

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

HIGHLY CONDUCTIVE ANTENNA BASED ON GNP/Ag/Cu NANOCOMPOSITE FOR WEARABLE APPLICATION

DOCTOR OF PHILOSOPHY

2024

Faculty of Electronics and Computer Technology and Engineering

HIGHLY CONDUCTIVE ANTENNA BASED ON GNP/Ag/Cu NANOCOMPOSITE FOR WEARABLE APPLICATION

Doctor of Philosophy

2024

HIGHLY CONDUCTIVE ANTENNA BASED ON GNP/Ag/Cu NANOCOMPOSITE FOR WEARABLE APPLICATION

NOR HADZFIZAH BINTI MOHD RADI

Faculty of Electronics and Computer Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Highly Conductive Antenna Based on GNP/Ag/Cu Nanocomposite for Wearable Application" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

DEDICATION

To my beloved family

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

This research addresses the growing need for innovative new formulation nanocomposite material for highly conductive wearable antenna and useful solutions in areas such as public safety, navigation, and mobile computing. This study explores the impact potential of a new formulation of Graphene Nanoplatelet/Silver/Copper (GNP/Ag/Cu) nanocomposite formulation for low range Ultrawide Band (UWB) applications, aiming to overcome the limitations of traditional copper-based antennas. The research employs silk-screen printing technology to fabricate conductive patches of GNP/Ag/Cu nanocomposite onto textile substrates. Various loading levels of Graphene Nanoplatelets (GNP) are tested to evaluate their impact on the radiating properties of the nanocomposite. Electrical conductivity is measured using the four-point probe method, while morphological and compositional analyses are conducted via scanning electron microscopy (SEM) and energy-dispersive Xray spectroscopy (EDS). The performance of the antennas is assessed in terms of gain, return loss, and Specific Absorption Rate (SAR), with comparisons drawn between different textile substrates (leather, cotton, and felt). The GNP/Ag/Cu nanocomposite conductive ink exhibits increased electrical conductivity to be superconductive with additional layers, reaching up to 40.218 \times 10⁷ S/m in the fifth layer. The antennas fabricated with these materials demonstrate higher gains of 11.7 dB, 11.8 dB, and 12.2 dB for leather, cotton, and felt substrates, respectively, with return losses consistently below -20 dB. The SAR values, evaluated for an input power of 0.5 W and based on 10 grams of human tissue, show compliance with ICNIRP standards, remaining below 2 W/kg. The improved conductivity and performance of the GNP/Ag/Cu nanocomposites validate their effectiveness as a substitute for copper in wearable antennas. The synergistic effects of GNP, Ag, and Cu enhance electrical conductivity to be superconductive and enhance overall antenna gain while maintaining safety standards. The morphological data from SEM and EDS highlight the uniformity and thickness of the nanocomposite coating, which contributes to the antenna's improved performance. This study provides a significant advancement in the development of wearable antennas by leveraging the unique properties of graphene and its composites. The successful integration of GNP/Ag/Cu nanocomposites into textile substrates offers a promising alternative to conventional copper-based solutions, addressing issues related to cost, flexibility, and environmental impact. The findings support the potential of these materials in enhancing the functionality of wearable technologies and contribute valuable insights for future research and development in smart textile antennas.

