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ABSTRACT In recent years, the remarkable advancement of WiFi sensing technologies has opened new
frontiers in human activity recognition, enabling innovative solutions that transcend traditional methods and
improve the capabilities of intelligent environments. Individual dynamicmovements such as walking, sitting,
standing, and running, as well as more complex interactions such as sports activities, are all examples of
human activity.WiFi sensing has emerged as a powerful tool for human activity recognition; however, certain
restrictions persist, especially when sensing activities involving multiple users across different locations.
These limitations highlight the need for innovative techniques to address the intricacies of multi-user
scenarios and environmental effects, ensuring the robustness and accuracy of WiFi-based sensing systems.
To address multi-user effects in WiFi signals, we propose a few layering LSTM deep learning models
with Raspberry Pi for edge computing solutions. The method leverages the decomposition of Channel
State Information (CSI) signals through Independent Component Analysis (ICA) and Continuous Wavelet
Transform (CWT). The integration of signal decomposition and deep learning holds promise for advancing
WiFi sensing systems’ accuracy, reliability, and real-time capabilities in complex environments and multi-
user scenarios. Experimental findings prove the system’s ability to handle complex activities with high
classification accuracy. Furthermore, the system displays a remarkable ability to classify complex activities.
By leveraging the power of deep learning, the model learns intricate patterns and relationships within the
decomposed CSI signals, enabling it to distinguish between diverse activities with high accuracy.

INDEX TERMS WiFi sensing, multi-user, human activity recognition, channel state information,
independent component analysis.

I. INTRODUCTION
The widespread deployment of WiFi infrastructure has
resulted in the pervasive availability of WiFi signals, offering
extensive convenience on a large scale while reducing
costs. Simultaneously, the inherent non-intrusiveness ofWiFi
devices enhances the user experience by eliminating the
need for wearable devices [1]. Currently, there is a growing
interest in monitoring human motion perception, which holds
significant potential for identifying human movement activi-
ties in various domains, including motion analysis, auxiliary
medicine, virtual reality (VR) [2], and human-computer
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interaction [3]. Recent methods have facilitated innovative
solutions that surpass traditional limitations and enhance the
capabilities of intelligent environments. However, despite
the demonstrated proficiency in recognising and detecting
various movements within the realm of action recognition
and counting, as evidenced in the existing literature [4], [5],
[6], these advancements have been limited to single-person
scenarios.

CSI monitoring using WiFi sensing offers an advantage
in addressing privacy concerns compared to traditional
vision-based monitoring systems [7]. CSI-based systems
measure the changes in WiFi signal patterns caused by
movements and interactions within an environment, enabling
monitoring while maintaining a higher degree of anonymity.
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This approach minimizes the risk of privacy invasion as it
does not produce or rely on images or video data, thereby
offering a less intrusive and more secure alternative for
applications [8]. Moreover, multi-user sensing facilitates a
deeper understanding of human behaviour and interactions,
leading to insights that can inform decision-making processes
and develop better intelligent and responsive systems.
In addition, there are persistent challenges in recognising and
comprehending human activities, especially in scenarios that
involve multiple users across different locations [9]. Fig. 1
illustrates how line-of-sight (LOS) and non-line-of-sight
(NLOS) conditions influence Channel State Information
(CSI) signals, emphasising their location-dependent and
environmentally influenced nature. The arrows and labels in
the figure illustrate the variations, reflections, and distortions
in the signals, thus highlighting the dynamic characteristics
of wireless communication in complex and variable environ-
ments [10].

FIGURE 1. Multi-users effects on CSI signals in wireless sensing.

Existing methods face challenges in addressing the
complexities of human activities, such as subtle gestures
and dynamic movements, particularly in scenarios involving
multiple individuals and using WiFi sensing technology.
Additionally, environmental factors like interference and
dynamic changes distort signals, such as frequency, ampli-
tude, phase, and the precise interpretation of desired signals.
The available techniques necessitate training to recognise
constant data for activities that can be performed in multiple
locations [6]. Additionally, these techniques are limited to
individual person sensing capabilities due to the complexity
of multi-person sensing [11], [13], [14]. These challenges
highlight WiFi sensing systems’ deep-rooted difficulties
in sensing and interpreting activities involving multiple
individuals.

These highlighted challenges require new and innova-
tive approaches to achieve the stability and precision of
WiFi-based sensing in multi-user scenarios, such as [7]
and [15]. This work provides an innovative approach inte-
grating activity recognition to address this intricate challenge.
The proposed method identifies and quantifies multiple
users within a given scene, independent of the specific
location. The system monitoring CSI employs advanced
signal processing techniques, including Independent Com-
ponent Analysis (ICA) and Continuous Wavelet Transform
(CWT). The method utilises path and propagation delay
information to establish a threshold to retain only relevant
path data that traverses the target body. Integrating a deep
learning paradigm augments the system’s capacity to discern
intricate patterns within the decomposed CSI signals. The
present research aims to develop a precise system capable of
recognising and classifying human activities solely through
ubiquitous WiFi infrastructure, eschewing the need for
specialised sensing hardware. The key contributions of this
work are are listed as follows:

1) Implementation of a CSI-based sensing to enable contin-
uous human action recognition for multiple individuals
utilising aWiFi system. This approach enables to reduce
the influence of multi-user effects while acquiring
path and amplitude information to improve activity
classification accuracy.

2) The proposed model uses Independent Component
Analysis ICA and Continuous Wavelet Transform CWT
alongwith few layers Long-Short-Term-Memory LSTM
algorithm to achieve location-independent multi-user
sensing using a minimal dataset and less training effort,
and achieves higher accuracy classification.

3) The experimental analysis explores the retention of
action characteristics after decomposition and demon-
strates the proposed method’s effectiveness in detecting
and counting activities with multiple users in different
scenarios to evaluate the model across real-world
scenarios and environments.

The proposed method implements the intricate challenges
of diverse activities in a multi-user WiFi-based sensing
scenario. It enables us to distinguish between different
sources of signals by utilising the ICA method to analyse
the motion of multiple individuals. This approach allows
for precise identification and tracking of individual actions.
Furthermore, the tensor decomposition and implementa-
tion methods leverage the CWT technique to capture the
amplitude of information action. Required experiments were
conducted to analyse the capability of the proposed method
and focus on preserving action features for recognition after
decomposition. The results of these experiments show the
proposed approach’s efficacy and potential.

The following section investigates the existing landscape
of multi-person action recognition literature. Subsequently,
section three introduces the proposed methodology, employ-
ing decomposition and pioneering algorithms. Section four
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validates the multi-user Human Activity Recognition (HAR)
method through various experiments. The analysis engage
in a detailed discussion of results and their implications,
drawing comparisons with established methodologies and
suggesting future directions for scholarly inquiry. The
conclusion offers a conclusive summary, culminating the
sequential discourse and emphasising the distinctive contri-
butions of the proposed method.

