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 Insufficient lighting environment has raised challenges for night shift 
workers’ safety monitoring. Thus, we have developed a computer vision-

based algorithm recognizing 11 actions based on action recognition in dark 

(ARID) dataset. A hybrid model of integrating convolutional neural network 

(CNN) into YOLOv7 has been proposed. YOLOv7 is an algorithm designed 

for real-time object detection in image or video, for fast and accurate detection 
in applications such as autonomous vehicles and surveillance systems. In this 

work, video in dark environment has first been enhanced using CNN 

algorithm before feeding into YOLOv7 network for activity recognition. 

Adaptive gamma intensity correction (GIC) has been integrated to further 

improving the overall result. The proposed model has been evaluated over 
different enhancement modes. The proposed model is able to handle dark 

video frames with 74.95% Top-1 accuracy with fast processing speed of  

93.99 ms/frame on a 4 GB RTX 3050 graphical processing unit (GPU) and 

17.59 ms/frame on 16 GB Tesla T4 GPU. The base size of the proposed model 

is tiny, only 74.8 MB, but with 36.54 M of total parameters indicating that it 
has more capacity to learn more meaningful information with limited 

hardware resources. 

Keywords: 

Computer vision 

Convolutional neural network 

Dark frame enhancement 

Human action recognition 

YOLOv7 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Wong Yan Chiew 

Faculty of Electronics and Computer Technology and Engineering, Universiti Teknikal Malaysia Melaka (UTeM) 

Durian Tunggal, Melaka 76100, Malaysia 

Email: ycwong@utem.edu.my 

 

 

1. INTRODUCTION 

Video surveillance in dark environments is still challenging as the dark scenes taken are degraded due 

to noises caused by insufficient lighting condition. It often requires external hardware for night surveillance 

and hence increases the cost. Most algorithms only focus on detection to detect anomalies and gather visual 

evidence [1], but not consider the object’s action, hence is limited for human safety monitoring in dark incident 

scenes such as workplace. In recent years, human action recognition (HAR) had become a significant attention 

in the field of computer vision (CV) [2]. HAR in dark videos involves several steps start from collecting raw 

data until the conclusion about the desired action, those processes include data preprocessing, feature 

extraction, and action recognition by using CV algorithm [3]. The only difference is that dark condition HAR 

requires additional step to called image enhancement. HAR in dark can be achieved with the help of image 

enhancement technique to make dark image more visually receptive. A straightforward approach is to 

preprocess the dark image manually by applying classical methods such as histogram equalization (HE) and 

gamma intensity correction (GIC). To have a more adaptive and effective enhancement process, the task relies 

on advanced methods that utilize neural networks. 

Various neural network-based enhancement techniques have been invented including exposure [4] 

that utilised generative adversarial networks (GAN) network with deep reinforcement learning approach to 

https://creativecommons.org/licenses/by-sa/4.0/
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learn decision-making on action to be taken to facilitate the operation of a set of filters for image enhancement , 

iterative convolutional neural network (CNN) [5] that use fully convolutional network (FCN) network to learns 

high dynamic range (HDR) image’s feature to enhance the low dynamic range (LDR) dark image , seeing 

motion in the dark (SID) [1] that use two-pathway framework that use pairs of low-light video and 

corresponding long-exposure version for enhancement by linear scale dark frame pixel to  match the brightness 

and dynamic range of the long-exposure frame, and kindling the darkness (KinD) [6] that deals with extraction 

of illumination information from input images and perform adjustment and use a flexible mapping function 

learned from real data to adjust light level in an image. 

HAR often involves the extraction of spatial and temporal features of a given action and analyzing 

those features to perform action recognition tasks. However, huge number of features leads to high 

computational resources. Object detection algorithms, originally used for identifying and localizing o bjects of 

interest within an image, are useful and more computationally friendly for recognizing actions. One -stage 

regression-based approaches such as the YOLO series  [7], [8] had been utilized in [9] for such purposes by 

providing labels and bounding box coordinates to the person performing action in each video frame and 

predicting it by a single CNN.  

Current approaches separate action recognition and dark image enhancement into two separated stages 

[10]. A recently launched model uses a combination of domain adaptable normalization (DANorm) and 

R(2+1)D-34 [11] to focus on features normalization, angle constraint for preventing misclassification between 

labelled and unlabelled dataset, and Pseudo-label (method to solve data imbalance issue. Other methods such 

as combination of Zero-reference deep curve estimation (Zero-DCE) as image enhancer and R(2+1)D as action 

recognizer [12], Dark-Light + R(2+1)D-34 [13] are also being considered as the references. In this work, a 

two-stage approach consisting of dark frame enhancement (DFE) model and YOLOv7 detector as an action 

recognizer for HAR in dark videos is proposed. The effectiveness of DFE to facilitate the YOLOv7 for HAR 

was investigated in terms of mAP@0.5 and single frame inference speed. 

