
Journal of Engineering Science and Technology 
Vol. 18, No. 6 (2023) 3077 - 3096 
© School of Engineering, Taylor’s University 

3077 

PREDICTIVE ANALYTICS OF JUNCTIONLESS DOUBLE  
GATE STRAINED MOSFET USING GENETIC ALGORITHM  

WITH DOE-BASED GREY RELATIONAL ANALYSIS  

K. E. KAHARUDIN1,2, F. SALEHUDDIN1,*, N. A. JALALUDIN1,  
F. ARITH1, A. S. M. ZAIN1, I. AHMAD3, S. A. M. JUNOS1 

1Micro & Nano Electronics (MiNE), CeTRI, Faculty of Electronics and Computer 

Technology and Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 

Durian Tunggal, 76100 Melaka, Malaysia 
2Faculty of Engineering, Lincoln University College (Main Campus), Wisma Lincoln, 

47301 Petaling Jaya, Selangor, Malaysia 
3College of Engineering (CoE), Universiti Tenaga Nasional (UNITEN), 43009 Kajang, 

Selangor, Malaysia 

*Corresponding Author: fauziyah@utem.edu.my 

 

 

 

 

 

 

 

Abstract 

This paper explores the application of Genetic Algorithm (GA) incorporated with 

design of experiment (DoE) based on Grey Relational Analysis (GRA) in 

predicting the optimal design parameters of n-type Junctionless Double Gate 

Strained MOSFET (JLDGSM). The GRA is applied to predict the optimum level 

of multiple design parameters in attaining the best multiple device characteristics. 

The GA approach is applied to further optimize the design parameters for much 

improved device characteristics.  The initial step is to select the best possible 

level of four design parameters (Ge mole fraction, high-k material thickness, 

source/drain doping concentration and metal work-function) within specific 

upper and lower boundary limits. The predictive analytics are initiated with the 

employment of GRA in finding the grey relational grade (GRG) which represents 

the multiple electrical characteristics (ION, IOFF, on-off ratio, gm, fT and fmax) for 

18 sets of experiment. The computed GRGs are then processed using multiple 

regression analysis to derive the objective function that summarizes the 

relationship between the design parameters and the GRG. Finally, the genetic 

algorithm is utilized to predict the optimum level of design parameters based on 

the derived objective function. The final result reveals that the proposed 

predictive analytics have successfully optimized  ION, IOFF, on-off ratio, gm, fT and 

fmax of the device by ~34%, ~40%, ~50%, ~18%, ~10% and ~4% respectively. 

The best combinational magnitudes of Ge mole fraction, Thigh-k, Nsd and WF for 

the most optimum device characteristics are predicted to be 0.1 (10%), 3 nm, 

3×1013 cm-3 and 4.6 eV respectively. The results exhibits significant potential for 

junctionless transistor revealing the alternative way and configuration in 

developing future highly efficient nano-scaled devices and ion-sensitive sensors. 

Keywords: Maximum oscillation frequency, Off-current, On-current, On-off 

ratio transconductance, Unity-gain frequency. 
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1. Introduction 

For recent generations, the size of transistors have been rapidly scaled down in 

accordance with the Moore’s law forecast in which the number of transistors on a 

microprocessor doubles every two years, yet the cost of computers is half. Moore's 

law also implies that the speed and capabilities of computers to rise every couple of 

years, resulting in them becoming cheaper. The scaling of the transistor brings 

substantial benefits to the microprocessor industry, such as reduced production costs, 

faster data transmission speeds, and high frequency applications. Variations in 

parameters pose the greatest challenge to shrinking the transistor's size. During the 

manufacturing process, alterations in parameters like as size, oxide thickness, doping 

concentrations, strained-silicon effects, diffusion depth, and channel length may 

affect the electrical and physical characteristics of devices and circuits. Quasi 

transistor characteristics result in timing fluctuations in circuit critical routes, 

narrower read/write noise margins for memory cells, and larger off-state leakage 

currents, which ultimately lead to performance degradation. To accommodate for 

performance losses generated by parameter fluctuations, circuits must often be built 

conservatively, demanding devices with a greater area and higher power 

consumption. To prevent excessively gloomy designs, it is crucial to comprehend and 

measure process-induced unpredictability. Designers may maximize performance, 

power, area, and yield by improving the analysis and modelling of variability. 

Swami and Rai [1] examined the impact of physical parameter variations on 

DG-MOSFET performance characteristics. Quantum confinement of charge 

carriers dramatically affects the performance characteristics (mostly the 

subthreshold features) of the device, and hence cannot be neglected in the design 

of subthreshold region-based circuits. Bala et al. and Kumar [2] showed that 

dopingless nanotube MOSFET has low on-current and less sensitivity towards 

multiple design parameter fluctuations than extensively-doped junctionless 

nanotube MOSFET. It was noticed that the subthreshold slope (SS), DIBL, ION and 

IOFF current of the junctionless device showed greater sensitivity to gate length 

variations as compared to dopingless device. Hence, it is extremely vital having a 

specific method to lessen sensitivity on design parameter of junctionless transistors.  

