of EDL-FAM
for the CICMalDroid, Dike, Drebin, and NTAM data
sets. EDL-FAM has high TP (malware) and TN
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Table 3
Comparison of EDL-FAM with five DL methods on (a) CICMalDroid, (b) Dike, (c) Drebin, and (d) NTAM data sets

(a) CICMalDroid (b) Dike
Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

CNN-MD 95.2 96.5 97.8 97.1 97.6 98.7 97.6 98.7
DBN-SAE-MD 85.0 85.0 96.64 92.0 95.0 93.1 95.0 93.1
CNN-LSTM-MD 94.4 96.2 97.8 97.0 97.7 98.8 97.7 98.8
DNN-Sigmoid 94.74 95.42 98.46 96.91 97.12 98.24 98.59 98.42
DNN-Softmax 85.32 86.71 90.89 95.51 90.23 90.23 95.31 94.86
EDL-FAM 97.41 97.96 98.97 98.46 98.82 99.07 99.63 99.35

(c) Drebin (d) NTAM
Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

CNN-MD 95.0 95.4 93.5 97.5 98.1 97.8 98.4 98.0
DBN-SAE-MD 94.7 95.1 93.7 96.6 95.5 96.8 94.4 95.6
CNN-LSTM-MD 96.5 96.4 97.9 97.7 98.7 98.5 98.8 98.7
DNN-Sigmoid 96.1 97.49 95.09 96.28 99.33 99. 2 99.36 99.12
DNN-Softmax 82.0 81.8 84.9 83.3 87.95 85.96 84.27 85.11
EDL-FAM 99.1 99.09 99.27 99.18 99.49 99.84 98.87 99.35

Fig. 4. The confusion matrices of EDL-FAM on the CICMalDroid, Dike, Drebin, and NTAM data sets.

(benign) predictions, and low FP and FN predictions.
The high percentage of TP and TN demonstrates a
high effectiveness of EDL-FAM in detecting mali-
cious instances. Moreover, the low percentages of
FP and FN indicate that over-fitting is not an issue
in EDL-FAM. This observation is further supported
by the high precision, recall, and F1-score results in
Tables 1–3, ascertaining the efficacy of EDL-FAM in
malware detection and classification.

4.5.4. Statistical analysis
An analysis to evaluate the results from the sta-

tistical perspective is conducted. Two nonparametric
statistical hypothesis tests have been used, namely
the Friedman test and the Nemenyi post-hoc tests.
The Friedman test calculates the average ranked per-
formance in terms of all four performance indicators
at a significance level of �=0.05 (i.e., 95% confidence
level) with respect to those from ML-based ensemble
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Table 4
Friedman test results

Methods Accuracy Precision Recall F1-Score

ML-based
ensemble
methods

0.007454 0.013143 0.019677 0.002626

DL methods 0.003327 0.003755 0.003299 0.005075

methods comprising EDT, ERF, EGB, EAB, EKNN,
ESVM, and HML-EC methods (Table 2) and the
DL methods comprising DBN-SAE-MD [31], CNN-
DM [30], CNN-LSTM-MD [36], DNN-Sigmoid, and
DNN-Softmax (Table 3). Table 4 presents the p-
values of the Friedman test, indicating a significant
difference in performance between EDL-FAM and
ML-based ensemble models as well as DL models at
�=0.05.

We apply the Nemenyi post-hoc test to further
ascertain the performance difference, as shown in
Figs. 5 and 6. It is clear that EDL-FAM achieves

the highest performance rank in all four performance
indicators with respect to ML-based ensemble mod-
els and DL models. HML-EC has the highest rank
among the ML-based ensemble methods, which is
close to EDL-FAM in performance. This is because
it uses heterogeneous ML-based ensemble models.
Meanwhile, CNN-LSTM stands at the highest rank
among the DL models, but it is still inferior to EDL-
FAM.

Table 4 and Figs. 5 and 6 indicate that the there
is a significant difference in performance between
EDL-FAM and compared methods. The effective-
ness of EDL-FAM is due to several reasons. Firstly,
EDL-FAM employs ensemble methods to combine
the strengths of multiple individual models. Sec-
ondly, EDL-FAM uses effective DL models as its
base learners and FAM as a useful incremental learn-
ing meta-learner in its structure. Thirdly, EDL-FAM
adopts a hybrid approach combining metaheuristic
optimization with PSO and gradient optimization

Fig. 5. Average ranking between EDL-FAM and DL-based methods

Fig. 6. Average ranking between EDL-FAM and the EML methods.
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Table 5
Performance comparison with various single classifiers on the

Drebin data set

Method Accuracy Precision Recall F1-score

GCN-AMD [32] 92.30 91.50 92.30 93.30
SAGE-JK [33] 95.24 95.35 95.24 95.0
GCN-JK [33] 96.88 97.01 96.88 97.0
GIN-JK [33] 95.03 95.07 95.03 95.0
VGAEMalGAN [34] 97.68 95.27 91.08 93.13
DeepDiveDrebin [37] 96.8 97.8 89.4 93.4
FMulAMD [38] 96.00 97.00 96.00 95.00
EDL-FAM 99.1 99.09 99.27 99.18