 

 

2. METHOD 

The pipeline shown in Figure 1 consists of a CNN-based enhancement model (DFE) and an action 

recognizer (YOLOv7) that trained in a supervised manner. The input v ideo frame was first resized into 

256×256 size and fed into DFE for enhancement. The frame filtered by DFE is treated as the input for YOLOv7. 

The DFE is further integrated with adaptive GIC technique to select a suitable value for a parameter called 

gamma in an automated way for getting optimal enhancement in image’s brightness and contrast.  
 
 

 
 

Figure 1. The training pipeline of the proposed DFE+YOLOv7 model 
 
 

2.1.  Convolutional neural network-based dark frame enhancement model 

The model architecture has been designed to be resolution independent. The DFE has only several 

CNN layers stacked together to extract lighting features from well-lit images and to learn a good mapping of 

the dark video frames toward the good lighting features. There are skip conn ections within the stacked CNN 

layers to improve information flow and reduce the vanishing gradient problem by learning both low-level and 

high-level features. The proposed DFE model contains only 67, 299 k parameters.  

The proposed adaptive GIC technique first applies GIC on each frame pixel based on (1). The value 

of gamma parameter, 𝛾 will affect the frame’s brightness and contrast such that, 𝛾 = 1.0 will have no changes 

on the brightness and contrast, 𝛾 > 1.0 will increase both and vice versa. 𝛾 is differentiable and has been 

introduced into the loss function based on (2) to further improve the model performance. 
 

𝐿𝑉(𝑜𝑢𝑡 ) = 𝐿𝑉 (𝑖𝑛)
𝛾
 (1) 
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where 𝐿𝑉(𝑜𝑢𝑡 )  is enhanced frame pixel luminance value, 𝐿𝑉(𝑖𝑛)   is original frame pixel luminance value, and 𝛾 

is gamma value. 

 

𝑙𝑜𝑠𝑠(𝑚𝑠𝑒) =
1

𝑛
∑(log10(𝐿𝑉(𝑖𝑛 ) ) − log10(𝐿𝑉 (𝑜𝑢𝑡 ) ))

2
 (2) 

=
1

𝑛
∑(log10(𝐿𝑉(𝑖𝑛 ) ) − log10(𝐿𝑉 (𝑖𝑛)

𝛾𝑛𝑒𝑤))
2
  

 

where 𝑙𝑜𝑠𝑠(𝑚𝑠𝑒 ) is loss computed in terms of mean squared error (MSE) 

In this context, 𝛾 is defined as a trainable parameter, initialized with an initial value of 1.0, and updated 

during training based on gradient of the loss function with respect to the gamma value 𝛻𝛾 , this allows automated 

adjustment of gamma value to a suitable level. The gamma is then updated  based on (3). The pseudocode that 

explains how the gamma can be treated as trainable parameter and adjusted automatically during training is 

shown in Figures 2(a) and 2(b) (see in Appendix). 
 

𝛾𝑛𝑒𝑤 =  𝛾𝑜𝑙𝑑 + 𝛻𝛾  (3) 

 

where 𝛾𝑛𝑒𝑤 is updated gamma value, 𝛾𝑜𝑙𝑑  is previous gamma value, and 𝛻𝛾  is gradient of a loss function with 

respect to the trainable parameter (gamma) 

 

2.2.  Human action recognition network 

In this paper, the one-stage detector YOLOv7 [8] has been chosen as the HAR network, which is 

widely used in fast processing applications. Compared with other previous versions, YOLOv7 outperforms all 

in terms of speed with satisfied accuracy. Transfer learning has been utilized for the implementation of this 

HAR network based on training protocol in [8]. It refers to leverage of the knowledge gained by the pretrained 

YOLOv7’s weight and feature representations from a large-scale coco dataset, then fine tuning the weight 

based on the new target data, which refers to human action in this case. This technique helps to save time and 

computational resources especially in the case of limited data as in this case. The same network architecture 

and loss functions as the original YOLOv7 have been adopted. 

 

2.3.  Data training 

MIT-FiveK [14] dataset consisting of well-lit images has been chosen. This set of images are then 

augmented by adding several types of noises, then, the image pairs are used for tra ining DFE. Figure 3 shows 

the augmented dataset. 
 

 

 

 
 

Figure 3. Dataset used for training DFE that consist of well-lit images and corresponding artificially 

generated dark images for DFE training 
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The purposed of DFE is to enhance the action recognition in dark (ARID) [15] video dataset. YOLOv7 

has been trained on the enhanced version of ARID video frames with annotated bounding box coordinate and 

class label to achieve HAR. Videos in ARID dataset originally have frame rate of 30 FPS, many consecutive 

frames are nearly identical, hence contains unsignificant and redundant information, so the frames have been 

reduced 10 times to just 3 FPS without changing the video duration.  

