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ABSTRACT Fog computing has been introduced to extend the cloud services by bringing the services near
to the user’s proximity. However, the distributed location of the fog servers requires a proper management to
ensure the network to provide a service resilience during disruption while preserving the energy consumption
of the networking and processing equipment. In this paper, a 1+1 server protection scheme where a primary
and a secondary processing server are used to serve Electrocardiogram (ECG) monitoring IoT applications
concurrently has been considered at the fog networking infrastructure. The infrastructure is designed to
be resilient against server failures related to the geographic location of primary and secondary servers and
against both server and network failures. AMixed Integer Linear Programming (MILP)model is developed to
optimize the number and locations of the processing servers for energy-efficient resilient fog infrastructure.
The results reveal that considering server protection without geographical constraints resulted in network
and processing energy penalties as the traffic is doubled compared to the non-resilient scenario. Meanwhile,
considering geographical constraints for server protection at low demands resulted in high network energy
penalty as more nodes are used to host the processing servers. Interestingly, increasing the resilience level to
consider network protection with link and node disjoints selection at high demand resulted in low network
energy penalty due to the activation of a large part of the network in any case to serve the demands. The
results also reveal that the network energy penalty was reduced when more processing servers are allowed
at each fog node while the same processing energy is consumed regardless of the increased resilience level.
A heuristic was developed for each resilience scenario for verification and to enable real-time operation of
the network, servers and IoT devices, and the results of the heuristic approach those of the MILP.

INDEX TERMS ECG monitoring, energy consumption, fog computing, GPON, health monitoring, Internet
of Things, machine-to-machine (M2M) communication, network protection, resilience, server protection.

The associate editor coordinating the review of this manuscript and

approving it for publication was Burak Kantarci .

I. INTRODUCTION
Cloud computing technologies can provide computation and
storage services anytime and anywhere. However, offloading
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massive amounts of data generated by end Internet of Things
(IoT) devices to the cloud for computation requests increases
the network’s congestion. Also, it can increase both network-
ing and processing energy consumption. Many researchers
focused on improving the energy efficiency of the archi-
tectures for the core network and cloud data centres under
increasing applications’ traffic [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. Dif-
ferent methods and technologies are used to increase the
energy efficiency of the network. These include virtualiza-
tion [6], [11], [17], designing and optimizing the network
architecture [14], [18], [19], [20], optimizing content distri-
bution [12], [13], [21], progressive big data processing [3],
[5], [7], [22], network coding [4], [16] and using renewable
energy to reduce the carbon footprint of the network fur-
ther [15]. Also, fog networks that integrate distributed edge
servers in a decentralized architecture have been proposed
to reduce the burden on central data centers [15], [23], [24].
In our previous work in [25], we have shown that there is
68% total energy saving when fog computing is used to serve
electrocardiogram (ECG)monitoring IoT applications to save
heart patients while considering the time restriction enforced
by the American Heart Association (AHA) compared to the
traditional cloud computing approach. Meanwhile, in [20],
we further extend our work in [25] to consider a realistic case
study under both low and high data rate applications which
resulted in 36% and 52% energy efficiency improvements,
respectively, when the health data are processed and analyzed
at the fog compared to the cloud.

Trustworthiness is one the challenges elements when
dealing with the Internet of Things (IoT) system [26].
This consists of the system requirements concerning several
aspects including resilience to recover the communication
services between the network equipment due to network
failures [27]. For instance, ensuring the data trustworthiness
in the IoT system will also ensure the resilient of the data
flow. Many approaches have been introduced to improve
service resilience at the cloud networking infrastructure as
surveyed in [28], ranging from designing and operating the
cloud facilities, servers and networks with resilience in mind
to their integration and virtualization. In [29], the concept
of virtualization was used to allow the backup servers to be
shared in geo-distributed data centers, which improved the
utilization of backup servers by 40%. However, the proposed
shared protection scheme requires high reserved bandwidth
and can increase the latency between the backup and primary
servers.Meanwhile, the work in [30] studied the impact of the
relocation of the backup and primary servers on the cost of the
network and its capacity and the servers. The study revealed
that considering protection against single link failures with
relocation reduces the cost associated with the capacity of
the servers and network. Furthermore, the work also showed
that the benefits of repositioning the backup and primary
servers are more noticeable for sparser network topologies.
In [31], the authors proposed a recovery technique which is

the self-triggered update scheme that dynamically perform
the rerouting process of the communications nodes at the
network level. This is to ensure that the network will still
be functioning even the network nodes do not operate due
to faults or attacks.

Fog computing can also improve service resilience by
performing data processing at the edge of the network. For
instance, in [32], the authors show that using fog computing
to process the data at the network edge can improve network
resilience besides reducing the latency compared to process-
ing the data at cloud computing, mainly for an interactive
demand. In [33], the authors proposed a set of mechanism
to serve the service requests for chained Virtual Functions to
process specific requirement of application while increasing
their resilience using Integer Linear Programming Model.
The results show that, the proposedmethod has the possibility
to increase the resilience of the chained Virtual Function
while balancing the services requests of the infrastructure
nodes. In [34], the author considered the used of Virtual
Network Function (VNFs) and Service Function Chain (SFC)
to deliver the service demands. A multi-path protection (MP)
scheme has been proposed to protect the SFC in which the
MP enable the SFC to be split on multiple disaster zone
(DZ) disjoint working path. The results reveal that compared
to the dedicated protection (DP) schemes, the proposed MP
scheme has improved the resource consumption by up to
20%. Meanwhile, in [35], the author proposed a fault toler-
ance framework for micro service execution considering the
fog-IoT orchestration to ensure the efficiency of the network
to recover after failure occurs in the system. The results show
that, the proposed framework able to perform the seamless
transfer of micro services in a fog-IoT ecosystem. In [36],
an adaptive traffic signal control algorithm is introduced to
dynamically adjust the timing’s signal based on the current
traffic density to reduce the average wait times of vehicles
while maximizing the bandwidth utilization at the fog and
cloud layer. To implement this system, the real-time videos
captured at the fog layers will be processed locally and send
the processed data i.e. count of vehicles to the cloud layer.
Meanwhile, at the cloud layer, a KKN-based Machine Learn-
ing model will train the processed data from the fog layer to
estimate the traffic density of that particular time. In case of
a fog node failure, the predicted values will be used to set
the signal time. The results show that compared to the static
method, the average wait times of vehicles and the bandwidth
utilization is reduced by 17.624% and 99.99%, respectively.
The work in [37] proposed a fog-to-cloud (F2C) scheme to
organize the management strategies to control resources from
the cloud to the edge for resilience purposes. Three strategies,
Zero Knowledge (ZK), Keep Updating (KU) and High-Layer
download (HLD) have been used to evaluate the proposed
scheme in which a particular mode failed in the F2C architec-
ture. The results show that, the keep updating (KU) methods
requires lower synchronization time as it stores a copy of
the leader database. However, the KU method increases the
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overhead in the network. They also studied the impact of
considering multiple backup options and the results reveal
that, the higher the number of backup required, the higher
the network utilization. Table 1 summarizes the finding from
the literature review.

However, to the best of our knowledge, no work has
focused on increasing the networking and processing equip-
ment’s energy efficiency while improving the service
resilience. As mentioned above, in [20], the results have
shown that 36% and 52% of energy efficiency of networking
equipment are achieved when considering fog computing in
the network infrastructure, compared to the cloud comput-
ing infrastructure for low and high data rate applications,
respectively. Therefore, in this work, we furthermore con-
sider server and network protection at the fog networking
infrastructure level. In [38], we have proposed a resilient
fog computing infrastructure for health monitoring applica-
tions with a 1+1 protection scheme. In this scheme, two
processing servers (PSs), primary and secondary, are utilized
to aid the ECG monitoring IoT applications simultaneously
in a West Leeds, United Kingdom setting. The patients send
the necessary data to the primary and secondary PSs to be
processed, analyzed and for decision making. A Mixed Inte-
ger Linear Programming (MILP) model was used to obtain
the optimal number and locations of the PSs to reduce the
energy consumed by the networking and processing equip-
ment. We use MILP modelling to mathematically represent
the proposed architecture. Using the MILP model, we obtain
the optimal the number and locations of processing servers
for an energy-efficient resilient fog infrastructure which sets
the upper bound on the performance of the proposed archi-
tecture [39]. In [38] preliminary results, were presented that
show that only network energy consumption is affected when
resilience is increased to consider geographical constraints
compared to a scenario with no geographical constraints for
server protection.

The current paper is based on chapter 6 in [40] which
makes several new contributions beyond those presented
in [38] as summarized below:
i. Compared to [38], it provides for the first time the devel-

oped MILP model for both scenarios without and with
geographical constraints for server protection.

ii. Evaluation on the network and processing energy
consumption under both scenarios: without and with
geographical constraints, considering a wide range of
parameters and scenarios in terms of the total PSs
allowed at each candidate fog node (i.e. from 1 up to
8 processing server (PS) per candidate fog node).

iii. Evaluation on the energy penalty for network and pro-
cessing in a resilient scenario with no geographical
constraints compared to the non-resilient scenario.

iv. Development on two new heuristics: our new energy
optimized resilient infrastructure fog computing without
geographical constraints (EORIWG) heuristic, and the
energy optimized resilient infrastructure fog computing
with geographical constraints (EORIG) heuristic. Also,

the evaluation on the performance gaps between the
heuristic and the MILP model results in terms of the
total energy consumed by the networking and processing
equipment are presented. The heuristics are simpler than
the MILP, provide validation for the MILP and enable
real-time operation.

v. Development of further MILP model that extends our
infrastructure so that it is resilient against the server and
network failures, to determine the optimal number of
primary and secondary PSs and their optimal locations
while minimizing the energy consumed by networking
and processing equipment. We consider geographical
constraints for server protection while introducing dis-
joint links and node selection for network protection,
offering a design with higher levels of resilience. In this
design, the different nodes required to host both the
primary and secondary PSs and the links and nodes used
to transmit the data to and from primary and secondary
PSs are disjoint, as node and link failures in the network
are not improbable. We consider disjoint links and nodes
only at the access layer, as the PSs can only be placed in
the access layer. An Energy optimized resilient infras-
tructure fog computing with geographical constraints,
and link and node disjoint (EORIGN) heuristic is devel-
oped for real-time implementation, a third new heuristic
in this paper.

The rest of the paper is structured as follows: Section II
introduces the proposed resilient fog computing IoT infras-
tructure architecture for healthcare monitoring applications.
Section III provides the MILP mathematical modelling of
the proposed approach considering a Gigabit Passive Opti-
cal Network (GPON) network at the access layer. Next,
Section IV introduces the parameters considered in this work,
while section V presents the health monitoring IoT applica-
tion’s performance. The development of each heuristic for
each considered protection scenario is given in Section VI,
while Section VII discusses their performance evaluation.
Finally, Section VIII concludes this paper.

II. THE PROPOSED RESILIENT FOG COMPUTING
ARCHITECTURE FOR IoT HEALTH MONITORING
APPLICATIONS
In this work, we consider the resilient fog computing IoT
architecture with a GPON access network for health monitor-
ing applications in [38] and [40]. However, for the reader’s
convenience, we re-introduce the architecture in Figure 1.
The architecture consists of four layers. The details of each
layer are as explained in [38] and [40].

III. MILP MODEL FOR ENERGY-EFFICIENT AND
RESILIENT INFRASTRUCTURE FOG COMPUTING IoT
HEALTH MONITORING APPLICATIONS
In [20], we focused on energy minimization while this
paper extends the previous work by introducing resilience.
Therefore, in this section, a MILP model is developed
to minimize the energy consumed by the networking and

48912 VOLUME 12, 2024



I. S. M. Isa et al.: Resilient Energy Efficient IoT Infrastructure With Server and Network Protection

TABLE 1. A comparison of the contributions of this paper with related works in the literature.