II. RELATED WORKS
Research on HAR in multi-user environments has gained
attention due to its growing applications in diverse domains
such as healthcare [16], senior citizen monitoring [17], and
smart environments [18]. The growing ubiquity of sensor-
rich environments, pervasive computing technologies, and
the increasing integration of intelligent systemscan be found
into our daily lives. The imperative to discern and interpret
human activities in settings with multiple users stems from
its critical role in augmenting the capabilities of these
intelligent systems. In healthcare, precise monitoring and
recognition of activities offer unprecedented patient care
and rehabilitation opportunities [16]. The complexity of
multi-user environments introduces several challenges that
necessitate advanced techniques [19], [20]. Occlusion, multi-
user dynamic effects, and interruption of signal interactions
pose problems for traditional wireless sensing systems.

The challenge of HAR for multi-users resides in the
complexities arising from multiple individuals’ simultaneous
presence and interactions within a shared space [21].
The available HAR methods are primarily designed for
single-user scenarios and confront a substantial hurdle when
faced with the layered complexities inherent in multi-user
environments [22], [23]. The core of this challenge lies in
the need for more conventional HAR systems to discrim-
inate between the activities of different users, ultimately
resulting in a pronounced diminishment of accuracy and
reliability [24]. The intricate interplay of human movements
and the potential for occlusion and overlapping actions
pose a formidable obstacle to existing systems. In addition,
the dynamic nature of group interactions exacerbates the
limitation, as the collective actions of individuals contribute
to a complex amalgamation of signals that traditional systems
find challenging to deconstruct.

Robust multi-user activity recognition systems will con-
tribute to early fall detection in daily activities, indicating
health issues or emergencies. Such applications underscore
the potential impact of HAR on improving the quality and
efficiency of healthcare services. Consequently, researchers
delve into developing algorithms, drawing inspiration from
machine learning techniques such as Support VectorMachine
SVM [25], [26] and harnessing the power of deep learning
models like Convolutional Neural Network CNN and recur-
rent neural networkRNN. Researchers are also looking into
how to make personalised and adaptive recognition systems
for each user, considering their unique movement patterns
and behaviours [27], [28].

Depatla and Mostofi [24] introduced an innovative
methodology for quantifying the number of individuals
within a building by leveraging WiFi Received Signal
Strength Indicator (RSSI) measurements and inter-event
times. The proposed approach exploits the resilience of
inter-event times to signal attenuation throughwalls, enabling
the estimation of total occupants. The results reveal high
accuracy in estimating the total number of people behind
walls while minimizing the necessity for prior calibra-
tions [29]. However, the current framework only considers
scenarios with gradual changes in the total number of people
over time, leaving out rapid fluctuations within the estimation
period. Furthermore, Jing He and Yang developed a WiFi-
based multi-user action recognition system called IMar [30].
The method involves building an amplitude relation model
of a multi-person action scene and combining it with tensor
decomposition to obtain continuous action data for each
person. Using tensor completion makes the decomposed
single-person data more informative, which is convenient
for action recognition and counting and improves accuracy.
The novelty of IMar lies in its ability to analyse and
record the different actions of multiple users in a device-free
scene. The study’s limitations include the need for a clear line
of sight between the WiFi access point and the users and the
potential for interference from other WiFi signals.

Jianing Yu proposed a novel framework approach for WiFi
sensing using 5G that fuses features from different bands
and granularity levels to achieve superior performance in
various sensing tasks [31]. The proposed method matches
the feature granularity between WiFi channel measurements
at 5 GHz and 60 GHz via a learning-based fusion block. The
novelties of this method include achieving around 5% gain in
accuracy on average over the best baseline methods available
and mitigating the requirement of a large amount of training
data. The method pre-trains a multi-band fusion network in
an unsupervised fashion, fine-tuning each sensing head with
limited labels. The need for additional validation in complex
environments is due to further restrictions on the technique,
which leads to low-performance classification.

Similarly, in their work, Ashleibta et al. [11] utilised
a 5G-enabled RF-sensing system that works at 3.75 GHz
and uses CSI signals to detect activity from multiple users
simultaneously without touching the sensors. The proposed
model uses a frequency range of 3.4 GHz to 3.8 GHz. The
5G bandwidth distinguishes it and represents a pioneering
implementation of 5G sensing. The Ultra-wideband UWB
method uses CSI signals to group activities into groups.
It does this by combining 5G RF-sensing and deep learning
models. However, the system requires a stable 5G signal,
posing limitations in specific environments and experiencing
reduced accuracy with an escalating number of users.

A novel approach for multi-person respiration sensing
using commodity WiFi devices called MultiSense was
developed by Zeng et al. [20]. They utilise Blind Source
Separation (BSS) and ICA to extract respiration patterns from
WiFi CSI signals. The authors demonstrate that MultiSense
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outperforms existing approaches regarding accuracy and
scalability. However, the method faces limitations, including
the need for prior knowledge of the number of people
and its susceptibility to environmental factors like motion
and interference. Additional work by Tan et al. [14]
establishes an innovative system for tracking multiple users
and recognising their activities using standard WiFi signals,
addressing challenges posed by signal interference and noise.
The methodology employs signal-processing techniques and
machine-learning algorithms for feature extraction. However,
the study includes experiments conducted in a controlled
environment, raising concerns about the system’s applicabil-
ity in more complex real-world scenarios. Additionally, the
system’s accuracy fails to classify if a location is crowded
with users.

Venkatnarayan et al. proposed a WiFi-based multi-user
gesture recognition model calledWiMU [9], emphasising the
capability of signals to discern gestures simultaneously by
multiple users. The researchers employed a blend of signal
processing techniques and machine learning algorithms for
precise gesture recognition across diverse user positions and
orientations. Nevertheless, the method exhibits dependence
on a stable WiFi signal, posing a potential limitation in
less favourable environments. Furthermore, its accuracy
declines with concurrently executed gestures, reflecting a
common challenge in multi-user gesture recognition systems.
Furthermore, [22] proposed a system that capitalises on
the insight that WiFi signals capture the movements of
all users, enabling the recognition of individual activities.
This work details the extraction of features from WiFi
signals to achieve accurate activity recognition for three
users, with a commendable accuracy exceeding 90%,
employing a combination of signal processing techniques
and machine learning algorithms. However, the system
faces potential performance degradation in environments
characterised by high levels of interference or noise in WiFi
signals. [22].

The real-world implications of inaccuracies in activity
recognition [32] emphasise the pressing need for robust
and scalable solutions in multi-user HAR. In scenarios
where concurrent activities of multiple users unfold in real-
time, misattribution or misinterpretation of actions leads
to a cascade of errors, particularly compromising the
overall utility and reliability of intelligent systems [33].
Failure to identify and distinguish these activities not only
impedes the potential for personalised automation but also
results in suboptimal user experiences. Furthermore, the
increasing integration of multi-user HAR in domains such
as healthcare and security underscores the importance of
addressing this challenge. Similarly, recognising diverse
individuals and their activities in security applications is
pivotal for threat detection and anomaly identification. As a
result, improving HAR systems’ discriminatory capabilities
in multi-user scenarios becomes a technological necessity
for the practical application and implementation of smart
environments.