Batakala and Dhar [3] explored the effect of channel material on the performance 

characteristics of GAA MOSFET which revealed that the channel length is a crucial 

controllable parameter for minimizing the output fluctuations of transistors.  

A new n-MOS Graded Channel Double Gate layout proposed by Wagaj and 

Patil [4] indicated that when the side gate voltage is increased, the surface potential 

likewise rises, resulting in an increase in current driving capacity. Additionally, 

junctionless structure boosts the transconductance by a factor of three. This is 

mostly because the channel region of junctionless transistors is strongly and 

consistently doped from source to drain region, causing a high scattering 

mechanism that results in nearly negligible electric fields at the channel's core, 

which is advantageous for charge carrier mobility. Sinha [5] presents a simulation-

based analysis of a double gate graded channel junctionless MOSFET with channel 

engineering approach. The finding indicates that the change in potential to one side 

and deeper diminished off-state current without impacting the on-state current. In 

a junctionless structure, the threshold voltage decreases with temperature more 

gradually than in a typical device. This implies that doping concentration and 

workfunction are considered key design factors that must be statistically optimized 

to reduce output fluctuations. 
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Universities, research institutes and semiconductor manufacturers have 

conducted a significant number of studies dealing with random parameter 

distributions. Historically, the effect of random dopant distributions on fluctuations 

in threshold voltage was analysed using a simple mathematical model [6]. Asenov 

et al. [7-9] thoroughly investigated the influence of random dopant distributions on 

threshold voltage using a 3D atomistic modelling technique. It is well established 

that random dopant distributions resulting from the doping engineering process are 

the primary source of statistical variation in nanoscale transistor devices [10-12]. 

The application of Design of Experiment (DoE) approach is one of the 

methodological approaches for addressing this issue. For example, response surface 

methodology (RSM) was utilized to investigate the effect of design parameter 

variations on threshold voltage for multiple technology node ranges [13-15]. It has 

been demonstrated that the RSM approach consumes less time with device 

simulations than the Monte Carlo method when evaluating the variability of design 

parameters in relation to threshold voltage variations [16]. 

Taguchi design, in addition to RSM, is a well-known approach that leverages 

DoE to investigate and optimize many design parameters of different transistor 

configurations [17-20]. Taguchi design utilizes an orthogonal array (OA) that 

simplifies and shortens experiment runs. In dealing with multi-objective issues, 

Taguchi design and Grey relational analysis (GRA) are frequently integrated. GRA 

is an analytical method that combines and transforms various output qualities into 

a single representative grade. Numerous studies shown that hybrid Taguchi-GRA 

design may address multi-objective optimization issues in a variety of engineering 

disciplines [21-23]. Although the hybrid Taguchi-GRA design may simultaneously 

optimize many design parameters for multi-objective optimization problems, it is 

restricted to finding optimal solutions within the level of design parameters 

specified. In order to compensate for this deficiency, metaheuristic approaches such 

as the Genetic algorithm have been utilized [24-26]. This work describes the 

predictive analytics of Junctionless Double Gate Strained MOSFET (JLDGSM) 

using Genetic Algorithm with DoE-based Grey Relational Analysis.  

Inspired by the aforementioned research on MOSFET’s performance, this 

articles aims to use Genetic Algorithm with Design of Experiments-based Grey 

Relational Analysis to forecast the behaviour of JLDGSM device. Listed below are 

the most important contributions to this work: 

• We design, simulate and analyse the n-type JLDGSM with 6nm of physical 

gate length (Lg). The device demonstrates high source-drain current (Ids), 

acceptable off-state current (IOFF) and good on-off ratio. 

• We propose a hybrid predictive analytics consisting of Genetic Algorithm with 

DoE-based Grey Relational Analysis as a method to find the optimum input 

parameters of n-type JLDGSM in attaining better output characteristics. The 

optimized JLDGSM demonstrates better on/off-state current, on-off ratio, 

maximum oscillation frequency, transconductance and unity-gain frequency.        

This articles is structured as follows: Section 2 describes the simulation of the 

JLDGSM's process and devices. In Section 3, the predictive analytics of the device 

utilizing Genetic Algorithm with DoE-based Grey Relational Analysis is described. 

This study's results and discussion are presented in Section 4. Section 5 concludes 

with a brief summary of this study's results. 



3080       K. E. Kaharudin et al. 

 
 
Journal of Engineering Science and Technology     December 2023, Vol. 18(6) 

 

2.  Process and Device Simulation  

The n-type JLDGSM transistor was designed and modelled using industrial-based 

simulation software, Silvaco TCAD tools in which the process and device 

simulations were carried out using Athena and Atlas module respectively. The 

process simulation utilized silicon germanium (SiGe) material with <100> 

orientation as the main substrate with Germanium (Ge) mole fraction was set at 0.3 

(30%). Previous publications [27] on the subject of process simulation might be 

consulted for insight about its detailed procedures. The full structure of the n-type 

JLDGSM transistor was completed by reflecting the left-hand side and upper side 

structure as depicted in Fig. 1. Table 1 summarizes the initial magnitude of the 

investigated design parameters that will be manipulated for the predictive analytics 

of the n-type JLDGSM performance. 