FIGURE 1. Resilient fog computing IoT infrastructure for health monitoring applications [38].

processing equipment for the resilience scenarios that con-
sider a geographic location for server protection where
scenario 1 consider server protection with no geographical
constraint while scenario 2 consider server protection with
geographical constraint. We further extend the MILP model
to consider server and network protectionwith the geographic
location constraints and link and node disjoint design which
is scenario 3, with the same objective function. Note that
energy consumption of networking equipment comprises of
the energy consumed by all networking devices at the access,
metro and core network. In contrast, the energy consumption
of processing includes the energy consumed by both primary
and secondary PSs. It is worth noting that Long Term Evo-
lution Machine (LTE-M) base stations (BSs) are used in the
proposed architecture to aggregate traffic at the IoT network.

A. SCENARIO 1: PROTECTION FOR SERVER WITHOUT
GEOGRAPHICAL CONSTRAINTS
To model the energy consumption minimization approach
considering server protection with no geographical

constraints, i.e. Scenario 1, we utilized the same sets,
parameters, variables and objective function as in [20].
We furthermore introduce additional variables as in Table 2.
Note that we considered a setting where each candidate fog
node can host one or more PS. Therefore φd , the number of
processing servers at node d, is set as a variable.

The considered power consumed by the networking
devices and PSs are decomposed into two parts: idle and
linear proportional part that increases with load. The Ethernet
switches and the PSs are dedicated only for healthcare appli-
cations (i.e. unshared) while various applications share the
other devices. Hence, we only consider a portion of the idle
power contributed by the healthcare application (x) for the
shared devices while for the unshared devices, the maximum
idle power is considered. Also, the energy consumption of
all devices is proportional to the time the devices are utilized
and the load placed on the devices to serve the workload. The
equations used to calculate the energy consumed at the access
network and the energy consumed at the core network are
as in [20]. However, as the proposed resilience architectures
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TABLE 2. Sets, parameters and variables used in MILP.

considers two clusters with additional secondary servers,
we redefined the equations to calculate the energy consumed
at the metro network, the energy consumed at the cloud, and
the fog nodes’ energy consumption.

1) ENERGY CONSUMPTION OF METRO NETWORK
The energy consumption of the metro network (EMN )
includes the energy consumed by centre aggregation switches
(CASs) and aggregation routers. The aggregation router is
only used to transmit the analyzed health data storage traffic
as the candidate fog nodes allowed to host the PSs are at the
access network. Meanwhile, the CASs are used to send the
raw health data traffic, analyzed health data feedback traffic
and analyzed health data storage traffic between different
clusters. Therefore, the energy consumed at the metro net-
work is as follows:

EMN = (ECASP+ ECASF + ECASS + EARS) η (1)

The details calculation to determine the energy consumption
of the CASs and aggregation routers to perform the tasks is
the same as in [20].

2) ENERGY CONSUMPTION OF CLOUD
The energy consumed in the cloud is calculated as in [20].
However, for cloud storage, the storage traffic, Si is divided
by ‘2’ as only one analyzed health data from both primary
and secondary PSs is stored as shown in (2).

ECSTS = 2
∑
i∈CST

(
ICSTxζci +

Si
2

τc
(PCST − ICST )

CCST

)
τc

(2)

3) ENERGY CONSUMPTION OF FOG NODES
The energy consumed at fog node (EFN ) includes the energy
consumption of PSs (EPS) and the energy consumption of
Ethernet switches (ETES) as in [20]. However, as the sec-
ondary PS is considered for resilience purposes, the energy

consumed by PSs (EPS) is as given in (3).

EPS =

∑
d∈FN

(
IPS(φad + φbd ) (τa+ τb+ τc)

+PPS(τpad + τpbd
)

(3)

The following are the modified and additional constraints
used in addition to the constraints in [20], to model the
energy consumption minimized approach considering server
protection with no geographical restrictions:

Subject to:

ωasd ≤ PtsYad ; ∀s ∈ CL, ∀d ∈ FN (4)

ωbsd ≤ PtsYbd ; ∀s ∈ CL, ∀d ∈ FN (5)

Constraints (4) and (5) are used to allocate patients from
clinic s, to be served by the primary and secondary PSs
located at node d , respectively. Note that if a patient is
assigned to a candidate location, this location should have fog
servers. ∑

d∈FN

ωasd = Pts; ∀s ∈ CL (6)∑
d∈FN

ωbsd = Pts; ∀s ∈ CL (7)

Constraints (6) and (7) ensure that all patients at clinic s, are
assigned to the primary and secondary PSs located at any
node d , respectively.

Psd = (ωasd + ωbsd ) δa;s ∈CL, d ∈ FN (8)

Fsd = (ωads + ωbds) δb; ∀s ∈ FN , d ∈ CL (9)

Ssd =

∑
i∈CL

(ωais + ωbis) δcδsd ; ∀s ∈ FN , d ∈ CST (10)

Constraint (8) determines the total raw health data traffic,
while constraints (9) - (10) determine the total analyzed
health data traffic for feedback and storage, respectively. This
is done by considering the association of patients from the
clinic to the PS (i.e. ωasd for primary PS and ωbsd for sec-
ondary PS) and the data rate allocated per patient depending
on the tasks (i.e. δa/δb/δc) to perform the transmission. Note
that, as in [20], single cloud storage is considered, hence
in (10), δsd = 1.

Yad + Ybd = 2Yd − zd ; ∀d ∈ FN (11)

φad + φbd≤N ; ∀d ∈ FN (12)

Equation (11) determines the nodes that are used to place
the PSs where Yd = 1 if any of Yad and Ybd are equal
to 1 (Yad + Ybd ), otherwise, it is zero. This is achieved by
using a binary variable zd which will be 1 if Yad and Ybd
are exclusively equal to 1 (Yad⊕Ybd ). Otherwise, zd is equal
to zero. Constraint (12) makes sure that the total number of
PSs at the selected fog node d does not exceed the maximum
number of PSs permitted at each fog node N .∑

s∈CL

ωasd ≤ �maxφad ; ∀d ∈ FN (13)
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∑
s∈CL

ωbsd ≤ �maxφbd ; ∀d ∈ FN (14)

Constraints (13) and (14) ensure the total patients aided by
each primary and secondary PS at node d , respectively, do not
exceed the maximum allowable users (�max). However, the
model also allows more than one PS (i.e. φad for primary PS
and φbd for secondary PS), to be deployed at the same node
d if the number of users is higher than �max.

τpad =

∑
s∈CL

mωasd+ćφad ; ∀d ∈ FN (15)

τpbd =

∑
s∈CL

mωbsd + ćφbd ; ∀d ∈ FN (16)

Equations (15) and (16) determine the time consumed to
process and analyze the health data at the primary PS and
secondary PS hosted at node d , respectively. This is done by
considering the total patients aided by the PS (i.e. ωasd for
primary PS and ωbsd for secondary PS) and the number of
PSs utilized (i.e. φad for primary PS and φbd for secondary
PS), where mand ć represent the gradient and y-intercept,
respectively.∑

s∈CL

ωasdα ≤ 3maxφad ; ∀d ∈ FN (17)∑
s∈CL

ωbsdα ≤ 3maxφbd ; ∀d ∈ FN (18)

Constraints (17) and (18) ensure that the storage capacity of
a primary PS and secondary PS at node d, do not exceed
its maximum capacity (3max), respectively. This is done by
considering the total patients aided by the PS (i.e.ωasd for the
primary PS and ωbsd for the secondary PS) as well as the size
of analyzed health data per patient (α). Note that the model
also allows more than one primary PSs (φad ) and secondary
PSs (φbd ) to be deployed at the same fog node d, if the data’s
size is larger than 3max.

B. SCENARIO 2: PROTECTION FOR SERVER WITH
GEOGRAPHICAL CONSTRAINTS
This section considers server protection with geographical
constraints, i.e. Scenario 2 in which a single fog node is
not allowed to host both the primary PS and secondary PS
at the same time. Typically, most service providers place
their primary and secondary services in distant locations to
increase resilience. For example, BackupVault, which is a
leading provider of online cloud backup for businesses in
the United Kingdom (UK), locate their primary data centre
in Slough, UK; while the secondary data centre for redun-
dancy is located in Reading, UK [41]. Therefore, this work
considers a setting where the nodes housing the primary PSs
are not permitted to house any secondary PSs. The same
parameters, variables, constraints and objective functions in
the previous scenario in Section III-A are utilized. However,
to ensure the locations of both primary PSs and secondary PSs
are different, constraint (11) is replaced with equation (19),

as shown below:

Yad + Ybd = Yd + 2yd ; ∀d ∈ FN (19)

where constraint (19) ensures that either primary or sec-
ondary PSs can be placed at one location d . This is achieved
by presenting a new binary variable yd which will be equal
to 1 if Yad and Ybd are equal to 1 (Yad .Ybd ). Otherwise, yd is
equal to zero.

C. SCENARIO 3: PROTECTION FOR SERVER CONSIDERING
GEOGRAPHICAL CONSTRAINTS AND PROTECTION FOR
NETWORK CONSIDERING LINK AND NODE DISJOINT
DESIGN
This section considers server protection with geographi-
cal constraint and network protection with link and node
disjoints, i.e. Scenario 3, in which the primary PSs and
secondary PSs are not permitted to be hosted at the same
candidate fog node, and the links and nodes used to relay
the traffic to and from primary PSs and secondary PSs are
disjoint. Beyond the optical line terminal (OLT) and heading
to the cloud, the network is not protected. This is because
the server that did the processing has a copy of the data
to be stored and can retain it until the network beyond the
OLT recovers. Note that we considered the disjoint links
and nodes to be only at the access layer. The same sets,
parameters, variables, constraints and objective functions in
Section III-B are utilized, and additional sets and variables
are introduced in Table 3 to determine the optimal number of
the primary and secondary PSs with their optimal locations
while considering the geographical constraints and link and
node disjoint resilience so that the minimum total networking
and processing equipment energy is consumed.

In addition to the constraints presented in Section III-B, the
following new constraints are considered:

Pasd = ωasdδa; s∈CL, d ∈ FN (20)

Pbsd = ωbsdδa; s∈CL, d ∈ FN (21)

Constraints (20) and (21) calculate the traffic of the raw
health data from clinic s to the primary and secondary PSs
located at node d , respectively. This is done by considering
the association of patients from clinic to PSs (i.e. ωasd and
ωbsd ) and the provisioned data rate per patient (δa) to perform
the transmission.

Fasd = ωasdδb; s∈FN , d ∈ CL (22)

Fbsd = ωbsdδb; s∈FN , d ∈ CL (23)

Constraints (22) and (23) calculate the feedback traffic (i.e.
analyzed health data) from primary and secondary PSs placed
at node s to the clinic d , respectively. This is done by consid-
ering the association of patients from clinic to PSs (i.e. ωasd
and ωbsd ) and the provisioned data rate per patient (δb) to
perform the transmission.

Sasd =

∑
i∈CL

ωaisδcδsd ; s∈FN , d ∈ CST (24)
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TABLE 3. Additional variables used for the MILP model.