MIT-FiveK dataset has total of 5,000 well-lit images, while ARID dataset consists total of 5,572 

videos recording 11 classes of human actions (drink, jump, pick, pour, push, run, sit, stand, turn, walk, and 

wave) in poor lighting condition. To meet the hardware resource constraint and avoid overfitting, not all the 

MIT-FiveK images and ARID videos are selected for training. The configuration of train, validation and test 

data are made randomly and shown in Tables 1 and 2. 

 

 

Table 1. Configuration of MIT-FiveK dataset 
Train set  Validation set  Test set  

Well-lit  images and corresponding low 
light counterpart each own 3,000 images 

Well-lit  images and corresponding low 
light counterpart each own 750 images 

400 artificially generated 
low light images 

 

 

Table 2. Configuration of ARID dataset 
Action classes Train set  Validation set  Test set  

Drink, jump, pick, pour, push, run, sit, stand, turn, walk, wave Each action own 50 Each action own 6 Each action own 6 
Total  628 clips 

 

 

Prior to training of the proposed model, data labeling was involved to provide region of interest (ROI), 

basically the human that performing action, to help algorithm identify elements of an image and return relevant 

result. The ROI in each video frame has been annotated with boundin g boxes and action class labels using 

MATLAB video labeler with embedded point tracker algorithm to automate the labelling process. All the 

annotations have then been converted into YOLO compatible format. 

 

 

3. RESULTS AND DISCUSSION 

The effectiveness of the proposed method has been evaluated in dark scenario only. In this paper, the 

proposed DFE model has been trained with the Adam optimizer with a starting learning rate of 0.001 and batch 

size of 1 for 40 epochs. The training protocol of [8] has been adopted to perform transfer learning on YOLOv7 

for HAR task. The video frames have been resized to 256×256 for training. The experiments use run on the 

4GB RTX3050 and 16 GB Tesla T4 GPU.  

 

3.1.  Performance of dark frame enhancement 

DFE has been trained under three conditions. These conditions are firstly, train without GIC technique 

(only the extracted good lighting features), secondly, train with additional fixed GIC technique (2.5 fixed 

gamma), and lastly, train with additional adaptive GIC technique (proposed model). The training and validation 

loss obtained from those three conditions are compared and illustrated in Figures 4(a) to 4(c) respectively. The 

DFE model with adaptive GIC shows smaller overall losses, where the losses exhibit small fluctuations from 

the start of epoch one until the last of epoch 40, as compared to the other two, this indicates that the proposed 

model able to enhance the darken images to be closer to the corresponding ground truth. 

The computation of structural similarity index measure (SSIM) has been carried  out on the test set. 

The SSIM is recorded in Figure 5. Image pairs enhanced by DFE without GIC and DFE with adaptive GIC 

technique have similar SSIM value of around 0.67, which show better enhancement performance compared to 

the one with fixed gamma GIC. Furthermore, the enhancement results are also compared in Figure 6. The 

frames enhanced by DFE with adaptive GIC technique are more visually receptive in terms of edges and color 

tones in the sense of human eyes and the optimum gamma is around 1.5 (shown in Figure 4(c)). 

 

3.2.  Performance of proposed method on human action recognition task in dark video 

Three versions of enhanced ARID frames and the original dark frames (without enhancement) have 

been used for YOLOv7 training. The effect of different enhancement model’s setting on the HAR model 

accuracy has been investigated in terms of Top-1 accuracy and is recorded in Figure 7. In terms of processing 

time for a single frame, the results are tabulated in Table 3. The proposed model (with adaptive GIC) alwa ys 

shows the longest processing time means the video frames enhanced contains more meaningful details that the 

proposed model can extract and process. Some of the recognition results on the dark video frames are shown 
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in Figure 8. It can be observed that when the DFE model with additional adaptive GIC technique is used for 

enhancing dark frames, the YOLOv7 model is able to predict the action more accurately than the other two. 

Nevertheless, some of the recognition results on the dark video frames are shown in Figure 8. It can be observed 

that when the DFE model with additional adaptive GIC technique is used for enhancing dark frames, the 

YOLOv7 model is able to predict the action more accurately than the other two. 