 

Fig. 1. Cross-sectional structure of n-type JLDGSM device. 

Table 1. Initial magnitude of design parameters for n-type JLDGSM. 

Design Parameters Units Magnitude 

Ge mole fraction in SiGe layer - 0.3 (30%) 

High-k material Thickness, Thigh-k nm 2 

S/D Doping, Nsd cm-3 1.0E13 

Metal Workfunction (WF) eV 4.7 

The Ids-Vgs curve will be generated at a constant drain-to-source voltage (Vds) = 

0.5 V as the gate-to-source voltage (Vgs) is shifted from 0 V to 1 V. The initial on-

current (ION) and the off-current (IOFF) of the n-type JLDGSM transistor can be 

extracted from the transfer curve. Besides that, the on-off ratio is also an important 

characteristic used to indicate the power consumption of the device. Larger on-off 

ratio indicates the transistor has better power consumption. The initial on-off ratio 

of the n-type JLDGSM transistor can be calculated as:   

𝑂𝑛 − 𝑂𝑓𝑓 𝑟𝑎𝑡𝑖𝑜 =  
𝐼𝑂𝑁(𝐼𝑑𝑠 𝑤ℎ𝑒𝑛 𝑉𝑔𝑠=1𝑉)

𝐼𝑂𝐹𝐹(𝐼𝑑𝑠 𝑤ℎ𝑒𝑛 𝑉𝑔𝑠=0𝑉)
                                                            (1) 
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Furthermore, the transconductance (gm) of the transistor can be calculated based 

on the data extracted from Ids-Vgs transfer characteristics. The gm magnitude is very 

important characteristic in amplifier’s designs, and it can be measured as: 

𝑔𝑚 =
𝜕𝐼𝑑𝑠

𝜕𝑉𝑔𝑠
                                                                                                                 (2) 

In term high frequency performance, unity-gain frequency (fT) and maximum 

oscillation frequency (fmax) are the main characteristics that have to be taken into 

account for design consideration. Higher magnitude in fT and fmax implies the better 

suitability of the device to operate in high frequency RF application. The extraction 

of intrinsic capacitances (Cgs and Cgd) are very crucial to calculate the magnitude 

of fT and fmax. Thus, AC small signal analysis was performed after post-processing 

DC analysis. By extracting the magnitude of Cgs and Cgd from the curve, the fT and 

fmax of the n-type JLDGSM transistor can be calculated as follows: 

𝑓𝑇 =
𝑔𝑚

2𝜋(𝐶𝑔𝑠+ 𝐶𝑔𝑑)
                                                                                                    (3)  

𝑓𝑚𝑎𝑥 = √
𝑓𝑇

8𝜋𝑅𝑔𝐶𝑔𝑑
                                                                                                   (4) 

where, 

𝑅𝑔 =
1

2𝜋𝑓𝑇(𝐶𝑔𝑠+ 𝐶𝑔𝑑)
                                                                                                 (5) 

3. Predictive Analytics  

The optimum level of the four design parameters (Ge mole fraction, Thigh-k, Nsd and 

WF) for equitable transistor characteristics (ION, IOFF, on-off ratio, gm, fT and fmax) 

were predicted using the proposed predictive analytics. The predictive analytics 

involved three main stages which were; 1) Grey Relational Analysis; 2) Multiple 

Regression Analysis; 3) Genetic Algorithm. Figure 2 shows the general flowchart 

of the steps involved in the proposed predictive analytics. 

3.1. Grey relational analysis 

Grey relational analysis (GRA) was originally introduced by Ju Long in 1982 [28]. 

The application of GRA relies on a specific concept of information that aid to 

analyse the incomplete or uncertain data [29]. The GRA is often regarded as a 

method to search the balanced solution for a certain system. It does not offer the 

best solution but does provide a tolerable solution for multi-objective problems. In 

this study, the GRA was carried out by analytically evaluating the relation between 

the investigated electrical characteristics and their corresponding problems.  

The GRA was utilized to compute the Grey relational grade (GRG) for 18 sets 

of DoE in which all the parameter levels were evenly distributed in each column. 

The investigated design parameters (represented by x1, x2, x3 and x4) were varied 

into three multiple magnitudes as shown in Table 2. The main objective of GRA 

was to compute the GRG for each experiment rows in regard with the 

corresponding electrical characteristics and the types of problem. In other words, 

the function of GRA was to convert the multiple transistor characteristics (ION, IOFF, 

on-off ratio, gm, fT and fmax) with different objective problems into a single 
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representative unit called as GRG. The first step of GRA was to normalize the data 

based on their corresponding objective problem. 

Data mining using 18 

rows of Design of 

Experiment (DoE)

Grey relational grade 

computation using 

Grey relational 

analysis.