Sbsd =

∑
i∈CL

ωbisδcδsd ; s∈FN , d ∈ CST (25)

Constraints (24) and (25) calculate the storage traffic (i.e.
analyzed health data) from primary and secondary PSs placed
at node s to cloud storage, d, respectively. This is done by
considering the association of patients from clinic to PSs (i.e.
ωais andωbis) and the provisioned data rate per patient (δc) to
perform the transmission. Note that, as explained above, δsd
is set as a parameter that is equal to 1. Next, the traffic flow
constraints are considered as follows:

∑
j∈Nm[i]:i̸=j

Pasdij −

∑
j∈Nm[i]:i̸=j

Pasdji =


Pasd i fi = s

−Pasd i fi = d

0 otherwise

s ∈ CL, d ∈ FN , i∈N (26)

∑
j∈Nm[i]:i̸=j

Pbsdij −

∑
j∈Nm[i]:i̸=j

Pbsdji =


Pbsd i fi = s

−Pbsd i fi = d

0 otherwise

s ∈ CL, d ∈ FN , i∈N (27)

∑
j∈Nm[i]:i̸=j

Fasdij −

∑
j∈Nm[i]:i̸=j

Fasdji =


Fasd i fi = s

−Fasd i fi = d

0 otherwise

s ∈ FN , d ∈ CL, i∈N (28)

∑
j∈Nm[i]:i̸=j

Fbsdij −

∑
j∈Nm[i]:i̸=j

Fbsdji =


Fbsd i fi = s

−Fbsd i fi = d

0 otherwise

s ∈ FN , d ∈ CL, i∈N (29)

∑
j∈Nm[i]:i̸=j

Sasdij −

∑
j∈Nm[i]:i̸=j

Sasdji =


Sasd i fi = s

−Sasd i fi = d

0 otherwise

s ∈ FN , d ∈ CST , i∈N (30)

∑
j∈Nm[i]:i̸=j

Sbsdij −

∑
j∈Nm[i]:i̸=j

Sbsdji =


Sbsd i fi = s

−Sbsd i fi = d

0 otherwise

s ∈ FN , d ∈ CST , i∈N (31)

Constraints (26) – (31) ensure that the incoming and outgoing
traffic are equal for all network nodes for processing, feed-
back, and storage tasks, respectively. However, this does not
apply to the source and destination nodes. The traffic flowing
through links is governed by the following constraints in our
resilient architecture:∑
s∈CL

∑
d∈FN

Pasdij +

∑
s∈FN

∑
d∈CL

Fasdij +

∑
s∈FN

∑
d∈CST

Sasdij ≥ Laij

i ∈ N , j ∈ Nm [i] (32)∑
s∈CL

∑
d∈FN

Pasdij +

∑
s∈FN

∑
d∈CL

Fasdij +

∑
s∈FN

∑
d∈CST

Sasdij ≤MLaij

i ∈ N , j ∈ Nm [i] (33)∑
s∈CL

∑
d∈FN

Pbsdij +

∑
s∈FN

∑
d∈CL

Fbsdij +

∑
s∈FN

∑
d∈CST

Sbsdij ≥ Lbij

i ∈ N , j ∈ Nm [i] (34)∑
s∈CL

∑
d∈FN

Pbsdij +

∑
s∈FN

∑
d∈CL

Fbsdij +

∑
s∈FN

∑
d∈CST

Sbsdij ≤MLbij

i ∈ N , j ∈ Nm [i] (35)
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Constraints (32) and (33) ensure that Laij = 1 if the incoming
and/or outgoing traffic of primary PSs pass through the link
between nodes i and j; otherwise, the value is zero. Mean-
while, constraints (34) and (35) ensure that Lbi = 1, if
the incoming and/or outgoing traffic of secondary PSs pass
through the link between nodes i and j, otherwise the value is
zero.

Laij + Lbij≤ 1; i∈ND, j ∈ ND (36)

Laij + Lbji≤ 1; i ∈ ND, j ∈ ND (37)

Laji + Lbij≤ 1; i∈ND, j ∈ ND (38)

Constraints (36) - (38) are used to ensure that the incoming
traffic and/or outgoing traffic of the primary and secondary
PSs traverse different links.∑

j∈Nm[i]:i̸=j

Laij ≥ ρai; i ∈ ND (39)

∑
j∈Nm[i]:i̸=j

Laij ≤ Mρai; i ∈ ND (40)

∑
j∈Nm[i]:i̸=j

Lbij ≥ ρbi; i ∈ ND (41)

∑
j∈Nm[i]:i̸=j

Lbij ≤ Mρbi; i ∈ ND (42)

ρai + ρbi≤ 1; i ∈ ND (43)

Constraints (39) and (40) and constraints (41) and (42)
determine the nodes that are used to relay the incoming
and/or outgoing traffic of the primary PSs and secondary
PSs, respectively. Meanwhile, constraint (43) ensures that the
nodes used to relay the incoming and/or outgoing traffic of
primary and secondary PSs are different.

IV. PARAMETER SELECTIONS
In this work, we considered patients with postoperative atrial
fibrillation in the ECG monitoring IoT application. Also,
we consider a setting where each patient transmits their ECG
signal with a duration of 30-second to the network, as sug-
gested in [42]. Note that this 30-second ECG signal needs
high processing capabilities for processing and analysis. The
following subsections describe the methodologies used to
determine the model input parameters utilized in this work.

A. NETWORK LAYOUT
The patients’ locations considered in this work are at the
clinic where they are registered. A total of 37 clinics were
available in West Leeds in 2014/2015 [43]. However, the
complexity of the MILP model rises exponentially with
increase in the number of nodes in the network. Therefore,
a scenario with 16 clinics and 13 LTE BSs in West Leeds is
considered for our case study. We choose the 13 LTE BSs
with the shortest distance between the considered BSs and
clinics. Note that the locations (i.e. latitude and longitude) of
the clinics and BSs are the actual locations in West Leeds,
as explained in [20].

TABLE 4. Number of monitored patients in clinic for ECG IoT monitoring
applications.

As shown in Figure 1, we considered two clusters as a case
study where each clinic can be associated with a maximum
of two nearest BSs in each cluster. For instance, clinic 10
(i.e. light yellow) is associated with one base station (BS) in
cluster 1 and two BSs in cluster 2. Note that the BSs in each
cluster are assigned as follows: We determine the BSs with
the largest distance and set them as the central point for each
cluster. Then we assigned the remaining BSs to the cluster
with the lowest distance. For each cluster, we choose only one
OLT provided by the BTWholesale network [44] that has the
lowest total distance to the BSs in the selected cluster.

B. TOTAL MONITORED PATIENTS FOR ECG IoT
MONITORING APPLICATIONS
In this work, we consider patients that may experience post-
operative atrial fibrillation (AF) in West Leeds, UK as the
respondents, which relates to the total traffic considered in
the network. As explained in detail in [20], 0.176% of the
UK population is considered to have heart surgeries. There-
fore, we used this percentage to estimate the total number
of patients monitored in each clinic [43]. Table 4 shows the
total estimated number of monitored patients logged in every
16 clinics that may experience postoperative AF.

C. LINK CAPACITIES
It is essential to highlight that the link capacities at all layers
(access, metro and core layers) are considered to serve traffic
for all other applications. As in our previous works [20], [25],
[38], in this work, we consider only 0.3% of the maximum
capacities at all layers to be dedicated to healthcare applica-
tions. The detailed calculation of this percentage can be found
in [20], [25], and [38].

D. TIME FOR PROCESSING AND ANALYSIS
In this work, the same 30-second ECG recording signal (i.e.
5 = 252.8 kbits) in [20] is utilized. Each patient sends
their 30-second ECG signals to both primary and secondary
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PSs located at the access layer for processing and analysis.
The correlation between the time to process and analyse the
ECG signal (τp) at the PSs (i.e. primary and secondary PS)
using the Pan-Tompkins algorithm and the number of patients
(Pat) are as obtained from the experiments we conducted
in [20] using MATLAB with parallel processing which is
τp = 0.002Pat + 4.685.

E. PATIENT DATA RATE
In this work, the number of patients allowed to be aided by a
single PS, Pat is limited to investigate the distribution of both
primary and secondary PSs in the network, with increasing
demands. Therefore, from the total patients in the 16 clinics
studied, we only consider 20% of them as the maximum Pat
that can be aided by each server, which is the lowest demand
evaluated in the network. Based on our experimental results
in [20], the size of the analyzed ECGdata after processing and
analysis using the Pan-Tompkins algorithm is 256 bits (α).
This analyzed data is sent to the cloud from the primary PSs
and secondary PSs for permanent storage purposes. However,
cloud storage will only store one copy, and the same concept
is applied to the data sent from the primary and secondary
PSs to the clinic.

The timing restrictions set by the AHA [25] are used to
calculate the network and processing energy consumption.
Hence, 4 minutes (i.e. τ t = 4minutes) is considered as
the maximum duration to save heart patients. The 4 minutes
compris; (i) the duration time to record the ECG signal (i.e.
30 seconds) (τm), (ii) the transmission time to send the
30 seconds ECG signal to primary and secondary PS for
processing task (τmax), (iii) the time to process and analyze
the 30 seconds ECG signal (τp), and (iv) the transmission
time to send analyzed ECG signal for feedback task (τb). The
available time to transmit the recorded 30-second ECG signal
to the primary and secondary PSs(τmax), is determined based
on the processing and analysis time (τp), considering the
maximum patients allowed to be aided by a single PS (Pat)
as well as the transmission time to send the analyzed health
data feedback traffic to the clinics (τb) while considering the
30 seconds of ECG recording (τm) from the patient for τ t
equal 4 minutes.

The feedback time is determined based on the maximum
patients the PSs can aid at each candidate fog node,MaxP and
the minimum shared link capacity between the LTE BS to the
candidate fog node at the access network (i.e. the link from
optical network unit (ONU) to OLT), Cbmin. Thus, MaxP is
given as

MaxP = PatN (44)

where N refers to the maximum PSs allowed per candidate
fog node. The number of PSs at every candidate fog node is
limited by the space available at the fog nodes. Note that the
maximum patients that the PSs can aid at each fog node will
share the minimum link capacity. Therefore, the provisioned
data rate for each patient to transmit their feedback data (i.e.
analyzed health data) to clinics (δf ), is calculated by diving

the minimum link capacity byMaxP as follows:

δf = Cbmin
/
MaxP (45)

It is worth noting that limiting the feedback data rate to the
data rate offered for healthcare applications in GPON links
reduces the number of active BSs, as explained in [20]. Also,
in this study, we consider LTE-M BS utilizing quadrature
phase-shift keying (QPSK) as the modulation technique as
in [20], which gives a single physical resource block (PRB)
equal to 336 bps. We used the same approach in [20] to deter-
mine i) the allocated number of PRBs per patient to transmit
the analyzed feedback data, (Rb) ii) the provisioned data rate
per patient to transmit their analyzed health data for feedback
task (δb) and its transmission time (τb), iii) the remaining
time for each patient to transmit their raw health data to the
PSs (τmax), iv) the allocated number of PRBs per patient to
send their raw health data (Ra), and v) the provisioned data
rate per patient to transmit their raw health data for processing
(δa) and its transmission time (τa). Meanwhile, the data rate
to transmit the analyzed health data storage for permanent
storage for each patient (i.e. from primary and secondary PS
to the cloud storage) was determined by dividing the mini-
mum shared uplink capacity or node capacity from the PS to
the cloud storage that is provisioned by the IoT healthcare
application (Ccmin) and the maximum patients allowed to
be aided by the PSs at every candidate fog node (MaxP) as
below:

δc = Ccmin/MaxP (46)

The time needed to send the analyzed health data storage
traffic from the PSs to the cloud storage is calculated as
in [20].

F. POWER CONSUMPTION OF NETWORKING AND
PROCESSING EQUIPMENT
Asmentioned in Section III-A, for all networking devices and
PSs, the power consumption consists of two part; idle and
linear proportional. The details of the input parameters for all
networking devices and PSs, including their maximum power
consumption, maximumworking capacity and the considered
portion of the idle power attributed to our IoT healthcare
application (x), are as explained in [20].

V. PERFORMANCE EVALUATION
This section discussed the results and the MILP model
analysis for the three scenarios: i) Scenario 1 that consider
protection for the server with no geographical constraints,
ii) Scenario 2 that consider protection for the server with
geographical constraints, and iii) Scenario 3 that consider
protection for both the servers and network with geographical
constraints and link and node disjoint design, respectively.
It is worth to note that, the MILP model is solved using the
AMPL software equipped with CPLEX 12.8 solver that runs
on a high-performance computing cluster (HPC) with 12 core
CPU and 64G RAM. The evaluation is divided into three
steps. For each step, an analysis is carried out to determine
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(i) the optimum locations of the PSs in each scenario, (ii) the
energy consumed by the networking equipment following
MILP optimization, and (iii) the network energy penalty due
to the increased level of resilience. The first step compares the
non-resilient scenario with a resilient scenario 1. Secondly,
it compares the resilient scenario 1 with the resilience sce-
nario 2. Thirdly, it compares the resilient scenario 2 with the
resilient scenario 3. Also, note that the performance of each
scenario is investigated based on the demand level (i.e. the
percentage of the patients considered in the network) and the
number of PSs each candidate fog node can host.