Table 6
Performance comparison with various ensemble methods on the

Drebin data set

Method Accuracy Precision Recall F1-score

PIndroid [13] 98.4 97.5 97.5 97.5
EAMP-EML [42] 99.3 99.0 99.0 99.0
MDGAN-MD [43] 96.2 95.1 94.6 94.7
Stacking

DT-SVM-LR [44]
98.0 97.0 98.0 97.0

Blending
DT-SVM-LR [44]

97.7 96.0 98.0 97.0

FSEC-MD [39] 97.6 – – –
TA-AMD [40] 98.2 – – –
ERE-AMD [41] 99.1 – – –
EDL-FAM 99.1 99.09 99.27 99.18

with BP. This allows EDL-FAM to search for the best
solution and achieve the best performance.

4.5.5. Comparison with recent related studies
To further validate the effectiveness of EDL-FAM,

we conduct two additional studies using the Drebin
data set. The first is a comparison between EDL-
FAM and seven state-of-the-art single classifiers, i.e.,
GCN-AMD [32], GCN-JK [33],GIN-JK [33], SAGE-
JK [33], VGAEMalGAN [34], DeepDiveDrebin [37],
and FMulAMD, as in Table 5. The second study is
a comparison between EDL-FAM and eight state-
of-the-art ensemble classifiers, i.e., PIndroid [13],
FSEC-MD [39], TA-AMD [40], ERE-AMD [41],
EAMP-EML [42], MDGAN-MD [43], Stacking DT-
SVM-LR [44], and Blending DT-SVM-LR [44]), as
in Table 6. The results in Tables 5 and 6 clearly
indicate that EDL-FAM outperforms all compared
methods (single and ensemble classifiers), producing
the best scores in four performance metrics, except
accuracy in the comparison with ensemble methods.

4.5.6. Run time analysis
Figure 7 shows the computation time of EDL-

FAM, seven ML-based ensemble methods, and four

DL-based methods. ESVM consumes the longest
computational time, especially with the Drebin data
set, as it has a large number of input features. How-
ever, it works well with an acceptable runtime for
data sets with smaller numbers of features, such as
Diki and NTAM. ERF consumes the shortest runtime.
Other EML methods require shorter computational
durations than those of DL methods, including EDL-
FAM. EDL-FAM is faster than other DL methods in
all four data sets, except for DNN-Sigmoid that yields
the shortest runtime among the DL methods.

While the data sets used for performance compar-
ison (i.e., CICMalDroid, Dike, Drebin, and NTAM)
are well-known benchmark malware detection and
classification problems, they have several limitations.
The data samples are limited to numerical infor-
mation for representing malware behaviours. Other
forms of data modality such as text and images are
not included. Besides, the target outputs are focused
on benign and malicious categories only. Mapping
input data samples to multiple target outputs, such as
malware families and types, is important to have more
accurate detection outcomes. Additionally, while the
data set size is acceptable, it is not sufficient for
big data analysis, which is increasingly common
in today’s digital environment. Despite these limi-
tations, the results of the empirical study are good
indication of the usefulness of EDL-FAM in tack-
ling malware classification problems, and additional
investigations can be conducted to further improve its
robustness and performance.

5. Conclusion

In this paper, we have devised an effective and
efficient ensemble method, denoted as EDL-FAM,
for malware detection. Specifically, EDL-FAM is
a stacked ensemble learning model. It assembles
multiple DNNs as the base learners and utilizes
FAM as a meta learner for malware classification. A
hybrid PSO-BP algorithm has also been formulated to
combine both local and global optimization capabil-
ities for identifying optimal features and improving
the classification performance. After pre-processing
phase, the data samples with newly formed fea-
tures are used for classification into either benign or
malware categories. Based on a series of experimen-
tal studies with four benchmark malware data sets,
EDL-FAM are able to outperform many well-known
ensemble ML methods and state-of-art DL malware
detection methods.
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Fig. 7. Computation time of (a) EDT, (b) ERF, (c) EGB, (d) EKNN, (e) ESVM, (f) HML-EC, (g) DBN-SAE-MD, (h) CNN-LSTM-MD,
(i) DNN-Sigmoid, (j) Fuzzy ARTMAP, (k) CNN-MD, and (l) EDL-FAM methods that performed on NTAM, Diki, CICMMallDroid, and
Drebin data sets.

Malware detection is a rapidly evolving area, and
different types of malware continue to appear quickly.
In this study, while we have devised a useful ensemble
method for malware detection, we have only focused
on binary classification (benign and malicious) with
numerical malware data samples in a spatial set-
ting. As such, further research to address these issues
would be useful. Correspondingly, a new DL archi-
tecture with different malware data modalities, e.g.
text and image information, can be investigated. In
addition, the use of temporal DL models for malware
detection in the context of multimodal data analysis
is important, particularly in situations where the data
samples consisting of numerical and visual informa-
tion can change over time. On the other hand, instead
of classifying malware into benign and malicious cat-
egories only, further studies can focus on expanding
the current work to tackle different malware families
and types, and systematically evaluate its effective-
ness for multi-class malware detection in real-world
environments.
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