The basis of WiFi sensing lies in analysing CSI signals,
which encapsulate information about the channel’s behaviour
in the time and frequency domains. The CSI signal is
represented as a matrix, typically denoted as H (t, f ), where
t represents time and f denotes frequency. The variations
in this matrix over time correspond to changes in the
wireless channel due to the presence and movement of
people. Detecting multiple individuals introduces a complex
interplay of signals, leading to superimposed CSI patterns.
This complexity amplifies the difficulty in isolating and char-
acterising each individual’s contribution to the overall signal,
thus affecting the reliability of activity sensing, as shown in
Fig. 2. The impact of multiple individuals on WiFi-based
sensing is twofold. The superposition of signals necessitates
addressing the equation CSI(t, f ) =

∑N
i=1Hi(t, f ), wherein

distinguishing the unique contribution of each individual
becomes intricate and the mutual interference between
individuals. Fig. 2 illustrates the reflected signals in a
WiFi sensing region influenced by the presence of multiple
individuals, represented by varying colours such as red,
green, and blue. It emphasises the scattering effects of signals,
which fluctuate due to the dynamic nature of human presence.

FIGURE 2. The composite Channel State Information signals arise as the
number of individuals increase.

In the context of multi-user localisation, [34] introduces
a novel scheme that utilises multi-radar cooperative sensing
to enable continuous tracking within indoor settings. The
article addresses the inherent difficulties in tracking multiple
individuals by implementing a dual segmentation technique.
The significance of this technology extends to diverse
domains, such as security surveillance and location-based
services. However, the proposed approach relies on complex
systems utilising mmWave radar, which operates in the
60–64 GHz frequency band, rather than leveraging readily
available WiFi infrastructure. Another model by Peng et al.
[35] proposes an introduction gesture scheme to estimate
the spatial channel of dynamic reflections under the impact
of solid phase noise. They used the spatial beamforming
technique to recognise the hand gestures of multiple users.
A limitation of beamforming for multi-user sensing is the
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interference of signals and overlapping beams. That restricts
individuals’ accurate differentiation and weakens the sensing
system’s effectiveness.

Furthermore, in the context of multi-user localisation,
Li et al. [34] employs a novel scheme using multi-radar
cooperative sensing to enable continuous tracking within
indoor settings. Their work addresses the inherent difficulties
in tracking multiple individuals by implementing a dual
segmentation technique. However, the proposed approach
relies on complex systems utilising mmWave radar, which
operates in the 60–64 GHz frequency band, rather than
leveraging readily available WiFi infrastructure. To find the
spatial channel of dynamic reflections when solid-phase
noise is present, another study by [35] suggests a preamble
gesture scheme. This scheme uses the spatial beamforming
method to track the hand movements of multiple users. One
limitation of employing beamforming for multi-user sensing
is the potential for signal interference and overlapping beams.
These factors impede accurate differentiation and tracking
of individuals, thereby compromising the sensing system’s
effectiveness and reliability.

III. METHOD IMPLEMENTATION
A. OPERATIONAL WORKFLOW
The algorithmic system architecture begins with the data
collectionmodule, which acquires diverse datasets containing
relevant information for the task. Following this, a meticulous
pre-processing stage cleanses and organises the raw data,
ensuring its suitability for subsequent processing. The next
feature extraction phase employs sophisticated techniques,
including ICA and CWT, to purify meaningful patterns and
representative features from the pre-processed data. The
algorithm establishes spatial correlations and similarities
between the extracted features at the matching locations.
The algorithm incorporates both ICA and CWT features to
enhance the robustness and richness of the representation.
The pivotal component of the architecture is an LSTM
network. This deep learning model is adept at capturing
temporal dependencies and nuances in the data. The mech-
anism further refines the model’s focus on salient features,
optimising its ability to discern complex patterns. The LSTM
classifier predicts using the learned representations, offering
a comprehensive and robust solution for the specified task.
Fig. 3 shows the algorithmic system architecture, which
looks like a structured flowchart. It has blocks that show
data collection, pre-processing, feature extraction using ICA
and CWT, matching locations, and an LSTM classifier that
offers a complete and sequential method for strong pattern
recognition.

B. DATA COLLECTION
In wireless communication systems, CSI is a metric that
characterises the dynamic nature of the communication
channel between a transmitter and receiver. Themathematical
representation of CSI encapsulates the underlying in (1),
where Y denotes the received signal, X represents the

transmitted signal, H signifies the channel matrix reflecting
the CSI, and N means the inherent noise in the channel [36].

Y = HX + N (1)

The CSI equation encapsulates the intricate interplay of
signals, making it a foundational concept in wireless signal
processing. Collecting CSI data involves meticulous mea-
surements of the received signal under varying conditions,
yielding a dataset {Y1,Y2, . . .Yn} [37]. Each Yi represents
a vector capturing the received signal at a specific instance.
CSI data collection involves sending known injected data
and monitoring system context to extract CSI, such as
Nexmon, and then observing the received signal [38], [39].
CSI data extraction algorithms utilise the collected data
to form the channel matrix Hi in (2). This dataset often
represented as a three-dimensional matrix across subcarriers
and time snapshots, is integrated to understand and optimise
wireless communication systems, forming the basis for
further analysis and enhancement.

Hi =


h11i h12i . . . h1NTi
h21i h22i . . . h2NTi
...

...
...

...

hNR1i hNR2i . . . hNRNTi

 (2)

The process of collecting CSI entails the capture of wireless
signals, with a particular emphasis on an 80 MHz bandwidth.
The mathematical part of this process involves using signal
processing transforms, such as Fourier transforms, on the
raw signal to separate the important CSI information
from the wider WiFi signal. Researchers often employ
tools such as Nexmon [38], OpenWRT [40], and Atheros
tools [41] to facilitate the extraction and analysis of CSI
data. We accomplish the separation by exploiting distinctive
CSI characteristics, such as its unique frequency spectrum
and temporal variations [42]. After successfully isolating the
CSI data, we graphically represent it by plotting amplitude
against time or frequency. The graphical depiction offers a
visual insight into the dynamic changes in CSI amplitude,
providing valuable information about the wireless channel’s
behaviour [30], [43].

C. PREPROCESSING
Implementing data preprocessing improves the accuracy and
dependability of the amalgamated CSI data. The procedure
must separate CSI data from nearby WiFi router signals
to extract relevant information. Applying signal processing
techniques and filtering algorithms discriminates against
non-CSI components, achieving the task. Initially, a median
filter strategy eliminated potential aberrations in the data
by substituting anomalous values with the median derived
from adjacent data points. Despite the initial filtering, some
outliers persisted, prompting Hampel to fill outlier filters to
mitigate their impact by replacing them with the original
non-outlier values in the dataset. Hampel used a moving
median filter technique to refine the data and diminish
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FIGURE 3. The flowchart for multi-user sensing includes the pre-trained model, feature extraction of ICA and CWT
features.

residual noise by computing the median value across data
points [36]. The applied filtering approach mitigated minor
fluctuations or inconsistencies in the data. The median filter
is a non-linear technique for suppressing impulsive noise or
outliers within a signal. The mathematical representation of
the median filter is shown in (3).

y[n] = median(x[n− m], x[n− m+ 1], . . . , x[n+ m]) (3)

Here, x[n] represents the input signal, and m is the
filter window size. The Interpolation step is introduced to
handle outliers in the data, replacing them with interpolated
values based on neighbouring points. The interpolation is
represented mathematically in (4).

yinterp[n] = y[n− 1]+ y[n+ 1] · 2 (4)

Equation (3) computes an interpolated value yinterp [n] as the
average of the adjacent data points y[n − 1] and y[n + 1].
This technique used to smooth the CSI data, mitigating
occasional aberrations and improving the overall quality
of the signal. Smoothing involves reducing high-frequency
noise and emphasizing underlying trends in the data.
Smoothing is a common preprocessing step in signal analysis
to highlight relevant patterns while suppressing noise. The
moving average filter enhances the smoothness of the CSI
data further, and The formulation of the moving average filter
is represented by (5):

yavg[n] =
1
N

N−1∑
k=0

x[n− k] (5)

N represents the filter length, and x[n] is the input signal.
In contrast, the moving average filter operates by calculating
the average of the current and N − 1 previous data points.
When used with these filters, they play a crucial role in
reducing noise and refining the CSI data for subsequent
analysis, as shown in Fig. 4. The figure comprises three
subplots illustrating a signal’s preprocessing and filtering
stages. The subplot in Fig. 4(a) demonstrates the removal of
null and pilot subcarriers; Fig. 4(b) shows the signal with

noise before filtering; and Fig. 4(c) represents the filtered CSI
amplitude signal.