A. SCENARIO 1: PROTECTION FOR SERVERS WITHOUT
GEOGRAPHICAL CONSTRAINTS
In this section, the performance of the non-resilient scenario
is used as a benchmark to evaluate the resilient scenario 1
in terms of both network and processing energy consumption
for ECGmonitoring applications. Table 5 presents the consid-
ered input parameters for ECG monitoring applications for
different numbers of PSs per candidate fog node (N ) when
each PS (i.e. primary and secondary) can serve 20% of the
total patients from all considered clinics. Note that the given
data rate and time to transmit the raw ECG signal to the PSs
for each number of PSs per candidate fog node in Table 5
are identical for all percentages of patients evaluated in the
network (i.e. 20%, 40%, 60%, 80% and 100% of the total
patients in the 16 clinics). This is because the data rate is
given based on the number of PRBs while ensuring the total
data rate provided by the total number of PRBs per patient
is higher than or equal to the minimum data rate required to
ensure the system can work within the 4 minutes. Therefore,
the same number of PRBs is given to each patient under a
different number of PSs per candidate fog node, although
their required minimum data rate is different.

The results in Figure 2 show that the number of PSs for the
resilient scenario 1 is double that of the non-resilient scenario.
This is because the non-resilient scenario only has primary
PSs, while the resilient scenario 1 consists of a secondary
PS for each primary PS for server protection purposes. The
results show that increasing the percentage of patients served
resulted in increasing the number of PSs. For the non-resilient
scenario, at demand levels of 20%, 40%, 60%, 80% and
100%, the number of PSs required to serve all patients are
one, two, three, four and five, respectively. Meanwhile, for
the resilient scenario 1, the number of PSs for each demand
level is double that of the number of PSs for the non-resilient
scenario.

Figure 2 also reveals that the OLT is always selected to
place the PSs since the OLT is the nearest shared location to
the patients (i.e. the OLT is associated with all BSs in each
cluster). Therefore, the total number of PSs needed to serve
the patients and the total number of hops to send the raw ECG
signal to the PSs is reduced. The results in Figure 2-(a) and
Figure 2-(b) show that at a demand level equal to 60% or less,
the PSs are placed at only one cluster. This is because the BSs
can aid all patients in a single cluster. Therefore, the ONU is

TABLE 5. Data rate and related time for different PSs per candidate fog
node, N , for ECG IoT monitoring applications.

chosen to host the PSs that cannot be assigned at the OLT
at the same cluster for the resilient scenario 1 to reduce the
utilization of the networking equipment. In contrast, for the
non-resilient scenario, the PSs are only located at the OLT.

However, when the percentage of patients increased to 80%
and 100%, the BSs, ONUs and OLTs in both clusters are
utilized. For the non-resilient scenario, increasing the demand
level to 80% and 100% has resulted in placing the primary
PSs at the OLT and ONU of different clusters. This is because
the OLT does not have enough capacity to support all of the
traffic. Therefore, the OLT of cluster 2 is employed first,
followed by sending the remaining demands to the ONU of
cluster 1 to reduce the total traffic passing in the network as
patients are connected directly to the ONUs. For the resilient
scenario 1, when the considered demand level is 80%, and
a single candidate fog node can host three PSs, the ONUs
and OLT of cluster 1 are employed first, and the ONU of
cluster 2 is used to serve the remaining demand. This is due to
the same reason, as explained for the non-resilient scenario.
However, increasing the demand level to 100% has led to the
usage of the OLTs of all clusters and only the ONU of one
cluster. The model did not use multiple ONUs to host the PS
to reduce the utilization of the Ethernet switches. When five
PSs per candidate fog node are allowed, the PSs are placed
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FIGURE 2. Optimal location of processing servers for (a) non-resilient scenario and (b) resilient scenario 1.
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FIGURE 2. (Continued.) Optimal location of processing servers for (a) non-resilient scenario and (b) resilient scenario 1.

at both OLTs and one ONU to minimize the number of BSs
utilized, as a BS consumes more energy than an Ethernet
switch.

The results in Figure 3 show that the increase in the rate of
network energy consumption due to the increase in demand
for the resilient scenario 1 is higher than the non-resilient sce-
nario. The results also show that for the resilient scenario 1,
the network energy consumption is always higher than the
non-resilient scenario for all levels of demand allowed to be
served at each candidate fog node and all number of PSs.
This is because, for the resilient scenario 1, the total traffic
traversing the networking equipment is doubled compared
to the non-resilient scenario, hence increasing the energy
consumed by the networking devices in the resilient scenario.
The increase in network energy consumption is one of the key
penalties as a result of having resilience.

Figure 3 also shows that at a demand level equal to or more
than 40%, the network energy consumption of the resilient
scenario 1 reduced significantly when the total PSs allowed at
each candidate fog node increased from three to eight. This is
because allowing more PSs to be hosted at each candidate fog
node has resulted in placing the PSs at their optimal locations
in addition to reducing the number of utilized nodes.

The results in Figure 4 show that the energy penalty
(defined as the difference in energy consumption between the
resilient and the non-resilient cases) increases when the level
of demand rises from 20% to 80%. This is because, at demand
levels of 20% to 80%, the total number of BSs utilized to aid
all patients to transmit their raw ECG signal to the PSs for the
non-resilient scenario is the same. In contrast, for the resilient
scenario 1, the total number of utilized BSs increases with
increase in demand, as shown in Figure 6. The increase in
the number of utilized BSs under the resilient scenario 1 is
because each patient sends two ECG signals to both primary
and secondary PSs, requiring many BSs to aid all patients and
this number increases as the demand increases.

For the non-resilient scenario, each patient only sends one
raw ECG signal to the primary PSs, and the same number

of BSs are used, as they can accommodate the increasing
demand by up to 80%. Nevertheless, at a demand level of
100%, the energy penalty is lower than 80%. This is because
when the demand level is 100%, the number of BSs utilized
for the non-resilient scenario increases, hence increasing
the network energy consumed in the non-resilient scenario.
Figure 4 also shows that increasing the total number of PSs
per candidate fog node can significantly reduce the energy
penalty when the demand is equal to or higher than 40%. This
is due to the reduced number of fog nodes used to host the PSs
for the resilient scenario 1, as shown in Figure 5, where more
PSs are hosted at the same fog node when the number of PSs
allowed at each candidate fog node increases.

The results in Figure 7 reveal that the processing energy
consumption of the resilient scenario 1 is higher than the
non-resilient scenario. This is because the number of utilized
PSs for the resilient scenario 1 is double that of the non-
resilient scenario. The results also show that the processing
energy consumption increases as the demands increase for
both scenarios. This is because increasing the total patients
in the network increases the number of PSs proportionally.
However, the same number of PSs is used in both scenarios
under constraints on the number of PSs per candidate fog
node, as patients are optimally consolidated in the servers.
Also, there is a slight increase in energy consumption for
both scenarios when more PSs are allowed to be hosted at
every candidate fog node. The increase in energy is due to
the increase in utilization time of the PSs to transmit both the
feedback and storage traffic, with the growing number of PSs
per candidate fog node, as shown in Table 5.

B. SCENARIO 2: PROTECTION FOR SERVERS WITH
GEOGRAPHICAL CONSTRAINTS
In this section, the performance of the resilient scenario 1
is used as a benchmark to analyze the energy implications
of the increased level of resilience gained by considering
the geographical constraints, i.e. scenario 2. The energy
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FIGURE 3. Energy consumption of networking equipment for non-resilient scenario and
resilient scenario 1.

FIGURE 4. Percentage energy penalty of networking equipment for resilient scenario 1 compared
to non-resilient scenario.

evaluation is based on both networking and processing energy
consumption.

The results in Figure 8 reveal that the OLT is always used
to host the PSs as in the previous scenarios. The results also
indicate that only one cluster is used to place the PSs when
the percentage of patients is equal to or less than 60%. This is
to reduce the utilization of networking equipment. However,
due to geographical constraints, at least two locations are
required to place the primary and secondary PSs. Therefore,
both OLT and ONU of the same clusters are selected to place
the PSs, separately.

Figure 8 also shows that at a high demand level (i.e. 80%
and 100%), the BSs, ONUs and OLTs from both clusters
are utilized. The results show that at a demand level of 80%
for all PSs per candidate fog node, the ONUs and OLT of
cluster 1 are employed first, and due to the limited number
of resources of the BSs in cluster 1 to serve the patients, the
ONU of cluster 2 is used to serve the remaining demand. This
reduces the amount of traffic traversing the network as ONUs
are connected directly to the patients. The results also show
that, at the demand level of 80%, when the total PSs allowed
at every candidate fog node increases to four, the number of
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FIGURE 5. Number of nodes used to host processing servers for the non-resilient
scenario and the resilient scenario 1.

FIGURE 6. Number of base stations used to send the raw ECG signal for processing and
the analyzed ECG signal for feedback, for non-resilient scenario and resilient scenario 1
under different percentages of patients and number of processing servers per candidate
fog node.

fog nodes used to host the PSs is reduced as more PSs are
hosted at the OLT.

However, increasing the demand level to 100% resulted in
utilizing the OLT and the ONU of both clusters to accom-
modate the growing number of PSs in the network for all
considered PSs per candidate fog node. The results indicate
that allowing more PSs to be hosted at every candidate fog
node does not affect the location to place the PSs, as optimal
locations are selected.

The results in Figure 9 show that at demand levels of 40%,
60%, and 100%, and when the number of available PSs is

three, the networking energy consumption for both scenarios
is the same. This is due to the fact that the same amount of
networking equipment is utilized, where the same number
and location of candidate fog nodes are utilized to host the
PSs, and the same number of BSs are utilized to aid the
patients to transmit their raw ECG signal to the PSs, for both
scenarios, as shown in Figure 10 and Figure 11, respectively.

However, at a demand level of 60% and when four and five
PSs are allowed at every candidate fog node, the network
energy consumption for the resilient scenario 2 is slightly
higher than the resilient scenario 1, although the same number
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FIGURE 7. Energy consumption of processing for non-resilient scenario and resilient
scenario 1.

of BSs and fog nodes are utilized to host the servers for both
scenarios. This is due to the different placement of the PSs in
the network for both scenarios. For the resilient scenario 2,
the location of PSs has resulted in more data traversing the
networking equipment compared to the resilient scenario 1.

Meanwhile, for the other demand levels and for the dif-
ferent numbers of PSs per candidate fog node, the energy
consumed with the resilient scenario 2 is higher than the
resilient scenario 1, as shown in Figure 9. This is because,
considering the geographical constraint increases the total
fog nodes needed to host the PSs, as shown in Figure 10.
Hence, the utilization of the networking equipment under the
resilient scenario 2 increases. This increase in network energy
consumption is the penalty for increasing the resilience level.

Figure 12 shows no energy penalty incurred when the
resilience level is increased to consider geographical con-
straints at demand levels of 40%, 60% and 100%; when
each candidate fog node can serve three PSs. This is due to
the same number of utilized networking equipment in both
scenarios (i.e. fog nodes to host the PSs and BSs to send the
processing traffic). However, at demand levels of 20% and
80%, increasing the resilience level to consider geographical
constraints in resilient scenario 2 has resulted in an energy
penalty. This is because, at these specific demands, more fog
nodes are used to host the PSs for the resilient scenario 2 than
the resilient scenario 1, as shown in Figure 10.

Figure 12 also reveals that the network energy penalty
at a demand level equal to or more than 20% increases
when the total number of PSs allowed at every candidate
fog node increased. The increase in energy penalty is due to
the decreasing number of fog nodes utilized to host the PSs
with a resilient scenario 1, as shown in Figure 10. However,
at demand levels of 20% and 80%, increasing the total number
of PSs per candidate fog node does not significantly impact
the energy penalty. This is due to the same amount of fog
nodes used to host the PSs, and the same number of BSs used

to send the raw ECG signal to the PSs in both scenarios at
this specific demand, as shown in Figure 10 and Figure 11,
respectively.