Derivation of objective 

function using multiple 

regression analysis

Objective function 

evaluation using 

Genetic algorithm

START

The best 

convergence found

END

YES

NO

 

Fig. 2. General flowchart of the predictive analytics. 

Table 2. Design parameters and their levels 

Symbol Parameter Unit 
Level 

Low Medium High 

x1 Ge mole fraction in SiGe 

layer 

- 0.1 

(10%) 

0.2  

(20%) 

0.3 

(30%) 

x2 High-k material 

Thickness, Thigh-k 

nm 1 2 3 

x3 S/D Doping, Nsd cm-3 1×1013 2×1013 3×1013 

x4 Metal Workfunction (WF) eV 4.6 4.7 4.8 

In this study, the ION, on-off ratio, gm, fT and fmax were categorized into higher-

the-better type of problem in which their magnitudes were expected to be as higher 

as possible. On the other hand, the IOFF was categorized into lower-the-better type 

of problem in which its magnitude was expected to be as lower as possible. Thus, 

the magnitude of all the electrical characteristics with their respective problems for 

each row can be normalized as follows: 

𝑥𝑖
∗(𝑘) =  

𝑥𝑖(𝑘)−min 𝑥𝑖(𝑘)

max 𝑥𝑖(𝑘)−min 𝑥𝑖(𝑘)
, ℎ𝑖𝑔ℎ𝑒𝑟 − 𝑡ℎ𝑒 − 𝑏𝑒𝑡𝑡𝑒𝑟                                            (6) 

𝑥𝑖
∗(𝑘) =  

max 𝑥𝑖(𝑘)− 𝑥𝑖(𝑘)

max 𝑥𝑖(𝑘)−min 𝑥𝑖(𝑘)
, 𝑙𝑜𝑤𝑒𝑟 − 𝑡ℎ𝑒 − 𝑏𝑒𝑡𝑡𝑒𝑟                                              (7) 
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for which xi*(k) and xi(k) are the sequence after data normalization and 

comparability sequence. Next, the deviation sequence, ∆oi(k) for each experimental 

row was calculated as follows: 

∆𝑜𝑖(𝑘) =  |𝑥𝑜
∗(𝑘) − 𝑥𝑖

∗(𝑘)|                                                                                    (8) 

for which xo*(k) is the reference sequence which is commonly fixed to 1. With the 

computed deviation sequences, the Grey relational coefficient (GRC), ξ(k) can be 

then calculated as: 

𝜉(𝑘) =  
∆𝑚𝑖𝑛+𝜉∆𝑚𝑎𝑥

∆𝑜𝑖(𝑘)+ 𝜉∆𝑚𝑎𝑥
                                                                                                            (9)  

for which ξ,  ∆max and ∆min  stand for an identification coefficient, a maximum 

absolute difference and a minimum absolute difference respectively. Since all the 

investigated design parameters were equally preferred, the magnitude of ξ was 

fixed to 0.5. Finally, the GRG of each experimental row can be calculated by taking 

an average magnitude of the GRC for each investigated electrical characteristics. 

Since the number of the investigated electrical characteristics was six, the GRG, γi 

can be measured as: 

𝛾𝑖 =  
1

6
[𝜉1 + 𝜉2 +  𝜉3 +  𝜉4 + 𝜉5 + 𝜉6]                                                                       (10)   

After determining the GRG for all the 18 experimental rows, the GRGs can be 

analysed using multiple regression analysis which will be comprehensively 

explained in the next section. 

3.2. Multiple regression analysis 

Multiple regression analysis is commonly utilized to describe the interrelationship 

between and two or more independent inputs and one dependant output. The main 

objective of the multiple regression analysis is to attain the objective function that 

represents the relationship between multiple design parameters and the GRG. Thus, 

with four independent variables (Ge mole fraction, Thigh-k, Nsd and WF), the multiple 

regression equation for this study can be written as: 

𝑌 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 + 𝑒                                                       (11) 

for which Y is an observed score of the dependent variable (GRG), a is the intercept, 

b is the slope, x is an observed score on the independent variables (Ge mole fraction, 

Thigh-k, Nsd and WF) and e is an error. In order to perform prediction of a and b 

magnitude, the error term (e) will be neglected, thereby the previous equation can 

be simplified as: 

𝑌 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4                                                               (12) 

Determining the magnitude of regression coefficients (a, b1, b2, b3, b4) are quite 

complicated especially when the regression model consists of more than two 

independent variables. Thus, it requires the application of some complicated and 

long matrix formulation. In this study, the computation of b and a magnitudes were 

solved by using an integrated development environment (IDE), Rstudio. After 

determining the magnitude of a, b1, b2, b3 and b4, the objective function of the 

multiple regression model can be further analysed using Genetic Algorithm (GA) 

which will be briefly described in the subsequence section. 
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3.3. Genetic algorithm 