D. ICA AND CWT
ICA is a statistical signal processing technique that seeks to
uncover independent sources from observed mixed signals.
Considering the matrix H captures the linear relationship
between the observed mixed signals, represented by the
matrix X , and the separate source signals, represented by the
matrix S, given in (6):

X = HS (6)

S is an M · T matrix of mixed signals, M is the number
of antennas, T is the number of samples, and S is an M · T
matrix of independent source signals. The objective of ICA
for CSI is to estimate the demixing matrix W such that S̃ =
W ·H . The columns of S̃ represent the estimated independent
source signals. The ICA algorithm aims to maximise the
statistical independence of the estimated sources. In this
work, we implemented diverse strategies and techniques to
address our research’s specific challenges and objectives. The
FastICA algorithm is a computationally efficient approach
to solving the ICA problem, and its application to CSI data
involves specific adaptations [20]. Whitening, a foundational
step, transforms the observed CSI matrixH into uncorrelated
signals with unit variance, facilitating subsequent processing.
Negentropy maximisation is the focal point of FastICA,
aiming to enhance the non-Gaussianity of the whitened CSI
matrix.

The whitening process for CSI matrices involves trans-
forming the observed CSI matrix H into uncorrelated signals
with unit variance. The covariance matrix E of H computes
the whitening process and obtain the whitening matrix

√
E .

The expression for the whitened CSI matrix H̃ is described
in (7).

H̃ = H ·
√
E (7)

The whitening step is pivotal in enhancing the subsequent
processing of the CSI data. It ensures that the transformed
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FIGURE 4. Filtering and preprocessing of the CSI amplitude signal through denoising and outlier removal.

signals are decorrelated and possess a standardized variance.
Furthermore, the Negentropy maximization is the core
objective of the FastICA algorithm when applied to CSI
data. It seeks to maximize the non-Gaussianity of the
whitened CSI matrix H̃ . The optimization problem represents
the introduction of a non-linear function g to approximate
negentropy in (8).

W ∗ = argmaxW Negentropy(H̃ ) (8)

The iterative nature of the FastICA algorithm involves
updating the unmixing matrix W using a gradient ascent
approach is represented by (9).

W ← W + α
(
E{Hg̃(W T H̃ )} − E{g′(W T H̃ )}W

)
(9)

where α is a step size parameter, and g′ denotes the derivative
of the non-linear function g. The process continues until
convergence, resulting in an optimised unmixing matrix W
that maximises the non-Gaussianity of the whitened CSI
signals. Negentropy maximisation reveals the independent
components within the CSI data, extracting meaningful
information from complex composite signals, and separating
them purely.

FIGURE 5. Plot of the separated signal using ICA in CSI data.

The process involves optimizing a non-linear function
approximating negentropy, which is pivotal for revealing
the independent components in the channel. The algorithm
improves an unmixing matrix W using gradient ascent.
It optimizes the negentropy of the whitened CSI matrix,

as depicted in Fig. 5. Normalization ensures that the unmixing
matrix maintains orthogonality using (10).

W ←
W
∥W∥

(10)

Subsequently, we combine the unmixed signals into
a matrix, denoted as both, and apply the Continuous
Wavelet Transform (CWT) to this matrix. The CWT is a
mathematical operation that decomposes a signal into its
constituent wavelet components. In this context, it allows
for a more detailed analysis of the frequency content of the
unmixed signals. The CWT is a powerful tool that enables
simultaneous analysis of signals in both time and frequency
domains, as illustrated by (11).

CWT (a, b) =
∫
∞

−∞

x(t)ψ∗
(
t − b
a

)
dt (11)

where x(t) represents the signals, ψ(t) is the analysis, a is
the scale parameter, and b is the translation parameter. The
integral evaluates the possible values of a and b representing
the signal in the time-frequency domain. The scale parameter
determines the width of the wavelet, which influences the
balance between frequency and time localization. A smaller
one offers higher frequency resolution but inferior time
localization, and vice versa.

E. FEATURE EXTRACTION
LSTM represents a recurrent neural network distinguished
for its adeptness in capturing extended dependencies within
sequential data. In WiFi-based sensing, LSTM serves as
a potent tool for feature extraction. It leverages attributes
like memory retention, non-linear mapping, and the ability
to sequence. The LSTM cell’s structure also enables it to
remember pertinent information, discern intricate relation-
ships and temporal dynamics, and accommodate diverse
sequences. Unlike conventional techniques and simpler
models, LSTM excels in discerning patterns, deriving mean-
ingful representations, and exploiting temporal dependencies.
Therefore, it is well-suited for feature extraction in CSI
analysis. To preserve the integrity of the acquired data and
forestall the loss of pivotal signal features, we consciously
abstain from using dimensionality reduction techniques such
as PCA or Linear Discriminant Analysis (LDA). Instead,
we opted to employ the complete dataset by organising and
correlating it based on the amplitude of the CSI.
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F. LSTM CLASSIFIER
The proposed architectural design utilises LSTM layers in
a sequential framework for classification, as illustrated in
Fig. 6. Memory cell integration into the LSTM layer of
this framework enables effective information retention and
processing over time. The capability is particularly crucial
in scenarios where temporal relationships play a paramount
role, permitting the model to capture and model long-term
dependencies in the data. A dropout layer follows the LSTM
layer to address the potential overfitting issue and enhance
generalisation. The next layer, the ‘‘Fully Connected LSTM
Layer,’’ performs fully connected operations on the output
from the preceding LSTM layer. This process facilitates the
discernment of intricate relationships and complex patterns
within the data. The model then incorporates an output
layer comprising two fully connected neurons, serving as a
classifier. Lastly, a fully connected layer precedes a SoftMax
layer, generating probability distributions across the seven
predefined output classes. The behaviour recognition system
employs LSTM networks to extract features from signal
data. The presented architecture outlines a sequential model
that employs LSTM layers for classification, as illustrated
in Fig. 6. The first layer receives data input with the
sequence’s length to initiate the workflow. Subsequently, this
sequential data is processed by an LSTM layer, a specialised
recurrent neural network layer adept at handling sequential
information. Notably, the LSTM layer incorporates memory
cells to retain information over time, capturing long-term
dependencies within the data. After the LSTM layer,
we include a dropout layer to introduce regularisation
and address the issue of overfitting. Dropout selectively
deactivates specific input units during training, thereby
fostering the independence of neuron learning.