Figure 12 also reveals that when the total number PSs each
candidate fog node can host is equal to or higher than six,
the energy penalty decreases as the demand increases from
20% to 80%. This is because the same number of BSs are
used in both scenarios to transmit the raw ECG signal to the
PSs, as shown in Figure 11. However, the energy penalty at a
demand level of 100% is higher than 40%, as the utilization
of the fog nodes to host the PSs in the resilient scenario 2 is
doubled compared to the resilient scenario 1, as illustrated in
Figure 10.
The results in Figure 13 reveal that the processing energy

consumed increases with increase in the level of demand for
all number of PSs allowed at every candidate fog node for
both scenarios. This is because increasing the demand level
will proportionally increase the number of PSs. For all PSs
per candidate fog node, equal energy is consumed for both
resilience levels. This is because the same amount of PSs will
be used irrespective of their location since the patients are
optimally consolidated in the servers. Also, there is a slight
increase in the processing energy consumption when the
total allowable PSs per candidate fog node increases. This is
because the time utilized by the PSs to transmit the feedback
and storage traffic increases with the growing number of PSs
allowed at every candidate fog node, as explained previously.

C. SCENARIO 3: PROTECTION FOR SERVERS
CONSIDERING GEOGRAPHICAL CONSTRAINTS AND
NETWORKS WITH LINK AND NODE DISJOINT DESIGNS
In this section, the performance of the resilient scenario 2
is used as a benchmark to evaluate the increased level of
resilience (in disjoint link and node resilience), i.e. scenario 3,
in terms of both networking and processing energy consump-
tion for ECG monitoring applications.
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FIGURE 8. Optimal location of processing servers for resilient scenario 2.

The results in Figure 14 show that the PSs are only placed
at the (optical line terminals) OLTs in both clusters when the
number of PSs allowed at every candidate fog node is higher
than or equal to the total number of primary or secondary PSs
required in the network. This is due to two reasons. The first
is to reduce the number of fog nodes (i.e. Ethernet switches)

used to host the PSs, as the OLTs are the nearest shared
location to all patients. The second is because each cluster is
used to host the same set of PSs. For instance, cluster 1 is used
to host only primary PSs, while cluster 2 is used to host only
secondary PSs. Therefore, when the total PSs allowed at every
candidate fog node is less than the number of primary and
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FIGURE 9. Energy consumption of networking equipment for resilient scenario 1 and
resilient scenario 2.

FIGURE 10. Number of nodes used to host processing servers for resilient scenario 1
and resilient scenario 2.

secondary PSs required, the (optical network units) ONUs
in both clusters are used to host the remaining PSs under
increasing demands.

The results in Figure 15 reveals that the energy consumed
by the networking equipment for both scenarios increases as
the demand level increases regardless of the total numbers
of PSs allowed at every candidate fog node. This is because
of the increasing traffic in the network, which increases the
total utilization of the networking devices in the network.
The results also show that for all levels of demands and for
different numbers of PSs allowed at each candidate fog node,
the energy consumed by the network for the resilient sce-
nario 3 is always higher than the resilient scenario 2 that only

considers geographical constraints. This is due to the high
number of BSs utilized in the resilient scenario 3, as shown
in Figure 16. Note that each base station is connected to only
one OLT in the network. Therefore, considering disjoint links
and nodes for network protection has increased the number
of BSs without maximizing the utilization of their resources
to send the processing traffic to both primary and secondary
PSs.

It is worth noting that the number of fog nodes utilized
to host the PSs at demand levels of 80% and 100% in the
resilient scenario 3 is lower than the resilient scenario 2 when
the number of PSs at every candidate fog node is equal to or
more than four and five, respectively, as shown in Figure 17.
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FIGURE 11. Number of base stations used to send the raw ECG signal for processing and
the analyzed ECG signal for feedback, for the resilient scenario 1 and resilient scenario 2
under different percentages of patients and number of processing servers per candidate
fog node.

FIGURE 12. Percentage energy penalty of networking equipment for the
resilient scenario 2, compared to the resilient scenario 1.

However, as the energy consumed by a single BS is approx-
imately 1.5x higher than the energy consumed by a single
node (i.e. Ethernet switch) to place the PSs, therefore there is
an energy penalty with resilience scenario 3.

The results in Figure 18 reveal that the energy penalty
with the resilience scenario 3 decreases as the demand level
increases from 20% to 60% and 80% to 100%. This is because
the total number of BSs utilized in the resilient scenario 2,
which only consider the geographical constraint, increases
with the increasing demand level considered in the network,
as illustrates in Figure 16. This increases the network energy

consumption for the resilient scenario 2 as the demand levels
increase. However, at a demand level of 60%, the energy
penalty is lower than at a demand level of 80%. This is
because when the demand level is 80%, the number of BSs
utilized for the resilient scenario 3 starts to increase and there-
fore this increases the energy consumption of the networking
equipment of the resilient scenario 3.

Figure 18 also shows that, at demand levels of 80% and
100%, increasing the number of PSs at every candidate fog
node to 4 and 5, respectively, decreases the energy penalty.
This is because the number of fog nodes (i.e. Ethernet
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FIGURE 13. Energy consumption of processing for resilient scenario 1 and resilient
scenario 2.

switches) utilized to place the PSs for the resilient scenario 3
reduces while the same number of nodes are used for the
resilient scenario 2 that only considers geographical con-
straints, as shown in Figure 17.

The results in Figure 19 reveal that the energy consumed
by the processing for both scenarios increases with increase
in the demand level. This is because of the increased num-
ber of utilized PSs in the network, as explained previously.
Figure 19 also shows that increasing the resilience level
does not increase the processing energy consumption. Also,
the energy consumption of processing has slightly increased
when a single candidate fog node can host more PSs. The
same energy usage for processing in both scenarios, and the
increase in energy for processing in both scenarios, with
the increased number of PSs at each candidate fog node,
is due to the same reasons as explained previously.

VI. HEURISTIC MODELS
The complexity of MILP models and therefore the run-
ning time grows exponentially with the size of the problem
(number of nodes in the network). This makes MILP mod-
els unsuitable for providing real time solutions. Therefore,
we develop heuristic algorithms that can provide solutions
in real time. This section presents the heuristic algorithms
developed using MATLAB for the three resilient scenarios.
Note that the heuristics are independent of the MILP and
hence act to validate the MILP models and their results. The
flow charts and detailed explanation of each heuristic are also
provided in this section.

A. ENERGY OPTIMIZED RESILIENT INFRASTRUCTURE FOG
COMPUTING WITHOUT GEOGRAPHICAL CONSTRAINTS
(EORIWG) HEURISTIC
The EORIWG heuristic is designed to determine three main
items as follow; i) the BSs to aid patients in transmitting raw

health data, ii) the BSs to aid patients in receiving feedback
analyzed health data, and iii) the fog nodes to host the primary
and secondary PSs at the access network; with the aim of
minimizing the total energy consumed by the networking
and processing equipment. The details pseudo code of the
developed EORIGW heuristic is shown in Figure 20.

The inputs of the EORIWG heuristic are the number of
patients, the number of PSs and the number of BSs while
the outputs are the BS to transmit raw health data, the BSs
to receive feedback data, the number of PS used, the location
of PS used and total energy consumption. The heuristic starts
by grouping the clinics while considering the number of BSs
in cluster 1 the clinics can connect to and sorts the groups
in ascending order. For each group, the clinics are sorted
according to the total number of BSs in both clusters the clinic
can connect to, in ascending order. The heuristic allocates
first the clinic with the least number of connections to the
BSs in cluster 1 and the least number of connections to all BSs
in both clusters, to help in reducing the utilization of OLTs.
Also, it ensures that all clinics are assigned to BSs.

The steps to assign the clinic patients to a BS are as follows:
First, the heuristic sorts the BSs attached to the clinic under
consideration, beginning with BSs with available resources
that are formerly utilized by the healthcare application. These
BSs are then arranged in ascending order according to the
number of clinics the BS can aid, followed by the unutilized
BSs in cluster 1 in descending order and followed by the
unutilized BSs in cluster 2 also in descending order. Sorting
the activated BSs in ascending order is used to minimize the
total utilization of the BSs. Meanwhile, sorting the unutilized
BSs in descending order in cluster 1 followed by the unuti-
lized BSs in cluster 2 ensures that choices are left open until
late in the allocation process while minimizing the number of
utilized OLTs. Next, the patients under the considered clinic
are merged into the minimum number of BSs to minimize the
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FIGURE 14. Optimal location of processing servers for the resilient scenario 3.

total number of BSs utilized for the healthcare application.
Note that, for each patient, the heuristic assigned double
resources to clinics to send their health data to both primary
and secondary PSs.

The heuristic then calculates the total number of primary
PSs and secondary PSs needed to aid all patients. Also,

it determines the total number of fog nodes required to host
the PSs. Note that, in this heuristic, the OLTs and the ONUs
co-located at the BSs selected to aid the patients are used
as the candidate fog nodes that can host the PSs. Next, the
heuristic determines the combination of candidate fog nodes
to host the primary and secondary PSs with minimum energy
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FIGURE 15. Energy consumption of networking equipment for the resilient scenario 2 and
for the resilient scenario 3.

FIGURE 16. Number of base stations used to transmit the raw ECG data for processing
and the analyzed ECG data for feedback, for the resilient scenario 2; and for the
resilient scenario 3 under different percentages of patients and number of processing
servers per candidate fog node.

consumption considering the minimum number of fog nodes
needed to aid all patients (i.e. based on the total PSs allowed
at every candidate fog node). Limiting the number of fog
nodes to host the primary PSs and secondary PSs reduces the
number of utilized Ethernet switches to host the PSs.

The energy consumption resulting from placing the pri-
mary and secondary PSs at the selected combination of
candidate fog nodes is determined by transmitting the traffic
of the raw health data from BSs (i.e. starting with the BS
serving the highest number of patients) to the nearest fog
node with available processing capacity; for the combination
of the considered candidate fog nodes with minimum hop
routing.

Next, the heuristic chooses the BSs to transmit the feed-
back traffic (i.e. analyzed health data traffic) from the
considered combination of fog nodes to the clinic, using
the samemethods employed to choose the BSs to transmit the
raw health data traffic. However, note that different BSs may
be used to transmit the raw and feedback health data traffic.
The difference is because the raw health data size is bigger
than the analyzed data for feedback.

The combination of fog nodes to be used to host the
primary and secondary PSs to aid all patients (based on
the minimum number of fog nodes) with minimum energy
consumption is chosen. Then, the heuristic increases the
number of candidate fog nodes to host both primary and
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FIGURE 17. Number of nodes used to host the processing servers for the resilient
scenario 2; and for the resilient scenario 3.

FIGURE 18. Percentage energy penalty of networking equipment for the resilient
scenario 3 compared to the resilient scenario 2.

secondary PSs and performs the same process above. Sup-
pose low energy is consumed with this combination of fog
nodes compared to the energy consumed considering the
combination of fog nodes with minimum fog node to host
PSs. In that case, the heuristic attempts placing PSs in more
candidate fog nodes. Else, the combination of fog nodes with
the minimum number of fog nodes needed to host PSs is
chosen to place PSs.

B. ENERGY OPTIMIZED RESILIENT INFRASTRUCTURE FOG
COMPUTING WITH GEOGRAPHICAL CONSTRAINTS
(EORIG) HEURISTIC
As in the EORIWG heuristic, the EORIG heuristic is
designed to determine the three main items listed above

to minimize the networking and processing energy while
ensuring the primary and secondary PSs are node disjoint
(geographical constraints). Below is the list of the changes
made for the EORIG heuristic compared to the EORIGW
heuristic:
1. The number of fog nodes needed to host PSs is determined

considering the maximum number of fog nodes where
the primary and secondary PSs are placed in disjoint
nodes.

2. Assigning patients from BSs to the primary PSs is done
first, and the fog nodes used to place the primary PSs
are removed from the combination of fog nodes before
assigning the same patients from the BSs to the secondary
PSs.
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FIGURE 19. Energy consumption of processing for the resilient scenario 2; and the energy
consumption of the resilient scenario 3.

C. ENERGY OPTIMIZED RESILIENT INFRASTRUCTURE FOG
COMPUTING WITH GEOGRAPHICAL CONSTRAINTS AND
LINK AND NOD DISJOINT DESIGN (EORIGN) HEURISTIC
As in the previous heuristics, the EORIGN heuristic is
designed to determine the three main items mentioned above
to minimize both the networking and processing energy
while ensuring server protection with geographical con-
straints and network protection with link and nodes disjoints.
The details pseudo code of the EORIGNheuristic is presented
in Figure 21 where the inputs of the heuristic are the number
of patients, the number of PSs and the number of BSs while
the outputs are the BS to transmit raw health data, the BSs to
receive feedback data, the number of PS used, the location of
PS used and total energy consumption.