Genetic Algorithm (GA) is a type of partial search algorithm inspired by the process 

of natural selection. It reflects the process of natural selection in which the fittest 

individuals are chosen for reproduction of the future offspring generation. In this 

study, the GA was employed after retrieving the objective function. Optimization 

using GA initiated with a population that was randomly generated and it was 

continually altered over iterations by subsequent operations such as fitness 

evaluation, selection, crossover and mutation. The initial population represents the 

initial magnitudes of the design parameters in which each of them is regarded as an 

individual. In this study, the design parameters (Ge mole fraction, Thigh-k, Nsd and 

WF) were kept as real magnitudes. The objective function evaluation was 

conducted during the previous section using multiple regression analysis. After 

that, the objective function was converted into a scaled magnitude within a specific 

upper and lower boundary, known as fitness function (fi). The optimum 

performance of the device was implied by the highest GRG in which the fitness 

function was required to be maximized. Since, the algorithm was purposely 

designed for searching the minima of function, it was then converted into the 

maximization problem by inverting the objective function. Hence, the fitness 

function for this study can be formulated as: 

Minimize -f(x1, x2, x3, x4) 

Subject to the constraints: 

0.1≤x1≤0.3 

1≤x2≤3 

1≤x3≤3 

4.6≤x4≤4.8 

Multiple good solutions were then selected while the bad solutions were 

proportionally removed from the population by maintaining the size of population 

constant. Since the average fitness of the entire population was denoted as favg, it 

can be assumed that a solution with a fitness, fi did attain an expected fi/favg number 

of copies in the mating pool. Next, two parent strings were randomly selected from 

the mating pool and their respective string parts were interchanged between two 

randomly selected crossover points for new generation of children strings with pre-

determined crossover probability. After reproduction and the crossover with pre-

determined mutation probability, new strings called mutation children were 

generated by slightly random changes of individuals in the modified population. 

The computation iterated until there was no further improvement in the best fitness 

value for a certain number of cycle generations. At this point, the number of 

iterations were terminated as the best fitness value was identified. Finally, the new 

populations (Ge mole fraction, Thigh-k, Nsd and WF) were successfully predicted. The 

GA approach for this study was also conducted using Rstudio IDE. The GA settings 

for this study were pre-determined as below: 

Type  =  real-valued  

Population size =  50  

Number of generations = 1000  

Elitism =  2  

Crossover probability = 0.8  

Mutation probability = 0.1  

 



Predictive Analytics of Junctionless Double Gate Strained MOSFET using . . . . 3085 

 
 
Journal of Engineering Science and Technology     December 2023, Vol. 18(6) 

 

4. Results and Discussion 

Simulation results for 18 sets of experiment were recorded as listed in Table 3. The 

actual magnitudes of all the investigated characteristics were retrieved based on the 

design parameter levels allocated to their respective experimental rows. The actual 

magnitudes of ION, IOFF, on-off ratio, gm, fT and fmax were normalized in accordance 

with their respective objective problem using eq. (6) and eq. (7). The deviation 

sequences for each experimental rows were subsequently measured using eq. (8). 

The magnitudes of the deviation sequences for each row were then employed to 

calculate the Grey relational coefficients (GRC) by using eq. (9).  

Table 3. Simulation results for 18 sets of experiment 

Exp. 
ION 

(μA/μm) 

IOFF 

(nA/μm) 

On-off 

ratio 

(x105) 

gm 

(mS/μm) 

fT 

(GHz) 

fmax 

(THz) 

1 1182.9 2.77 4.3 1.91 124.9 1.7 

2 992 8.34 1.2 2.42 221.8 2.8 

3 1022.2 17.2 0.6 3.29 515.6 7 

4 1682.2 3.13 5.4 3.06 397.1 5 

5 1612.6 1.58 10.2 3.63 597.3 8.1 

6 1249.7 4.34 2.9 3.56 638.6 9.5 

7 1200.2 15.9 0.8 2.11 415.2 7 

8 989.1 3.96 2.5 2.37 465 7.7 

9 998.6 5.2 1.9 2.78 519.8 8.3 

10 1617.5 6.49 2.5 2.4 147.5 1.9 

11 1618.3 14.8 1.1 3.37 281.2 3.2 

12 1281.3 36.3 0.4 3.86 564.6 7.3 

13 1391.5 14 1 2.3 332.5 4.8 

14 1161.2 31.7 0.4 2.59 489.3 7.5 

15 1181.2 52.2 0.2 3.46 632 9.5 

16 1669.9 27.7 0.6 2.97 526.2 7.8 

17 1589.7 8.58 1.9 3.39 599 8.7 

18 1250.5 15.2 0.8 3.23 580 8.7 

Since there were six design parameters involved in the current study, the Grey 

relational grades (GRG) for each row were determined by averaging the respective 

GRC by six. The GRGs for all the experimental rows were recorded as listed in 

Table 4. The GRGs for each row were ranked based on the highest magnitude. The 

higher GRG indicated that the respective experimental row had a better quality of 

multiple electrical characteristics. The calculated GRGs for each experimental rows 

were then analysed using multiple regression analysis in order to derive the 

objective function.  