During the subsequent phase of training the model
and fine-tuning hyperparameters, we partition the original
training dataset into 80% for training and 20% for validation
to assess the model’s performance. The LSTM model was
evaluated using the validation dataset, and the hyperparame-
ters of the trained models were refined using an optimization
approach. Additionally, we compare the performance of the
hyperparameter-tuned models by evaluating them against the
test results in the context of activity recognition.

G. MATCHING ENVIRONMENTS
To represent the variance between signals in two different
environments, we use the mathematical form in (12).

v̄i =
1
N

N∑
i=1

(xi − µ) (12)

where v̄i is the variance of N numbers of samples between the
CSI amplitude at the first location xi and the mean samples
of the new location µ. The averaging process in (11) to
measure the variation of signals, which provides features
of attenuation variance spread between amplitudes of each
subcarrier due to changes in surroundings. To express the

process of matching signals by incorporating the calculated
variance v̄i with the new environment, we utilise (13) as
follows:

Qnew = (v̄i)+
1
N

N∑
i=1

Nv (13)

The matching of the variance between the new environment
signal, Nv, and the variance between the new and old signal
v̄i of the pre-trained dataset is shown by Qnew in (12).
Here, N is the number of samples. We match the signals
between the two environments by adding the variance from
the pre-trained dataset to the new environment signal. The
approach assumes a normal distribution for the signals and
knowledge of the mean CSI heatmap of the empty orientation
of the new environment. The pseudocode algorithm for
CSI-based HAR involves capturing CSI data, preprocessing
the data to remove noise and interference, extracting relevant
features, applying a machine learning model to classify the
activity, and outputting the recognized human activity as
shown in Algorithm 1.

Step Algorithm 1: Multi-users WiFi HAR

Input: Raw CSI data← local median CSI Amp1

Output: Multi-users Activity classifications location
independently

1: CSIAmp Hi← CSIraw - CSI pilot - CSI null to remove pilot
and null subcarriers

2: Compare the current CSIAmp (i) with σi using Eq. 6
3: if CSIAmp kik− CSIAmp

1 > kσ × σi
4: CSIAmp

1
= CSIAmp(i)

5: end if
6: CSIAmp(i)← CSIAmp1 outlier Hampel filter
7: CSIAmp_hampel_Denoised(i)← CSIAmp(i) median filter
8: Scout [242× 500]← Feature extraction from CSI Amplitude
9: Separate CSI signals using ICA W ← W Eq. 8
10: Apply wavelet W ← W

∥w∥ to represent the separated data
11: Utilise LSTM model to extract 3D-CWT features for the

Classification
12: Match environments by finding the variance v̄ı between two

locations Eq. 11

IV. IMPLEMENTATION AND EVALUATION
A. EXPERIMENT SETTINGS
For implementation and evaluation, we explored the model’s
design, training methodology, and rigorous performance
evaluation against established benchmarks. The experiment
included scenarios with varying numbers of participants
to enhance the diversity of the dataset, different activity
intensities, and overlapping actions. The participants moved
freely within the designated space while the WiFi sensors
continuously recorded the variations in signal patterns. The
experiment uses self-collected datasets that addressed the
scarcity of relevant datasets in the field of multi-person
human activity recognition, and tested them in real-world
settings. In the context of multi-person human activity
recognition through WiFi signals, we set the experimental
configurations methodically to moderate the absence of
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FIGURE 6. Illustration of the applied architectural layers of a Long Short-Term Memory (LSTM) network.

shared datasets tailored for this specific domain. Given
the acknowledged challenges of acquiring authentic data
encompassing diverse human interactions, the work adopted
a self-collected dataset. The data collection entailed strate-
gically deploying a network of WiFi sensors throughout the
experimental environment, ensuring comprehensive coverage
and consistent signal strength across the spatial expanse.
We configured the CSI sensors to capture fluctuations inWiFi
signals attributable to human activity, yielding a dataset that
encapsulated a spectrum of activities.

The assessment included examining data acquired through
the Nexmon CSI extraction tool. Nexmon facilitated the
retrieval of CSI data from a Raspberry Pi 4B explicitly
configured for very high-throughput mode, with a band-
width of 80 MHz. The obtained CSI samples provided
detailed channel information, including 256 subcarriers.
The data collection utilised clustered Raspberry Pi units to
enable two receivers within the RPI system, as shown in
Fig. 7. The experimental arrangement featured a Broadcom
BCM43455c0 NIC with a Raspberry Pi 4B unit as the
receiver and a TP-Link AC1350 router as the transmitter.
Both Raspberry Pi devices operated on Linux version
5.10.92 firmware. The receiver and transmitter supported
multi-user MIMO functionality. The configuration of the
experimental setup ensured compliance with industry stan-
dards, thereby augmenting the reliability and validity of
the evaluative procedures. The CSI datasets we got were
from different indoor settings, specifically inside a residential
apartment hall, which is limited by the spatial parameters
shown in Fig. 7.
The Nexmon firmware is used for monitoring the router

and extracting CSI data from TCPDUMP files, and pro-
cessing it with MATLAB scripts for rigorous cleaning and
preprocessing. It covers a variety of scenarios and activities
in controlled environments with specific room dimensions
(9 m x 13 m x 30 m) and device placements (3 m distance
between Tx and Rx, 1 m height for transmitters, 1.5 m
for receivers) as shown in 7. Distinct labels categorise

FIGURE 7. Experiment layout: (a) real location, (b) 2D layout, (c) 3D
simulation.

each scenario, indicating various conditions such as empty
location, standing activity, walking, sitting alone or with
others, fall, and running. Additionally, the dataset includes
mixed activities involving walking, standing, sitting, falling
and running performed by one or more individuals.

The dataset consists of CSI measurements collected
by four individuals across various scenarios to capture
diverse human activities and environmental interactions. The
activities encompass a spectrum of motion states, including
stationary, empty, standing, sitting, walking, running, and
combinations thereof, thereby ensuring a comprehensive
representation of human interactions within the dataset.
Table 1 summarizes the dataset collection conducted using
WiFi devices equipped with multiple antennas to ensure
comprehensive CSI data with following annotation (E =
Empty; ST= Stand; W=Walk; R= Run; Si= Sit;F= Fall).
This setup enabled the capture of fine-grained variations in
the wireless signals, reflecting the distinct movement patterns
and interactions in each scenario. The resulting dataset
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provides a rich resource for analysing human activities and
developingmodels for activity recognition and environmental
sensing using WiFi signals. The datasets used in this study
are available at this linked1 to facilitate further investigation,
replication, and potential collaborations.

B. MULTI-USER PERFORMANCE EVALUATION
The experimental framework suggested using a combination
of ICA and CWT analyses to identify human activity
within the context of WiFi signal analysis. The primary
objective was to enhance the system’s discriminatory capa-
bility in discerning various human activities. We employed
ICA statistically to isolate independent sources within the
observedWiFi signals. ICA’smethodological choice aimed to
reduce signal complexity and enhance the system’s ability to
differentiate distinct human activities. The analysis facilitated
a more refined understanding of the underlying signals by
extracting statistically independent sources, thereby improv-
ing recognition accuracy. The challenge of distinguishing
between three distinct scenarios, such as a single person
walking or more people walking, arises from the intricate
nature of mixed signals in human activity recognition. The
complexity lies in the overlapping patterns within the signals
emitted during these walks, as shown in Fig. 8.