In the EORIGN heuristic, the selection of the locations to
host the primary and secondary PSs are made separately to
ensure that the traffic to the primary and secondary PS are
routed separately (link and node disjoint). In this process, the
heuristic begins by selecting a cluster to assign the patients in
the clinics to the primary PS. The heuristic groups the clinics
considering the number of BSs in the chosen cluster that the
clinic can connect to and sorts the groups in ascending order.
Then for each group, the clinics are arranged in ascending
order according to the number of patients the clinic serves.
The heuristic allocates first the clinic with the least number
of connections to the BSs in the selected cluster and the least
number of patients it serves, to the BSs to ensure each clinic
can be served by at least one BS and help in packing the
BSs. Note that packing is optimum for devices with high idle
power consumption.

The assignment of the clinic patients to a BS are is carried
out as follows: The heuristic sorts the BSs in the chosen
cluster that has a connection to the considered clinic, begin-
ning with the BSs with available resources and are formerly

utilized by the healthcare application. These BSs are arranged
in ascending order based on the total number of clinics the BS
can aid, followed by the unutilized BSs in the chosen cluster
in descending order. The reason for sorting the activated BSs
and the unutilized BS in the selected cluster in ascending
and descending order, respectively, are as explained for the
EORIGW heuristic. Then, the considered clinic patients are
merged into the minimum number of BSs so that the total
number of utilized BSs for the healthcare application is
reduced.

Next, the heuristic determines the number of primary PSs
needed to aid all patients, as well as the number of fog nodes
to host them. As in the previous heuristics, the candidate fog
nodes to be used to host the PSs are the OLT of the chosen
cluster and the ONUs associated with the BSs chosen to aid
the patients. Then, the heuristic selects the combination of
candidate fog nodes to host the primary PSs with minimum
energy consumption considering the minimum number of
fog nodes needed to host the primary PSs to aid all patients
(i.e. based on the total PSs allowed per candidate fog node).
Limiting the number of fog nodes utilized to host the primary
PSs is due to the same reason as explained for EORIWG
heuristic. The energy consumption due to hosting PSs at a
combination of candidate fog nodes in the selected cluster is
calculated as explained for the EORIWG heuristic.

Next, the heuristic chooses the BSs to transmit the feed-
back traffic (i.e. analyzed health data traffic) from the
considered combination of fog nodes to the clinic using the
same methods to choose the BSs to transmit the raw health
data traffic. Note that different BSsmay be utilized to transmit
raw and feedback health data traffic due to the same reason
as explained for the EORIWG heuristic. The combination
of fog nodes needed to host primary PSs to aid all patients
that result in minimum energy consumption is chosen. As in
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FIGURE 20. Pseudo code of EORIWG heuristic.

the EORIWG heuristic, the heuristic increases the number
of candidate fog nodes utilized to host PSs. The selection of
candidate fog node to host PSs is as explained in EORIWG
heuristic.

Next, the EORIGN heuristic removes the links and nodes
used to send the traffic to or from primary processing servers
and selects another cluster to assign patients in the clinics to
the secondary processing servers. Different clusters are used
to host the primary PSs and secondary PSs, which is due to
the link and node disjoint resilience mandated for network
protection. The same process is used to allocate patients to
the BSs to transmit raw health data and receive analyzed
feedback health data. It is also used to select locations to host
the secondary PSs and determine the optimal place to host the
secondary processing server.

VII. RESULTS AND ANALYSIS OF THE HEURISTIC
MODELS
This section evaluates the performance of the developed
heuristics for server protection, the EORIWG heuristic and
EORIG heuristics, and the heuristic for server and network

FIGURE 21. Pseudo code of EORIGN heuristic.

protection, the EORIGN heuristic. We compare the heuris-
tic results to the MILP results in terms of networking and
processing energy consumption. Note that the heuristics are
simple and run fast (few seconds) on a PC with a 3.2 GHz
CPU and 16 GB RAM. This is in contrast to the MILP which
took few hours in each case to run in the high-performance
computing cluster (HPC) with 12 core CPU and 64G RAM,
mentioned in section V.

A. ENERGY OPTIMIZED RESILIENT INFRASTRUCTURE FOG
COMPUTING WITHOUT GEOGRAPHICAL CONSTRAINTS
(EORIWG) HEURISTIC
Figure 22 reveals that the total energy consumption in the
EORIWG heuristic is equal to that of the MILP model (i.e.
resilient scenario 1) when the demand levels are 20% and
40% for all PSs per candidate fog node. The same energy
is due to the ability to use the minimum number of primary
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FIGURE 22. Total energy consumption of networking and processing equipment for the
MILP model and the EORIWG heuristic with different percentages of total number of
patients for different number of processing servers per candidate fog node.

FIGURE 23. Number of base stations used to serve the processing and feedback tasks
for the MILP model and the EORIWG heuristic with different percentages of total
number of patients for different number of processing servers per candidate fog node.

and secondary PSs and the minimum number of fog nodes to
host the PSs that are built into the EORIWG heuristic while
assigning the patients from clinics to the PSs.

Figure 22 also reveals that the total energy consumed in
the EORIWG heuristic is higher than the MILP model with
an average of 0.17%, 0.42% and 0.44%, at demand levels
of 60%, 80% and 100%, respectively. The higher energy
consumed by the EORIWG heuristic is because at demand
levels of 60% and 100%, increasing the total patients has
resulted in utilizing more BSs to transmit the raw ECG data to
the PSs, as shown in Figure 23. In the EORIGW heuristic, all

BSs in cluster 1 are utilized. Due to the different connections
of each clinic to the BSs, the utilization of the resources in
the selected BSs is not maximized. Therefore, the BSs in
cluster 2 are also used to serve the patients from the remaining
clinics.

Also, at demand levels of 80% and 100%, the number
of BSs utilized in the EORIGW heuristic to send the feed-
back traffic is higher than in the MILP model, as illustrated
in Figure 23. Hence more networking equipment energy is
consumed in the EORIWG heuristic compared to the MILP
model. It is worth noting that increasing the number of
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FIGURE 24. Total energy consumption of both networking equipment and processing for the
MILP model and the EORIG heuristic with different percentage of patients for different number of
processing servers per candidate fog node.

FIGURE 25. Number of base stations used to serve the processing and feedback tasks for
the MILP model and the EORIG heuristic with different percentage of patients, for different
number of processing servers per candidate fog node.

utilized BSs to transmit the processing traffic results in higher
impact on the network energy consumption than the growing
number of BSs utilized to transmit the feedback traffic. Also,
in the EORIWG heuristic, the total number of fog nodes used
to host the PSs is equal to the minimum number of nodes
required to host the primary and secondary PSs. Therefore,
due to the restricted number of fog nodes to host the PSs, the
CAS is activated in the EORIWG heuristic to transmit the
ECG signal to the PSs located at different clusters when
the demand levels increase to 60% or are more than 60%.

The utilization of the CAS has increased the network energy
consumption in the EORIWG heuristic.

B. ENERGY OPTIMIZED RESILIENT INFRASTRUCTURE FOG
COMPUTING WITH GEOGRAPHICAL CONSTRAINTS
(EORIG) HEURISTIC
The results in Figure 24 reveal that the total energy con-
sumption of the EORIG heuristic is equal to that produced
optimally by the MILP model (i.e. resilient scenario 2) at
demand levels of 20% and 40% for all PSs allowed at each
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FIGURE 26. Total energy consumption of networking equipment and processing for the MILP
model and the EORIGN heuristic with different percentages of the total number of patients
for different number of processing servers per candidate fog node.

FIGURE 27. Number of base stations used to serve the processing and feedback tasks
for the MILP model and the EORIGN heuristic with different percentages of the total
number of patients for different number of processing servers per candidate fog node.

candidate fog node. This is mainly due to the ability to utilize
the minimum number of primary and secondary PSs and the
minimum number of fog nodes to host the PSs that are built
in the EORIG heuristic while assigning the patients to the
PSs. Also, as the size of demand is small, the total utilized
networking equipment in both the EORIG heuristic andMILP
model is the same.

Figure 24 also reveals that the total energy consumed
in the EORIG heuristic is higher than the MILP optimiza-
tion model with an average increase of 0.17%, 0.39% and
0.39% when the demand levels are 60%, 80% and 100%,

respectively. The higher energy consumption of the EORIG
heuristic at demand levels of 60% and 100% is due to the
higher number of BSs utilized to send the processing and
feedback traffic, as shown in Figure 25. Note that the BSs
in cluster 1 and cluster 2 are used to serve the process-
ing traffic due to the limitation of the connection between
the clinics and the BSs. Also, at 80% and 100% of the
maximum demand level, the higher energy consumption of
the EORIG heuristic is because of the utilization of the
CAS to relay the processing traffic between the clusters to
the PSs.
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TABLE 6. Summary of the finding for three sceanrios.

C. ENERGY OPTIMIZED RESILIENT INFRASTRUCTURE FOG
COMPUTING WITH GEOGRAPHICAL CONSTRAINTS AND
LINK AND NODE DISJOINTS (EORIGN) HEURISTIC
The results in Figure 26 reveal that the total energy consumed
in the EORGN heuristic is equal to the energy consumption
reported by the MILP optimization model (i.e. resilient sce-
nario 3) at demand levels of 20%, 40%, 60%, and 80% for
all PSs per candidate fog node. The same energy is due to
the same number of utilized networking devices and PSs in
both models. Figure 26 also shows that, at a demand level of
100%, the total energy consumed by the EORIGN heuristic
is slightly higher than the MILP model with an average
difference of about 0.1%. This is due to the limited number of
connections between the BSs and the clinics in each cluster.
Therefore, more BSs are utilized in the EORIGN heuristic,
as illustrated in Figure 27, to serve the processing traffic
without maximizing the utilization of its resources.

VIII. CONCLUSION
This work has optimized the placement of processing servers
so as to minimize the impact of increasing the resilience level
on the energy consumption of networking and processing
equipment when serving fog-based IoT health monitoring
applications. Three resilience scenarios were considered in
this work. The first two scenarios, scenario 1 and scenario 2,
focus on server protection while considering the geographic
locations of servers. In contrast, the third scenario, scenario 3,
considers server and network protection with geographical
constraints and link and node disjoint design, respectively.

The results show that considering a resilience scenario
with no geographical constraints, scenario 1 has increased the
energy consumed by the networking and processing equip-
ment compared to the non-resilient scenario. This is primarily
due to the high number of utilized networking equipment

and PSs as adding resilience resulted in doubling the level
of traffic resulting from sending the data to the primary and
secondary PSs. Meanwhile, increasing the resilience level
while considering geographical constraints, scenario 2 has led
to a high energy penalty at low demand. This is due to the high
utilization of the fog nodes to host the PSs under geographic
constraints. However, increasing the resilience level does not
contribute to an energy penalty when the demand level rises
from 40% to 100%, and this depends on the number of
PSs that can be hosted at every candidate fog node. Also,
increasing the total number of PSs per candidate fog node
at a demand level of more than 20%, can either decrease
or increase the energy penalty. The increase in the energy
penalty is because of the reduced number of fog nodes needed
to host the PSs in the resilient scenario, with no geographical
constraints. On the other hand, the decrease in the energy
penalty is because of the reduction in the number of fog
nodes needed to host the PSs in the resilient scenario 2, with
geographical constraints. However, the energy penalty due
to considering geographical constraints at a demand level of
more than 20% is less than 7%. The results also reveal that
the processing energy consumption in both resilient scenarios
is equal for all PSs per candidate fog node. This is because
the total number of PSs used in both scenarios are the same,
as the patients were optimally consolidated in the processing
servers. Increasing the level of resilience by considering geo-
graphical constraints for server protection; and link and node
disjoint resilience for network protection, scenario 3, gives
the same energy consumption of processing while increasing
the network energy consumption. The results indicate that
considering additional disjoint link and node resilience at
high demands has resulted in a low network energy penalty.
This is because, in any case, a large part of the network
is activated due to the high demands. Also, increasing the
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number of PSs allowed at each candidate fog node, can reduce
the network’s energy penalty at high demand levels. Table 6
shows summarizes the finding of the three scenarios.