The magnitude of estimated regression coefficients (a, b1, b2, b3, b4) were 

determined with the aid of Rstudio IDE. A normal probability plot of MRA for the 

calculated GRGs are depicted in Fig. 3.  

It shows the variation of the GRGs on the estimated regression line. Table 5 

shows the summary of the multiple regression analysis for this study. It is clearly 

shown that the most significant design parameter contributing the large variation 

on the GRG magnitude is parameter x3 (S/D doping). On the other hands, the least 

significant design parameter is identified as parameter x4 (workfunction).  
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Table 4. Grey relational grades and ranks. 

Exp. No. GRG (γi) Rank 

1 0.470586 17 

2 0.438925 18 

3 0.536961 12 

4 0.66358 4 

5 0.873202 1 

6 0.752953 2 

7 0.484357 15 

8 0.552922 11 

9 0.585021 9 

10 0.526141 13 

11 0.553642 9 

12 0.606464 8 

13 0.476852 16 

14 0.486938 14 

15 0.626598 5 

16 0.619188 6 

17 0.719926 3 

18 0.615692 7 

 

Fig. 3. Normal probability plot. 

Table 5. Results of multiple regression analysis. 

Regression 

Coefficients 
Estimation Std. Error t value Pr (>|t|) 

Significant 

code 

Intercept 0.98525 0.99031 0.995 0.337948  

x1 -0.45912 0.21490 -2.136 0.052238 . 

x2 0.05999 0.02149 2.791 0.015279 * 

x3 0.10776 0.02149 5.014 0.000237 *** 

x4 -0.13629 0.21490 -0.634 0.536944  

Significant Code: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’ 0.1-1 ‘ ’ 
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Based on the estimated regression coefficients in Table 5, the objective function 

for the GRG distributions can be mathematically described as: 

𝑌 = 0.98525 − 0.45912𝑥1 + 0.05999𝑥2 + 0.10776𝑥3 − 0.13629𝑥4                (13) 

Since GA was originally developed to find the local minima of a function, the 

objective function was then inverted into a fitness function within a specific upper 

and lower boundary as follows: 

𝑌 = −0.98525 + 0.45912𝑥1 − 0.05999𝑥2 − 0.10776𝑥3 + 0.13629𝑥4           (14) 

As can be observed, the sign of the initial objective function is inverted to allow 

the GA solving the maximization based problems in which the GRG is desired to 

be as large as possible. The inverted fitness function was then optimized using GA. 

The search for the optimum fitness function ended after 367 generations as the best 

fitness value was identified. The computational runtime of the hybrid model, with 

respect to the 367 cycles of generation only took about 5 seconds, predominantly 

due to less complexity of the small datasets.  Figure 4 depicts the plot of the fitness 

function in each generation as the numbers of generation converge at the optimum 

point. The final results of GA optimization are summarized in Table 6.  

 

Fig. 4. Performance of GA during convergence. 

Table 6. Summary of the final results of genetic algorithm. 

Parameters Magnitude and its unit 

Optimum GRG 0.8070043 

Ge mole fraction in SiGe layer 0.1 (10%) 

High-k material Thickness, Thigh-k 3 nm 

S/D Doping, Nsd 3×1013 cm-3 

Metal Workfunction (WF) 4.6 eV 

It is observed that the maximum GRG is measured at 0.8070043 which can be 

attained by employing the design parameters; Ge mole fraction, Thigh-k, Nsd and WF 

with their predicted magnitudes of 0.1 (low), 3 nm (high), 3×1013 cm-3 (high) and 

4.6 eV (low) respectively. However, the previous DoE (Table 2) does not include 

the predicted magnitudes of the design parameter. Hence, the simulation of the 

device needs to be redone for verification purpose. 

Figure 5 shows an overlay plot of Ids-Vgs transfer characteristic before and after 

predictive analytics. It can be observed that the ION magnitude of the device is improved 
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by ~34% after the predictive analytics. Larger ION is definitely required for nano-scale 

device especially when being involved in high speed switching application.  

 

Fig. 5. Overlay plot of the Ids-Vgs curve  

before and after predictive analytics in linear mode. 

The rest of the examined transistor characteristics can be determined using the 

aforementioned equations. Figures 6 and 7 show the comparison of the IOFF 

magnitude and the on-off ratio of the device before and after predictive analytics 

respectively. It can be seen that the IOFF magnitude of the device is reduced by 

~40% after the predictive analytics. A large IOFF  magnitude would definitely affect 

the standby power of the device, thereby increasing the power consumption. 

Meanwhile, the on-off ratio of the device is improved by ~50% after the predictive 

analytics as depicted in Fig. 9. The larger on-off ratio implies that the device has 

better power consumption as much minimum Vgs is required to drive the Ids reach 

its saturation.  

 

Fig. 6. Bar Graph of IOFF before and after predictive analytics. 
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Fig. 7. Bar Graph of On-off ratio before and after predictive analytics. 