FIGURE 8. The subsequent ICA separation illustrates the complexity of
disentangling the composite signals. Subplots show the unique signals
corresponding to (a) standing activity, (b) single-person walk, (c)
two-person walk, and (d) three people walking. The signals show how ICA
provides better analysis of multi-user feature patterns.

Fig. 8 (a) depicts the signal separation through ICA after
illustrating the composite nature of mixed signals in Fig. 8.
Notably, Fig. 8 (b), (c), and (d) correspond to scenarios
involving single-person, two-person, and three-person walk-
ing, respectively. Each method generates distinctive signals
indicative of the respective walking configurations. However,
the convergence of these signals introduces a notable level
of intricacy that challenges the recognition process. The

1https://data.mendeley.com/preview/bkgw7c57wf?a=7d5f919f-a75e-
43cd-89c6-ef596662477d

nuanced variations in gait patterns, stride lengths, and spatial
dynamics across the distinct walking scenarios contribute to a
complex signal amalgamation. This intricate interplay within
the mixed signals underscores the difficulty of discerning and
classifying the diverse walking configurations.

The combination of signals underlines the difficulty in
unravelling the distinctive features that characterise each
walking scenario. Addressing these challenges requires
enhanced signal processing techniques and robust algorithms
to tease apart the overlapping elements and improve the
precision of recognition in dynamic and mixed-signal
environments. Additionally, we applied CWT analysis to
provide a time-frequency representation of the WiFi signals.
The time-frequency presentation provided insights into the
temporal dynamics of human activities, resulting in a more
comprehensive and detailed understanding of the material
aspects involved in the recognition process. Using both ICA
and CWT analyses at the same time revealed a complex
analytical framework and a way to recognise human activity
through WiFi signal analysis that works well together. The
combination of methods led to a better understanding of the
complex time patterns that make up different human activities
in dynamic environments.

The experiment investigates the system’s ability to identify
and classify an individual’s activities within the monitored
environment. Furthermore, the technique served as a foun-
dational assessment to establish the baseline performance
of the activity recognition system. The CWT indicates how
static activity, single-person walking, two-person walking,
and three-person walking have different time-frequency and
magnitude characteristics, as seen in Fig. 9. The subplots
show the movements of human activities over time by using
the wavelet to break the signals down into different frequency
components. Wavelet analysis helps identify the unique
patterns and traits associated with each activity. It enables a
more accurate and detailed analysis of the temporal dynamics
and variations in human movement.

FIGURE 9. CWT representation for various activities: (a) static activity,
(b) single-person walk, (c) two-person walk, and (d) three-person walk.
The plots capture unique features distinguishing specific human activities.
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TABLE 1. Dataset table for multi-user scenarios.

Furthermore, the implementation of 3D CWT represents
a notable improvement in the signal processing stage, par-
ticularly in enhancing the discrimination between complex
signals. Unlike traditional 2D approaches, the 3D CWT
extends the analysis into both time and frequency dimensions,
providing a more comprehensive understanding of signal
characteristics. By capturing the dynamics of movements
across both time and frequency axes, the 3D CWT makes it
easier to tell the difference between signals more nuancedly.
This leads to higher precision in signal processing applica-
tions, especially when there are complex changes in both time
and frequency. Fig. 10 shows the capability of 3D-CWT in
sensing static and dynamic activities such as standing and
walking. The implementation of ICA with 3D-CWT shows
considerable differences in signals related to these activities
for different numbers of people, which enables better signal
sensing for multi-users.

FIGURE 10. The 3D CWT shows dissimilarities and variances between
(a) static and (b) walking activities.

The ICA has also proven to be a robust method for
segregating signals derived from diverse human activities,
particularly distinguishing between static and dynamic activ-
ities. In static activities, ICA separates signals associated
with stationary postures, isolating the intrinsic features
indicative of minimal movement. In contrast, ICA separates
signals characterised by dynamic changes and varyingmotion
patterns in dynamic activities. This highlights such activities’
inherent temporal and spatial complexities, as depicted in
Fig. 11.

Fussing ICA and CWT delivers a sophisticated approach
to disentangling and analysing CSI signals to discern the
number of individuals engaged in activities. Fig. 12 demon-
strates the effectiveness of this implementation, showcasing
the distinct contributions of ICA and CWT. Notably, the
comprehensive integration of ICA and CWT emphasises their
complementary roles in unravelling the intricacies of CSI

FIGURE 11. The ICA separation of signals illustrates the dissimilarity
between static and dynamic activities. The way ICA is used in
methodology separates signals, showing the features of still positions in
static activities and capturing the changing patterns and changes that
happen in dynamic activities.

signals, ultimately contributing to amore precise and accurate
assessment of the number of people involved in the observed
activities. The integrated methodology enhances the system’s
capability to distinguish the number of people engaged in
activities, demonstrating the complementary roles of ICA and
CWT in signal analysis.

FIGURE 12. The unique analysis of the number of people walking through
the combined implementation of ICA and CWT shows the combined
approach. First, ICA breaks down CSI signals into statistically independent
components. Then, CWT coefficient analysis allows for a more detailed
evaluation of changes in time and frequency. (a) represents one person
standing, (b) one person walking, and (c) two people walking.

C. IMPACT OF MULTI-PEOPLE MOVEMENT
The evaluation results indicated that the proposed method
impacted the accurate classification of groups’ movement
activities. In the single-user scenario, the system recognised
and classified individual activities. Transitioning is more
complex for two- or more-person scenarios; the process
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exhibited resilience in distinguishing overlapping signals
and varying trajectories, showcasing its ability to classify
group movements. The system’s robustness in handling
concurrent activities by multiple individuals was positive
outcome, affirming its practical utility in scenarios involving
collective actions. The experimental findings also highlighted
the method’s ability to count the number of people engaged in
group activities. Functionality holds paramount importance
in applications such as crowd monitoring and management.
The evaluation demonstrates that the method addresses the
challenges of classifying group movement activities. The
method’s success reflects its potential for practical scenarios
requiring accurate and dependable recognition of human
activities, even in the presence of multiple individuals. The
proposed model excels at capturing dynamic alterations
within the signal domain, especially in scenarios involving
varying numbers of individuals engaged in activities such
as walking. As individuals move, the CSI signal’s dynamic
changes exhibit discernible frequency patterns over time.
Notably, the frequency changes are more pronounced when
multiple individuals are involved in dynamic activities, such
as walking. As a result, the ICA detects the higher frequency
components associated with an increasing number of people
participating in such activities. The ICA leverages dynamic
frequency fluctuations over time, making it a powerful tool
for differentiating the complexities that arise from varying
numbers of users. As a result, this improves the CSI signal
analysis and distinguishes between various individuals in
different situations. Fig. 13 shows the separated walking
signals performed by individuals, pairs, and groups of three,
highlighting noticeable differences in the CSI signal plots.
As more individuals participate in walking activities, the
frequency of dynamic changes increases clearly, demonstrat-
ing the analysis’s effectiveness in accurately collecting and
differentiating between various scenarios.