We also developed a heuristic for each scenario; EORIWG,
EORIG and EORIGN for the scenarios with no geographical
constraints, with geographical constraint and with geographi-
cal and link and node disjoint, respectively. The results reveal
that the performance of the heuristic algorithms approaches
the optimum performance obtained through the use of the
MILP models. In our upcoming research endeavors, we aim
to expand our current work to consider the embedding for
multiple healthcare applications. Additionally, we intend to
enhance energy efficiency of both networking equipment
and processing by allowing one network slice to share the
processing and networking infrastructure with other network
slice for protection. We aim to develop a MILP model for
resilient energy efficient health applications embedding.

ACKNOWLEDGMENT
All data is provided in the results section of this article.

REFERENCES
[1] J. M. H. Elmirghani, T. Klein, K. Hinton, L. Nonde, A. Q. Lawey,

T. E. H. El-Gorashi, M. O. I. Musa, and X. Dong, ‘‘GreenTouch Green-
Meter core network energy-efficiency improvement measures and opti-
mization,’’ J. Opt. Commun. Netw., vol. 10, no. 2, pp. A250–A269,
Feb. 2018, doi: 10.1364/JOCN.10.00A250.

[2] M. O. I. Musa, T. E. H. El-Gorashi, and J. M. H. Elmirghani,
‘‘Bounds on GreenTouch GreenMeter network energy efficiency,’’
J. Lightw. Technol., vol. 36, no. 23, pp. 5395–5405, Dec. 2018, doi:
10.1109/JLT.2018.2871602.

[3] A.M.Al-Salim, A. Q. Lawey, T. E. H. El-Gorashi, and J.M. H. Elmirghani,
‘‘Energy efficient big data networks: Impact of volume and variety,’’ IEEE
Trans. Netw. Service Manage., vol. 15, no. 1, pp. 458–474, Mar. 2018, doi:
10.1109/TNSM.2017.2787624.

[4] M. Musa, T. Elgorashi, and J. Elmirghani, ‘‘Bounds for energy-
efficient survivable IP over WDMnetworks with network coding,’’ J.
Opt. Commun. Netw., vol. 10, no. 5, pp. 471–481, May 2018, doi:
10.1364/JOCN.10.000471.

[5] A. M. Al-Salim, T. E. H. El-Gorashi, A. Q. Lawey, and
J. M. H. Elmirghani, ‘‘Greening big data networks: Velocity impact,’’
IET Optoelectronics, vol. 12, no. 3, pp. 126–135, Jun. 2018, doi:
10.1049/iet-opt.2016.0165.

[6] A. N. Al-Quzweeni, A. Q. Lawey, T. E. H. Elgorashi, and
J. M. H. Elmirghani, ‘‘Optimized energy aware 5G network function
virtualization,’’ IEEE Access, vol. 7, pp. 44939–44958, 2019, doi:
10.1109/ACCESS.2019.2907798.

[7] M. S. Hadi, A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani,
‘‘Big data analytics for wireless and wired network design: A
survey,’’ Comput. Netw., vol. 132, pp. 180–199, Feb. 2018, doi:
10.1016/j.comnet.2018.01.016.

[8] X. Dong, A. Lawey, T. E. H. El-Gorashi, and J.M.H. Elmirghani, ‘‘Energy-
efficient core networks,’’ in Proc. 16th Int. Conf. Opt. Netw. Design
Modelling (ONDM), 2012, pp. 1–9, doi: 10.1109/ONDM.2012.6210196.

[9] X. Dong, T. El-Gorashi, and J. M. H. Elmirghani, ‘‘Green IP over
WDM networks with data centers,’’ J. Lightw. Technol., vol. 29, no. 12,
pp. 1861–1880, Jun. 2011, doi: 10.1109/JLT.2011.2148093.

[10] H. M. M. Ali, T. E. H. El-Gorashi, A. Q. Lawey, and J. M. H. Elmirghani,
‘‘Future energy efficient data centers with disaggregated servers,’’ J.
Lightw. Technol., vol. 35, no. 24, pp. 5361–5380, Dec. 2017, doi:
10.1109/JLT.2017.2767574.

[11] L. Nonde, T. E. H. El-Gorashi, and J. M. H. Elmirghani, ‘‘Energy effi-
cient virtual network embedding for cloud networks,’’ J. Lightw. Technol.,
vol. 33, no. 9, pp. 1828–1849, May 2015, doi: 10.1109/JLT.2014.2380777.

[12] A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani, ‘‘BitTorrent
content distribution in optical networks,’’ J. Lightw. Technol., vol. 32,
no. 21, pp. 4209–4225, Nov. 2014, doi: 10.1109/JLT.2014.2351074.

[13] N. I. Osman, T. El-Gorashi, L. Krug, and J. M. H. Elmirghani, ‘‘Energy-
efficient future high-definition TV,’’ J. Lightw. Technol., vol. 32, no. 13,
pp. 2364–2381, Jul. 2014, doi: 10.1109/JLT.2014.2324634.

[14] X. Dong, T. E. H. El-Gorashi, and J.M. H. Elmirghani, ‘‘On the energy effi-
ciency of physical topology design for IP overWDM networks,’’ J. Lightw.
Technol., vol. 30, no. 12, pp. 1931–1942, Jun. 2012. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=jlt-30-11-1694

[15] X. Dong, T. El-Gorashi, and J. M. H. Elmirghani, ‘‘IP overWDMnetworks
employing renewable energy sources,’’ J. Lightw. Technol., vol. 29, no. 1,
pp. 3–14, Jan. 2011, doi: 10.1109/JLT.2010.2086434.

[16] M. Musa, T. Elgorashi, and J. Elmirghani, ‘‘Energy efficient survivable
IP-over-WDM networks with network coding,’’ J. Opt. Commun. Netw.,
vol. 9, no. 3, pp. 207–217, Mar. 2017.

[17] Z. T. Al-Azez, A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani,
‘‘Energy efficient IoT virtualization framework with peer to peer network-
ing and processing,’’ IEEE Access, vol. 7, pp. 50697–50709, 2019, doi:
10.1109/ACCESS.2019.2911117.

[18] B. G. Bathula, M. Alresheedi, and J. M. H. Elmirghani, ‘‘Energy effi-
cient architectures for optical networks,’’ in Proc. IEEE London Commun.
Symp., London, U.K., Sep. 2009, pp. 5–8, doi: 10.1117/12.852292.

[19] B. G. Bathula and J. M. H. Elmirghani, ‘‘Energy efficient optical
burst switched (OBS) networks,’’ in Proc. IEEE Globecom Workshops,
Nov. 2009, pp. 1–6, doi: 10.1109/GLOCOMW.2009.5360734.

[20] I. S. B. M. Isa, T. E. H. El-Gorashi, M. O. I. Musa, and
J. M. H. Elmirghani, ‘‘Energy efficient fog-based healthcare monitoring
infrastructure,’’ IEEE Access, vol. 8, pp. 197828–197852, 2020, doi:
10.1109/ACCESS.2020.3033555.

[21] A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani, ‘‘Distributed
energy efficient clouds over core networks,’’ J. Lightw. Technol., vol. 32,
no. 7, pp. 1261–1281, Apr. 2014, doi: 10.1109/JLT.2014.2301450.

[22] M. S. Hadi, A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani,
‘‘Patient-centric cellular networks optimization using big data analytics,’’
IEEE Access, vol. 7, pp. 49279–49296, 2019.

[23] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, ‘‘Fog
computing may help to save energy in cloud computing,’’ IEEE J.
Sel. Areas Commun., vol. 34, no. 5, pp. 1728–1739, May 2016, doi:
10.1109/JSAC.2016.2545559.

[24] F. Jalali, A. Vishwanath, J. De Hoog, and F. Suits, ‘‘Interconnecting
Fog computing and microgrids for greening IoT,’’ in Proc. IEEE PES
Innov. Smart Grid Technol. Conf. Eur., Nov. 2016, pp. 693–698, doi:
10.1109/ISGT-Asia.2016.7796469.

[25] I. S. M. Isa, M. O. I. Musa, T. E. H. El-Gorashi, A. Q. Lawey, and
J. M. H. Elmirghani, ‘‘Energy efficiency of fog computing health monitor-
ing applications,’’ inProc. 20th Int. Conf. Transparent Opt. Netw. (ICTON),
Jul. 2018, pp. 1–5, doi: 10.1109/ICTON.2018.8473698.

[26] F. M. R. Junior and C. A. Kamienski, ‘‘A survey on trustworthiness for
the Internet of Things,’’ IEEE Access, vol. 9, pp. 42493–42514, 2021, doi:
10.1109/ACCESS.2021.3066457.

[27] V. Prokhorenko and M. Ali Babar, ‘‘Architectural resilience in cloud, fog
and edge systems: A survey,’’ IEEEAccess, vol. 8, pp. 28078–28095, 2020,
doi: 10.1109/ACCESS.2020.2971007.

[28] C. Colman-Meixner, C. Develder,M. Tornatore, and B.Mukherjee, ‘‘A sur-
vey on resiliency techniques in cloud computing infrastructures and
applications,’’ IEEECommun. Surveys Tuts., vol. 18, no. 3, pp. 2244–2281,
3rd Quart., 2016, doi: 10.1109/COMST.2016.2531104.

[29] R. S. Couto, S. Secci, M. E. M. Campista, and L. H. M. K. Costa,
‘‘Server placement with shared backups for disaster-resilient
clouds,’’ Comput. Netw., vol. 93, pp. 423–434, Dec. 2015, doi:
10.1016/j.comnet.2015.09.039.

[30] C. Develder, J. Buysse, B. Dhoedt, and B. Jaumard, ‘‘Joint dimensioning
of server and network infrastructure for resilient optical grids/clouds,’’
IEEE/ACM Trans. Netw., vol. 22, no. 5, pp. 1591–1606, Oct. 2014, doi:
10.1109/TNET.2013.2283924.

[31] D. M. Senejohnny, S. Sundaram, C. De Persis, and P. Tesi, ‘‘Resilience
against misbehaving nodes in asynchronous networks,’’ Automatica,
vol. 104, pp. 26–33, Jun. 2019, doi: 10.1016/j.automatica.2019.02.035.

[32] A. Modarresi and J. P. G. Sterbenz, ‘‘Toward resilient networks with fog
computing,’’ in Proc. 9th Int. Workshop Resilient Netw. Design Modeling
(RNDM), 2017, pp. 1–7.

[33] D. P. Abreu, K. Velasquez, L. Paquete, M. Curado, and E. Monteiro,
‘‘Resilient service chains through smart replication,’’ IEEE Access, vol. 8,
pp. 187021–187036, 2020, doi: 10.1109/ACCESS.2020.3030537.

48938 VOLUME 12, 2024

http://dx.doi.org/10.1364/JOCN.10.00A250
http://dx.doi.org/10.1109/JLT.2018.2871602
http://dx.doi.org/10.1109/TNSM.2017.2787624
http://dx.doi.org/10.1364/JOCN.10.000471
http://dx.doi.org/10.1049/iet-opt.2016.0165
http://dx.doi.org/10.1109/ACCESS.2019.2907798
http://dx.doi.org/10.1016/j.comnet.2018.01.016
http://dx.doi.org/10.1109/ONDM.2012.6210196
http://dx.doi.org/10.1109/JLT.2011.2148093
http://dx.doi.org/10.1109/JLT.2017.2767574
http://dx.doi.org/10.1109/JLT.2014.2380777
http://dx.doi.org/10.1109/JLT.2014.2351074
http://dx.doi.org/10.1109/JLT.2014.2324634
http://dx.doi.org/10.1109/JLT.2010.2086434
http://dx.doi.org/10.1109/ACCESS.2019.2911117
http://dx.doi.org/10.1117/12.852292
http://dx.doi.org/10.1109/GLOCOMW.2009.5360734
http://dx.doi.org/10.1109/ACCESS.2020.3033555
http://dx.doi.org/10.1109/JLT.2014.2301450
http://dx.doi.org/10.1109/JSAC.2016.2545559
http://dx.doi.org/10.1109/ISGT-Asia.2016.7796469
http://dx.doi.org/10.1109/ICTON.2018.8473698
http://dx.doi.org/10.1109/ACCESS.2021.3066457
http://dx.doi.org/10.1109/ACCESS.2020.2971007
http://dx.doi.org/10.1109/COMST.2016.2531104
http://dx.doi.org/10.1016/j.comnet.2015.09.039
http://dx.doi.org/10.1109/TNET.2013.2283924
http://dx.doi.org/10.1016/j.automatica.2019.02.035
http://dx.doi.org/10.1109/ACCESS.2020.3030537


I. S. M. Isa et al.: Resilient Energy Efficient IoT Infrastructure With Server and Network Protection

[34] M. A. Madani, F. Zhou, and A. Meddahi, ‘‘Deploying disaster-resilient
service function chains using adaptive multi-path routing,’’ in Proc. 19th
Int. Conf. Netw. Service Manage. (CNSM), Oct. 2023, pp. 1–5, doi:
10.23919/cnsm59352.2023.10327915.