Figure 8 depicts an overlay plot of gm against Vgs before and after predictive 

analytics. From the plot, it can be observed that the gm magnitude of the device at 

maximum Vgs is improved by ~18% after the predictive analytics. Gaining a much 

higher gm magnitude is very crucial for the device to operate as a transconductance 

amplifier. In fact, a higher gm magnitude would boost the intrinsic gain as well as 

the device efficiency. Figure 9 depicts an overlay plot of fT against Vgs before and 

after predictive analytics. From the plot, it can be observed that the fT magnitude of 

the device at maximum Vgs is slightly improved by ~10% after the predictive 

analytics. This indicates that the device would be capable of amplifying much 

higher input signal after going through the predictive analytics. Figure 10 depicts 

an overlay plot of fmax against Vgs before and after predictive analytics. The fT 

magnitude of the device at maximum Vgs is observed to be slightly improved by 

~4% after the predictive analytics. A higher fmax magnitude could boost an 

achievable maximum power gain of the device. Based on the overall results, it can 

be concluded that the proposed predictive analytics are capable of optimizing the 

investigated design parameters (Ge mole fraction, Thigh-k, Nsd and WF) in attaining 

better device characteristics (ION, IOFF, on-off ratio, gm, fT and fmax). 

 

Fig. 8. Overlay plot of the gm-Vgs curve before and after predictive analytics. 
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Fig. 9. Overlay plot of the fT-Vgs curve before and after predictive analytics. 

 

Fig. 10. Overlay plot of the fmax-Vgs curve before and after predictive analytics. 

Table 7 summarizes all of the observations on transistor characteristics before 

and after predictive analytics. It can be clearly seen that the IOFF magnitude of the 

device is reduced by ~40% after the predictive analytics. A large IOFF magnitude 

would definitely affect the standby power of the device, thereby increasing the 

power consumption. Meanwhile, the on-off ratio of the device is improved by 

~50% after the predictive analytics. The larger on-off ratio implies that the device 

has better power consumption as much minimum Vgs is required to drive the Ids 

reach its saturation. It is observed that the gm magnitude of the device at maximum 

Vgs is improved by ~18% after the predictive analytics. Gaining a much higher gm 

magnitude is very crucial for the device to operate as a transconductance 

amplifier. In fact, a higher gm magnitude would boost the intrinsic gain as well as 

the device efficiency.  
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Table 7. Comparison of simulation  

results before and after predictive analytics. 

JLDGSM’s 

Parameter/characteristic 

Before predictive 

analytics 

After predictive 

analytics 

Ge mole fraction in SiGe layer 0.3 (30%) 0.1 (10%) 

High-k material Thickness, (Thigh-k) 2 nm 3 nm 

S/D Doping (Nsd)
 1×1013  cm-3 3×1013 cm-3 

Metal Workfunction (WF) 4.7 eV 4.6 eV 

On-current (ION) 1161.2 µA/µm 1763.7 µA/µm 

Off-current (IOFF) 36.3 nA/µm 21.9 nA/µm 

On-off ratio 0.4×105 0.8×105 

Transconductance (gm) 2.59 mS/µm 3.15 mS/µm 

Unity-gain frequency (fT) 489.3 GHz 543 GHz 

Max. oscillation frequency (fmax)  7.5 THz 7.8 THz 

The fT  magnitude of the device at maximum Vgs is slightly improved by ~10% 

after the predictive analytics. This indicates that the device would be capable of 

amplifying much higher input signal after going through the predictive analytics. 

Furthermore, the fmax magnitude of the device at maximum Vgs is observed to be 

slightly improved by ~4% after the predictive analytics. A higher fmax magnitude 

could boost an achievable maximum power gain of the device. Based on the overall 

results, it can be concluded that the proposed predictive analytics are capable of 

optimizing the investigated design parameters (Ge mole fraction, Thigh-k, Nsd and WF) 

in attaining better device characteristics (ION, IOFF, on-off ratio, gm, fT and fmax). For 

comparison with other state-of-art, some results produced by the proposed hybrid 

predictive analytics are compared with previous works as detailed in Table 8. 

Table 8. Comparison with other state-of-art transistor models. 

Research work Year Lg (nm) ION (µA/µm) gm (mS/µm) fT (GHz) 

Ajayan et al. [30] 2019 12 250  0.39  369  

Suddapalli and 

Nistala [31] 

2020 20 1500  4  795  

Rashid et al. [32] 2021 20 123.1  1.23  100  

Sreenivasulu and 

Narendar [33]  

2021 18 59.7 0.9  450  

Raut and Nanda 

[34]  

2021 30 10  4  546.54  

Misra et al. [35] 2022 30 226.8  0.23  536  

fKumar et al. 