FIGURE 13. Separated Signal variations in frequency change over time,
highlighting the ability of ICA to distinguish between different numbers of
individuals engaged in walking activities.

The evaluation method focused on the system’s ability
to determine the number of individuals present within
the monitored area. The results demonstrated the system’s
capability to count the number of people in diverse scenarios,
including situations involving multiple individuals engaged

in different activities. The results confirmed the system’s
effectiveness in discerning individual and collective human
activities and underscored its practical utility in real-world
settings.

D. COMPLEX ACTIVITIES AND ENVIRONMENTS
EVALUATIONS
The proposed model addresses the intricate challenge
of discerning between different and complex activities,
particularly those that share common features, such as
running and walking. The difficulty distinguishing between
these activities is due to the similarity in specific motion
patterns and feature representations. Moreover, integrating
attention mechanisms enhances the model’s ability to focus
on critical features within the signal that are indicative of
specific activities. Attention mechanisms enable the model to
prioritise and emphasise unique characteristics by changing
the weights of different signal components. The attention
mechanisms act as a rational filter, supporting the model in
selecting relevant features.

The evaluation is concerned with the ability to distin-
guish between complex activities and complex scenarios.
It assesses the models’ capacity to differentiate between
intricate movements, providing insights into their robust-
ness in addressing the intricacies of human behaviour
within dynamic environments. The model demonstrates a
remarkable ability to distinguish between complex activities
shown in Fig. 14, such as walking and running, even when
performed by different numbers of individuals. It announces
the development of robust systems capable of nuanced human
behaviour recognition in real-world, multi-faceted settings.

FIGURE 14. Comparative analysis illustrating 3D-CWT classification of
(a) one person, (b) two people, and (c) three people walking, followed by
(d) one person, (e) two people, and (f) three people running.

The discrimination between intricate activities such as
walking and running, especially when involving varying
numbers of individuals, poses a formidable challenge to
activity recognition systems. The dynamic nature of these
movements, encompassing distinct gait patterns, speeds, and
accelerations, introduces complexity in signal analysis.

In complex environments, the integration of ICA with
CWTprovides advantages for signal processing, as illustrated
in Fig. 15. We tested the model in three different locations
with different dimensions: the classroom, and the home
demonstrated in Fig. 16. The method separates the mixed
signals into statistically independent components, which
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FIGURE 15. The plot shows the distinction between walking and running
activities performed by three individuals. The robustness of the
complicated human motion recognition methodology is evident in the
classification of complex activities.

is important for isolating the desired signal from noise
and interference. The synergy of ICA and CWT ensures
robust performance in dynamic and cluttered environments,
enabling precise and reliable signal analysis.

FIGURE 16. Different environments used for analysis: (a)Home,
(b) Classroom.

The proposed approach enables for a precise characteri-
zation of the intricate dynamics inherent in such activities
and in complex environments. It demonstrates the model’s
proficiency in navigating the complexities of diverse and
simultaneous human movements. The plotted results in
Fig. 15 depict the model’s capability to distinguish between
three people walking and three people running, showcasing
its efficacy in handling complex activity recognition scenar-
ios.

E. METRICS EVALUATION
In this work, the hyperparameters of the implemented models
and training process are carefully selected to optimize
performance and robustness. The SVM and Naive Bayes
classifiers are evaluated with optimized configurations,
employing confusion matrices for performance assessment.
For the deep learning models (LSTM, GRU, Bi-LSTM,
and Attention Mechanism), the architecture is defined with
specific configurations: sequence input size of 50, varying
numbers of hidden units (128, 100, and 128). During training,
the Adam optimizer is utilised with a gradient threshold of 1.
Themodels undergo training over 50 epochs with a minibatch
size of 32, and an initial learning rate of 0.0001. Training

progress is monitored and visualized using MATLAB’s,
while validation is performed on separate data partitions,
ensuring model generalization.

The comparative analysis, including classifiers such as
SVM, Naïve Bayes (NB), LSTM, Gated Recurrent Unit
Networks GRU, Bidirectional LSTM (BiLSTM), and atten-
tion mechanisms, is pivotal for understanding the nuanced
performance of each approach. These models excel at
capturing temporal dependencies and contextual information
crucial for accurate activity recognition in scenarios with
multiple participants. Attention mechanisms improve the
model’s ability to focus on important data features and
relationships, leading to more accurate multi-person sensing
than regular classifiers. Classifier performance is evaluated
in Fig. 17, comparing the accuracy achieved by SVM, Naive
Bayes NB, LSTM, GRU, BiLSTM, and LSTM Attention
Mechanism models. The analysis offers insights into each
model’s relative strengths and capabilities for classifying
data.

FIGURE 17. The classifier performance assessment compares the
accuracy achieved by SVM, NB, LSTM, GRU, BiLSTM, and Attention
Mechanism models.

The performance of algorithms was evaluated based on
multiple metrics: accuracy, precision, recall, F1 score, K-
score, and AUC. Precision (P) is defined as the ratio of
true positive (TP) predictions to the total number of positive
predictions:

P =
TP

TP+ FP
(14)

Recall (R), also known as sensitivity, is the ratio of
true positive predictions to the actual number of positive
instances:

R =
TP

TP+ FN
(15)

The NB model performed better, achieving an accuracy of
73%, with precision and recall of 72% and 74%, respectively.
The F1 score for NB was 73%, where the F1 score (F1) is the
harmonic mean of precision and recall:

F1 = 2 ·
P · R
P+ R

(16)
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Advanced deep learning models exhibited higher effi-
ciency. The Long Short-Term Memory (LSTM) network
achieved an accuracy of 93%, with precision and recall both
around 92% and 94%. The Gated Recurrent Unit (GRU)
model closely followed with an accuracy of 89%, precision
of 88%, and recall of 90%.

The Bidirectional LSTM (BiLSTM) model further
enhanced performance, achieving 95% and 97% precision
and recall, respectively. The highest efficiency was exhibited
by the Attention LSTM model, with an accuracy of 97%,
precision of 97.5%, and recall of 98%. Furthermore, the
K-score, another measure of the classifier’s performance,
was lower than precision and recall but followed similar
trends. AUC, which measures the area under the ROC curve,
confirmed the superior performance of deep learning models,
especially the Attention LSTM, with an AUC of 98%.

Overall, while traditional machine learning models like
SVM and NB showed moderate performance, the deep
learning models, particularly BiLSTM and Attention LSTM,
outperformed them across all metrics, demonstrating superior
capability in complex environments and tasks. Moreover,
these models often consider computational efficiency when
there is an observed increase in accuracy. The variance in
computational efficiency is primarily caused by the number
of hidden layers and the overall complexity of the model
architecture. While LSTM, GRU, BiLSTM, and Attention
Mechanisms offer superior accuracy, their computational
demands can be higher due to increased model intricacy.
Furthermore, the observed trends in the box plot in Fig. 18
show a corresponding drop in accuracy when the number
of activities or people increases. It indicates the increased
difficulty of recognising diverse activities or handling
multiple individuals. Conversely, as the number of samples
increases, the accuracy tends to improve, emphasising the
positive impact of larger datasets on model performance.
The graphical representation, labelled axes, and title enhance
the interpretability of how these factors influence the model’s
accuracy.

FIGURE 18. Model accuracy exhibits sensitivity to activity, people, and
samples.