 

 

 
(a) 

 

 
(b) 

 
(c) 

 

Figure 4. The proposed adaptive GIC technique contributes to a smaller loss: (a) loss when training without 

GIC, (b) loss when training with fixed gamma GIC, and (c) loss when training with adaptive GIC  

(default gamma value=1.0) 

 

 

 
 

Figure 5. SSIM comparison for three versions of DFE model. The proposed adaptive GIC technique 

contributes to higher SSIM (better enhancement performance) 
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Figure 6. Dark frames from ARID dataset enhanced by DFE. The proposed adaptive GIC technique 

contributes to more visually receptive of enhancement results (shown by fourth column) 

 

 

 
 

Figure 7. The proposed adaptive GIC technique contributes to highest Top-1 accuracy 

 

 

Table 3. Single frame processing time comparison between different models  
Hardware accelerator setting Enhancement setting Single frame processing time (ms per frame) Frame rate (fps) 

4 GB RTX 3050 GPU 

Without Enhancement  33.18 30 
DFE without GIC 89.99 11 

DFE + fixed gamma GIC 92.29 10 
DFE + adaptive GIC 93.99 10 

16 GB Tesla T4 GPU 

Without Enhancement
 

9.78
 

102 

DFE without GIC 16.40 60 
DFE + fixed gamma GIC 17.06 58 

DFE + adaptive GIC 17.59 56 

 

 

 
 

Figure 8. Detection results from YOLOv7 assisted by 3 DFE models. Upper-left: DFE with adaptive GIC. 

Bottom-left: DFE with fixed GIC. Upper-right: DFE without GIC, Bottom-right: Original frames 
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In short, Figure 8 shows that the Top-1 accuracy for YOLOv7-based HAR with DFE + adaptive GIC 

outperforms the one without any enhancement (64.79%) by 10.16%, the one without GIC (69.33%) by 5.62%, 

and the one with fixed GIC (72.79%) by 2.16%. It can be said that DFE model with additional adaptive GIC is 

the most effective algorithm among the others two to improve YOLOv7 accuracy for HAR. Therefore, the 

proposed model accuracy, base model size and total parameters have been further compared to benchmarked 

approaches as shown in Table 4. The proposed method has achieved good accuracy on par with previous 

research work and could be further improved by including temporal information to differentiate action with 

similar movement such as “stand” and “sit” in future work. The proposed model owns second smallest model 

size 74.8 MB and second highest total parameters 36.54 M indicate that it is having more capacity to learn and 

process more meaningful information from a frame, while still preserving the compatibility with application 

with limited hardware resources. This work focuses on the processing speed which overlook by previous 

research work, enabling more comprehensive analysis in the future. 

 
 

Table 4. Comparison of top-1 accuracy and single frame processing time 

Citation Method 
Image 

enhancer 
Dataset 

Top-1 

accuracy 

Processing time 

(ms/frame) 

Base model 

size (mb) 

Total 

parameters 

[11] DANorm + 
R(2+1)D-34 

DANorm ARID 80.73 - 487.8 MB 
[16] 

- 

[12] Z-DEAF + 
R(2+1)D-34 

Zero-
DCE 

49.39 - 487.8 MB 
[16] 

- 

[13] C3D GIC 39.17 - - 34.8 M [17] 
3D-

ShuffleNet 
44.35 - - 1.52M [18] 

3D-

SqueezeNet 

50.18 - 0.5 MB [18] 2.15 M [18] 

3D- ResNet-
18 

54.68 - 256.1 MB 
[16] 

33.36 M 
[18] 

Pseudo-3D-

199 

71.39 - 98 MB [19] - 

I3D-Two-
stream 

73.39 - - 25 M [20] 

3D-ResNext-
101 

74.73 - - 48.75 M 
[18]  

Dark-Light + 
R(2+1)D-34 

94.04 Computationally 
intensive [21] 

487.8 MB 
[16] 

- 

[22] 3D-ResNext-
18 

HE About 
75.00 

- 256.1 MB 
[16] 

33.36 M 
[18] 

GIC About 
77.00 

- 

KinD About 
69.00 

- 

HE+GIC About 
78.00 

- 

[23] Delta 
Sampling 
R(2+1)D-

BERT 

Zero-
DCE 

90.46 Computationally 
intensive 0 

464 MB [24] - 

This work DFE + 
Adaptive GIC 
+ YOLOv7 

DFE + 
Adaptive 

GIC 

74.95 93.99 (RTX3050), 
17.59 (Tesla T4) 

[24], [25] 

74.8 MB [24] 36.54  

 

 

4.  CONCLUSION 

A hybrid model for HAR in dark environments has been proposed. The model integrated DFE, 

adaptive GIC and YOLOv7 was proposed to improve ARID environments in terms of both accuracy and speed, 

where each of the dark video frames was adaptively enhanced to achieve better recognition performance. By 

taking advantage of adaptive GIC, the proposed approach was able to handle dark videos. The experimental 

results showed that the proposed method performed better than some previous approaches on the ARID dataset 

in terms of accuracy and outperformed the majority of the previous works in terms of base model size and total 

parameter.  
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APPENDIX 

 
(a) 

 

 
(b) 

 

Figure 2. Updated gamma value: (a) pseudocode and (b) flowchart  
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