[36]  

2022 30 44  0.069  44  

This work 2023 6 1763  3.15  543  

All previous transistor models have already used ultra-thin channel either in 

double-gate or single-gate structure, or they have been improved or hybridized with 

other innovations. Comparable to earlier transistor models, our recent research has 

showed good device characteristics with high ION, gm, and fT. In addition, our 

research focuses on reducing the physical gate length to 6nm while maintaining 

acceptable device performance via the use of strain, high-k/metal-gate engineering, 

and predictive analytics. The main limitation of the proposed predictive analytics 
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model is it may not guarantee that a globally optimal solution can be reached on 

every type of problems. Furthermore, metaheuristics such as Genetic algorithm will 

never reach an optimum point, if the optimisation problem is too complex and/or 

very large. Hence, it is necessary to implement and introduce new algorithm that is 

more suitable for the existing problems. The sensitivity of the optimized parameters 

to variations in process technology or potential trade-offs between different 

device’s characteristics is very crucial in transistor’s performance. Based on 

previous multiple regression analysis, S/D doping process was recognized the main 

design parameter that contributed the most impact on the variations of device’s 

characteristics. Table 9 shows the impact of the S/D doping (Nsd) variations on 

JLDGSM’s characteristics (Note: Other parameters are set to the optimum level 

predicted by predictive analytics approach). 

Table 9. Summary of the Nsd variations on JLDGSM’s characteristics. 

Nsd  

(cm-3) 

Ion 

(µA/µm) 

Ioff 

(nA/µm) 

On-off 

ratio 

gm 

(mS µm) 

fT 

(GHz) 

fmax 

(THz) 

1×1013 1149.8 13.0 0.88× 105 2.12 417 7.0 

2×1013 1518.9 17.5 0.87×  105 2.84 503 7.5 

3×1013 1763.7 21.9 0.8× 105 3.15 543 7.8 

Based on Table 9, the NSd parameter is directly proportional to all the investigated 

JLDGSM’s characteristics in which it exhibit increasing trend in ION, IOFF, on-off 

ratio, gm, fT and fmax as the Nsd is increased.  Hence, the Nsd parameter need to be 

carefully tuned as it might contribute significant trade-offs of the overall JLDGSM’s 

performance. In future work, more design parameters besides Ge mole fraction,    

Thigh-k, Nsd and WF will be taken into account for more comprehensive perspective.  

5. Conclusions 

In the present work, a hybrid model of predictive analytics involving Grey 

Relational Analysis (GRA) and Genetic Algorithm (GA) are developed and utilized 

for prediction and optimization of the Ge mole fraction (Ge Mole), high-k material 

thickness (Thigh-k), source/drain (S/D) doping concentration and metal work-

function (WF) of n-type Junctionless Double Gate Strained MOSFET (JLDGSM). 

The GRA is mainly employed to merge all the design parameters with different 

objective problem into a single representative unit called Grey Relational Grade 

(GRG). The computed GRGs are then analysed using multiple regression analysis 

in order to derive the objective function. The GA is applied by scaling the objective 

function into fitness function restricted to pre-determined upper and lower 

boundaries. The best fitness value is identified after 367 cycles of generation. Based 

on the final results, the proposed predictive analytics have successfully optimized  

ION, IOFF, on-off ratio, gm, fT and fmax of the device by ~34%, ~40%, ~50%, ~18%, 

~10% and ~4% respectively. The best combinational magnitudes of Ge mole 

fraction, Thigh-k, Nsd and WF for the most optimum device characteristics are 

predicted to be 0.1 (10%), 3 nm, 3×1013 cm-3 and 4.6 eV respectively. It can be 

concluded that the proposed predictive analytics are capable of optimizing multiple 

design parameters for much improved JLDGSM performance. 
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Nomenclatures 
 

a Intercept 

b Slope 

Cgd Gate-to-drain capacitance 

Cgs Gate-to-source capacitance 

Ge Germanium 

f Frequency 

favg Average fitness 

fi Fitness function 

fmax Maximum oscillation frequency 

fT Unity-gain frequency 

gm Transconductance 

HfO2 Hafnium dioxide 

Ids Drain-to-source current 

IOFF Off-state current 

Ion On-state current 

Lg Physical gate length 

Nc Channel doping concentration 

Nsd Source/drain doping concentration 

Thigh-k High-k material thickness 

tox Gate oxide thickness 

tsi Silicon film thickness 

Vds Drain-to-source voltage 

Vgs Gate-to-source voltage 

WSix Tungsten silicide 

x Observed score on the independent variables 

xi*(k) Sequence after data normalization 

xi(k) Comparability sequence 

xo*(k) Reference sequence 
 

Greek Symbols 

∆max Maximum absolute difference 

∆min   Minimum absolute difference 

∆oi(k) Deviation sequence 

ξ Identification coefficient 

ξ(k) Grey relational coefficient 

γi Average magnitude of the Grey relational coefficients 

 

Abbreviations 

AC Alternate current 

DC Direct current 

DoE Design of experiments 
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DIBL Drain induced barrier lowering 

GA Genetic algorithm 

GAA Gate all around 

GRA Grey relational analysis 

GRC Grey relational coefficient 

GRG Grey relational grade 

JLDGSM Junctionless double gate strained MOSFET 

RF Radio frequency 

RSM Response surface methodology 

S/D Source/drain 

SS Subthreshold slope 

TCAD Technology computer aided design 

WF Workfunction 
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