F. MODEL ADVANCEMENTS
The analysis of different indoor human activity recognition
models represents a seminal contribution to advancing the
field’s capabilities. The proposed design goes beyond a more

comparative exercise by introducing novel methodologies
and optimisations that enhance the practicality of indoor
human activity recognition systems. Furthermore, the key
outcome will be the ability to make these systems lighter
and more computationally efficient. Moreover, the proposed
design refines the theoretical underpinnings of indoor human
activity recognition. It translates these advancements into
tangible benefits, making the technology more accessible,
adaptable, and relevant for real-time, lightweight, and
practical applications. A comparison Table 2 summarises
the main points from the search results related to multi-user
WiFi-based human activity recognition.

Table 2 presents a comparative analysis of the methods,
techniques, number of participants, limitations, accuracy,
bandwidth, number of transmitters and receivers, and other
factors used in various studies related to WiFi-based multi-
human activity recognition. The table displays all of the
proposed techniques for detecting human activity using
WiFi signals. Furthermore, evaluating LOS and NLOS
conditions is pivotal to understanding multi-user sensing
within indoor environments. LOS scenarios, where a direct
and unobstructed path exists between the transmitter and
receiver, contrast sharply with NLOS situations, where
obstacles such as walls or partitions disrupt the direct line
of signal propagation. The proposed model’s sophisticated
signal processing techniques augment its capacity to discern
and interpret signals in challenging NLOS conditions. The
model improves activity recognition accuracy by lever-
aging temporal dependencies and contextual information,
even in an obstructed direct line of sight. The design
enhancement allows the model to surpass the limitations of
prior approaches, providing a more resilient and accurate
multi-user sensing capability, especially in NLOS scenarios.

G. MULTI LOCATIONS EVALUATION AND MATCHING
CAPABILITY
The environment has direct effect in WiFi sensing, especially
in scenarios involving multiple users using CSI. Complex
environments with varying layouts, furniture, and materials
can introduce multipath effects, where the wireless signals
bounce off surfaces, creating multiple overlapping signals.
This complicates the extraction of clean activity patterns
from the CSI data. Additionally, the presence of multiple
users adds further complexity as their movements interfere
with each other, leading to more intricate signal variations.
Additionally, noise, both from external sources such as
electronic devices and internal system noise, which further
degrades the CSI quality.

The pursuit of location-independent WiFi sensing repre-
sents a contribution step in overcoming the challenges posed
by environmental effects on signal propagation in various set-
tings. The proposed model contributes by introducing a way
to match locations that reduce the impact of environmental
factors. This makes the WiFi sensing system more resistant
to change in its surroundings and eliminates environmental
effects by making it easier to build WiFi sensing systems that
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TABLE 2. Comparative analysis of WiFi-Based HAR works, highlighting methods, techniques, number of people, bandwidth, number of antennas,
accuracy, and limitations.

work seamlessly in a variety of settings with little need for
location-specific calibration.

FIGURE 19. Variations across locations before matching (a, b, c, d) and
after matching processes (e, f, g, h).

The activities in Fig. 18(a, b, c, d) highlight the contrasting
spatial attributes between the two captured places before
matching them. On the other hand, Fig. 19(e, f, g, h)
demonstrates how the matching process adjusts the variances
between locations for alignment. The evaluation of the
designedmodel acrossmultiple locations provides a thorough
assessment of its performance in a variety of settings as

shown in Fig. 16. The evaluation considers changes in
signal propagation introduced by distinct ecological factors,
such as architectural differences, material compositions, and
spatial configurations. The technique reveals the model’s
adaptability to these variations, demonstrating its ability
to recognize and classify human activities across locations
independently and consistently.

H. LIMITATIONS AND FUTURE WORKS
The intricate temporal and spatial features used in this
work of utilising LSTM and signal processing techniques
contribute to a nuanced understanding of the signal dynamics.
Furthermore, the attention mechanisms used in this model
enables to focus on salient features, thusmitigating the impact
of overlapping signals and increasing its discrimination
capabilities. Additionally, incorporating such techniques
underscores the system’s adaptability to real-world com-
plexities, setting the stage for further indoor human activity
recognition improvement. Additionally, the potential for
mis-classification, especially in scenarios with overlapping
activities, necessitates ongoing refinement to reduce false
positives and negatives. Therefore, the system must be
improved for large-scale deployments, and its robustness
in handling dynamic environmental conditions is another
dimension.

The envisaged future works emanate from the identified
limitations and aim to propel the system’s capabilities to
different environments. They need to address the complexity
of human activities and investigate adaptive algorithms and
learning mechanisms to adjust to changing conditions. Future
research may also integrate real-time feedback mechanisms
to enhance the system’s adaptability. Further refinement of
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the model’s interpretability enables a deeper understanding
of its decision-making processes. Additionally, scalability
studies and investigations into the system’s performance in
real-world scenarios with diverse activities will contribute
to its applicability across broader contexts, such as through
wall applications. Collaborative efforts with experts in archi-
tecture, signal processing, and human behaviour sciences
may yield interdisciplinary insights, fostering the evolution
of more sophisticated and practical indoor human activity
recognition systems. One additional gap in this work is the

The MIMO systems used in this work employ clustored
RPi at both the receiver to improve sensing performance,
propagate signals using Omnidirectional antenna. While this
omnidirectional propagation can enhance communication
coverage and reliability, it poses a limitation for sensing
applications, particularly in WiFi-based human activity
recognition or localization, precise and controlled signal
propagation. The Omnidirectional nature lead to multipath
interference, where signals reflect off various surfaces,
creating complex and unpredictable propagation patterns.
This can reduce the accuracy and reliability of sensing mea-
surements and can not distunglish between each individual’s
activity. In contrast, directional antennas focus the signal in a
specific direction, reducing multipath effects and enhancing
the precision of the received signals. By concentrating
the signal in a targeted area, directional antennas, array
antennas, and ultra band systems which can achieve better
spatial resolution, making them more suitable for sensing
applications that require high accuracy, such as detecting the
exact position or movement of an object.

V. CONCLUSION
In conclusion, the developed multi-user sensing method
advances location-independent multi-user indoor human
activity recognition using WiFi signals. The proposed
approach has enabled multi-user sensing, showcasing its
robustness in discerning and classifying diverse human activ-
ities within complex, real-world environments. The strategic
fusion of ICA and CWT contributes to the system’s ability
to capture intricate temporal and spatial features inherent
in human movements in complex environments and for
multi users. At the same time, the seq2seq LSTM algorithm
enhances the model’s contextual understanding, in particular
in scenarios involving overlapping activities. This model’s
distinguishing strength lies in its ability to achieve remarkable
accuracy in multi-user sensing while operating with a
simplified hardware infrastructure specially with usage of
attention mechanism. The minimalist hardware requirements
make it readily deployable, offering a practical solution for
various settings without necessitating extensive resources.
The model achieves high accuracy in complex scenarios
attests to its effectiveness in addressing the demands of
dynamic environments withmultiple users engaged in diverse
activities. Furthermore, reducing layering complexity with-
out compromising accuracy further highlights the system’s
efficiency and alterability. The groundbreaking culmination

of this work holds immense promise for transformative
advancements in real-world, multi-user sensing applications
location independently.
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