[35] M.Whaiduzzaman, A. Barros, A. R. Shovon, M. R. Hossain, and C. Fidge,
‘‘A resilient fog-IoT framework for seamless microservice execution,’’ in
Proc. IEEE Int. Conf. Services Comput. (SCC), Sep. 2021, pp. 213–221,
doi: 10.1109/SCC53864.2021.00034.

[36] A. Matange, V. Taneja, A. Chaumal, P. Buwa, and J. Abraham,
‘‘Resilient fog-based adaptive traffic,’’ in Proc. 14th Int. Conf. Comput.
Commun. Netw. Technol., 2023, pp. 1–7, doi: 10.1109/ICCCNT56998.
2023.10306713.

[37] X.Masip-Bruin, S. Sanchez-Lopez, A. Jurnet, E. Marin-Tordera, A. Jukan,
and G. J. Ren, ‘‘Towards a resilient control architecture for combined fog-
to-cloud systems,’’ in Proc. IEEE 8th Int. Conf. Cloud Netw. CloudNet,
Nov. 2019, pp. 3–6, doi: 10.1109/CloudNet47604.2019.9064116.

[38] I. S. M. Isa, M. O. I. Musa, T. E. H. El-Gorashi, and J. M. H. Elmirghani,
‘‘Energy efficient and resilient infrastructure for fog computing health
monitoring applications,’’ in Proc. Int. Conf. Transparent Opt. Netw.,
Jul. 2019, pp. 1–5, doi: 10.1109/ICTON.2019.8840438.

[39] I. Kantor, J.-L. Robineau, H. Bütün, and F. Maréchal, ‘‘A mixed-integer
linear programming formulation for optimizing multi-scale material and
energy integration,’’ Frontiers Energy Res., vol. 8, p. 49, Apr. 2020, doi:
10.3389/fenrg.2020.00049.

[40] I. S. B. M. Isa. (Oct. 2019). Energy Efficient and Resilient Inter-
net of Things Networks. [Online]. Available: http://etheses.whiterose.
ac.uk/26627/

[41] B. Vault. (2021). U.K. Datacentres. [Online]. Available: https://www.
backupvault.co.uk/uk-datacentres/

[42] N. Lowres, S. B. Freedman, R. Gallagher, A. Kirkness, D. Marshman,
J. Orchard, and L. Neubeck, ‘‘Identifying postoperative atrial fibrillation
in cardiac surgical patients posthospital discharge, using iPhone ECG: A
study protocol,’’ BMJ Open, vol. 5, no. 1, Jan. 2015, Art. no. e006849, doi:
10.1136/bmjopen-2014-006849.

[43] Public Health England. (2015). Statistic of Patients inWest Leeds. [Online].
Available: http://healthierlives.phe.org.uk/topic

[44] S. Knows. FTTC Exchanges. London, U.K.: UK Broadband
Availability, 2022. [Online]. Available: https://availability.samknows.
com/broadband/exchanges/bt/fttc

IDA SYAFIZA M. ISA received the Ph.D. degree
from the University of Leeds, U.K., in 2020, with
a focus on energy-efficient access networks design
for healthcare applications. She is currently a
Senior Lecturer with Universiti Teknikal Malaysia
Melaka (UTeM), Malaysia. Her research interests
include network architecture design, energy effi-
ciency, network optimization, mixed integer linear
programming, and healthcare systems. She has
published several papers in this area.

TAISIR E. H. EL-GORASHI received the
B.S. degree (Hons.) in electrical and electronic
engineering from the University of Khartoum,
Khartoum, Sudan, in 2004, the M.Sc. degree
(Hons.) in photonic and communication systems
from the University of Wales, Swansea, U.K.,
in 2005, and the Ph.D. degree in optical network-
ing from the University of Leeds, Leeds, U.K.,
in 2010. From 2010 to 2014, she was a Post-
doctoral Researcher with the University of Leeds,

where she focused on the energy efficiency of optical networks investigating
the use of renewable energy in core networks, green IP over WDM net-
works with data centers, energy efficient physical topology design, energy
efficiency of content distribution networks, distributed cloud computing,
network virtualization, and big data. In 2012, she was a BT Research Fellow,
where she developed energy-efficient hybrid wireless-optical broadband
access networks and explored the dynamics of TV viewing behavior and
program popularity. She is currently a Lecturer in optical networks with the

School of Electronic and Electrical Engineering, University of Leeds. The
energy efficiency techniques developed during her postdoctoral research
contributed three out of the eight carefully chosen core network energy
efficiency improvement measures recommended by the GreenTouch Con-
sortium for every operator network worldwide. Her work led to several
invited talks at GreenTouch, Bell Labs, the Optical Network Design and
Modeling Conference, the Optical Fiber Communications Conference, the
International Conference on Computer Communications, EU Future Internet
Assembly, IEEE Sustainable ICT Summit, IEEE 5G World Forum, and
Collaboration with Nokia and Huawei.

MOHAMED O. I. MUSA (Member, IEEE)
received the B.Sc. degree (Hons.) in electrical
and electronic engineering from the University
of Khartoum, Khartoum, Sudan, in 2009, and
the M.Sc. degree (Hons.) in broadband wireless
and optical communication and the Ph.D. degree
in energy efficient network coding in optical
networks from the University of Leeds, Leeds,
U.K., in 2011 and 2016, respectively. His current
research interests include ICT energy optimiza-

tion, network coding, and energy-efficient routing protocols in optical
networks.

JAAFAR M. H. ELMIRGHANI (Fellow, IEEE)
received the B.Sc. degree (Hons.) in electrical
engineering from the University of Khartoum,
in 1989, the Ph.D. degree in synchronization of
optical systems and optical receiver design from
the University of Huddersfield, U.K., in 1994,
and the D.Sc. degree in communication systems
and networks from the University of Leeds, U.K.,
in 2012. From 2000 to 2007, he was the Chair
of Optical Communications with the University

of Wales, Swansea. In 2007, he joined the University of Leeds as a Full
Professor. He is currently the Director of the Institute of Communication and
Power Networks and a Professor of communication networks and systems
with the School of Electronic and Electrical Engineering, University of
Leeds. He coauthored Photonic Switching Technology: Systems and Net-
works (Wiley). He was a PI of the £6 million EPSRC Intelligent Energy
Aware Networks (INTERNET) Program Grant from 2010 to 2016. He is a
PI of the EPSRC £6.6m Terabit Bidirectional Multi-User Optical Wireless
System (TOWS) for 6G LiFi from 2019 to 2024. He has published over
550 technical articles. He has been awarded more than 30 million in grants to
date from EPSRC, the EU, and industry. He has held prestigious fellowships
funded by the Royal Society and BT. He leads a number of research projects.
His research interests include communication networks, and wireless and
optical communication systems. He is a fellow of IET and the Institute
of Physics. He was elected as a fellow of IEEE for ‘‘Contributions to
Energy-Efficient Communications,’’ in 2021. He was a member of the IEEE
ComSoc Technical Activities Council (TAC). He was awarded all four
prizes at the Department of Electrical Engineering for academic distinction.
He received the IEEE Communications Society 2005 Hal Sobol Award for
exemplary service to meetings and conferences, the IEEE Communications
Society 2005 Chapter Achievement Award, the University ofWales Swansea
Inaugural Outstanding Research Achievement Award, in 2006, the IEEE
Communications Society Signal Processing and Communication Electronics
Outstanding Service Award, in 2009, the Best Paper Award from IEEE
ICC’2013, the IEEE Comsoc Transmission Access and Optical Systems
Outstanding Service Award in recognition of ‘‘Leadership and Contributions

VOLUME 12, 2024 48939

http://dx.doi.org/10.23919/cnsm59352.2023.10327915
http://dx.doi.org/10.1109/SCC53864.2021.00034
http://dx.doi.org/10.1109/ICCCNT56998.2023.10306713
http://dx.doi.org/10.1109/ICCCNT56998.2023.10306713
http://dx.doi.org/10.1109/CloudNet47604.2019.9064116
http://dx.doi.org/10.1109/ICTON.2019.8840438
http://dx.doi.org/10.3389/fenrg.2020.00049
http://dx.doi.org/10.1136/bmjopen-2014-006849


I. S. M. Isa et al.: Resilient Energy Efficient IoT Infrastructure With Server and Network Protection

to the Area of Green Communications,’’ in 2015, the GreenTouch 1000x
Award for ‘‘Pioneering Research Contributions to the Field of Energy Effi-
ciency in Telecommunications’’ in 2015, the IET 2016 Premium Award
for Best Paper in IET Optoelectronics, and the 2016 Edison Award in the
collective disruption category with a team of six from GreenTouch for their
joint work on the GreenMeter, the IEEE Communications Society Transmis-
sion, Access, andOptical Systems Technical Committee in 2020Outstanding
Technical Achievement Award for outstanding contributions to the ‘‘energy
efficiency of optical communication systems and networks.’’ He was the
Chairman of the IEEE U.K. and RI Communications Chapter, the IEEE
Comsoc TransmissionAccess andOptical SystemsCommittee, and the IEEE
Comsoc Signal Processing and Communication Electronics (SPCE) Com-
mittee. He is and has been on the Technical Program Committee of 41 IEEE
ICC/GLOBECOM conferences, from 1995 to 2020, including 19 times
as the Symposium Chair. He was the founding Chair of the Advanced
Signal Processing for Communication Symposium which started at IEEE
GLOBECOM’99 and has continued since at every ICC and GLOBECOM,
the first IEEE ICC/GLOBECOM Optical Symposium at GLOBECOM’00,
and the Future Photonic Network Technologies, Architectures and Protocols
Symposium. He chaired this Symposium, which continues to date. He was

also the founding Chair of the first Green Track at ICC/GLOBECOM
at GLOBECOM 2011, the Co-Chair of the GreenTouch Wired, Core and
Access Networks Working Group, an Adviser of the Commonwealth Schol-
arship Commission, and a member of the Royal Society International Joint
Projects Panel and the Engineering and Physical Sciences Research Council
(EPSRC) College. He has been the Chair of the IEEE Sustainable ICT
Initiative, a pan IEEE Societies Initiative responsible for Green ICT activities
across IEEE, since 2012. He was an Editor of IEEE COMMUNICATIONS SURVEYS

AND TUTORIALS and IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

series on Green Communications and Networking. He is currently an
Area Editor of IEEE JOURNAL ON SELECTED AREAS in Communications
Series on Machine Learning for Communications, and an Editor of IEEE
JOURNAL OF LIGHTWAVE TECHNOLOGY, IET Optoelectronics, JOURNAL OFOPTICAL

COMMUNICATIONS, and IEEE Communications Magazine. He has given over
90 invited and keynote talks over the past 15 years. He was named among the
top 2% of scientists in the world by citations, in 2019, in Elsevier Scopus,
Stanford University database which includes the top 2% of scientists in
22 scientific disciplines and 176 sub-domains. He was an IEEE Comsoc
Distinguished Lecturer, from 2013 to 2016.

48940 VOLUME 12, 2024