ANTENA BERKONDUKSI TINGGI BERASASKAN NANOKOMPOSIT GNP/Ag/Cu UNTUK APLIKASI BOLEH PAKAI

ABSTRAK

Penyelidikan ini menangani keperluan yang semakin meningkat untuk penyelesaian formulasi baru material nanokomposit konduktif tinggi untuk antena boleh pakai yang inovatif dalam bidang seperti keselamatan awam, navigasi, dan pengkomputeran mudah alih. Kajian ini meneroka formulasi nanokomposit potensi Graphene Nanoplatelet/Perak/Kupur (GNP/Ag/Cu) untuk aplikasi julat rendah Ultrawide Band (UWB), bertujuan untuk mengatasi kekangan antenna yang konvensional berasaskan tembaga. Penyelidikan ini menggunakan teknologi percetakan skrin sutera untuk menghasilkan tampalan konduktif nanokomposit GNP/Ag/Cu pada substrat tekstil. Pelbagai tahap pemuatan Graphene Nanoplatelets (GNP) diuji untuk menilai kesannya terhadap sifat radiasi nanokomposit tersebut. Konduktiviti elektrik diukur menggunakan kaedah probe empat titik, manakala analisis morfologi dan komposisi dilakukan melalui mikroskop elektron imbasan (SEM) dan spektroskopi sinar-X pengedaran tenaga (EDS). Prestasi antena dinilai dari segi gain, return loss, dan Kadar Penyerapan Spesifik (SAR), dengan perbandingan dilakukan antara substrat tekstil yang berbeza (kulit, kapas, dan felt). Nanokomposit GNP/Ag/Cu menunjukkan peningkatan superkonduktiviti elektrik dengan lapisan tambahan, mencapai sehingga 40.218×10^7 S/m pada lapisan kelima. Antena yang dihasilkan dengan bahan ini menunjukkan gain sebanyak 11.7 dB, 11.8 dB, dan 12.2 dB untuk substrat kulit, kapas, dan felt, masing-masing, dengan return loss yang konsisten di bawah -20 dB. Nilai SAR, yang dinilai untuk kuasa input 0.5 W dan berdasarkan 10-gram tisu manusia, menunjukkan pematuhan dengan piawaian ICNIRP, kekal di bawah 2 W/kg. Peningkatan konduktiviti dan prestasi nanokomposit GNP/Ag/Cu mengesahkan keberkesanan mereka sebagai pengganti tembaga dalam antena boleh pakai. Kesan sinergistik GNP, Ag, dan Cu meningkatkan konduktiviti elektrik dan gain keseluruhan antena sambil mengekalkan piawaian keselamatan. Data morfologi dari SEM dan EDS menyerlahkan keseragaman dan ketebalan salutan nanokomposit, yang menyumbang kepada prestasi antena yang lebih baik. Kajian ini memberikan kemajuan yang signifikan dalam pembangunan antena boleh pakai dengan memanfaatkan sifat unik graphene dan kompositnya. Integrasi berjaya nanokomposit GNP/Ag/Cu ke dalam substrat tekstil menawarkan alternatif yang menjanjikan kepada penyelesaian berasaskan tembaga konvensional, menangani isu berkaitan kos, fleksibiliti, dan impak persekitaran. Penemuan ini menyokong potensi bahan-bahan ini dalam meningkatkan fungsi teknologi boleh pakai dan menyumbang pandangan berharga untuk penyelidikan dan pembangunan masa depan dalam antena tekstil pintar.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful. All praises be to Allah, without His blessing I will not come to this stage of research work. First of foremost I would like to thank Allah s.w.t. for giving me the patience and blessing to pursue my PhD study.

This appreciation goes to my supervisor, Ir. Dr Mohd Muzafar bin Ismail for his support and guidance and always keeping me motivated and focused. He played a crucial role in my research journey, providing valuable time, ideas, and stimulating support throughout my studies during my research work at Universiti Teknikal Malaysia Melaka (UTeM). I really appreciate his concerns and advice, which had kept me going. I also would like to thank my co-supervisor, Professor Dr. Zahriladha bin Zakaria, PM Ir. Dr. Nurul Hazlina binti Noordin and not to forget PM Ir. Ts. Dr. Jeefferie bin Abd Razak for their support and concern during my study.

I am very grateful to have my understanding husband, Ahmad Dainney bin Zainuddin, for his help in upbringing our kids, Diya Medina and Umar Madani, during my busy days. My deepest gratitude goes to my family for their moral support has encouraged me to pursue my study. Not to forget all my friends that always give me support and encouragement to keep going on my PhD journey. Thank you so much.

My heartfelt gratitude goes to Faculty of Electronics and Computer Technology and Engineering (FTKEK), Faculty of Industrial and Manufacturing Technology & Engineering (FTKIP) and postgraduate colleagues at Universiti Teknikal Malaysia Melaka (UTeM) particularly the team of Material Synthesis Lab, Encik Imran bin Ali and team. Microwave Research Group, Encik Mohd Sufian bin Abu Talib and team, Ahmad Rifhan bin Salman, Siti Nur Illia binti Abdullah, Nor Aisah Khalid Muhammad, Afiff Alias and Yanie for their contributions and technical assistance.

Last but not least, special thank you to Universiti Malaysia Pahang (UMP), Faculty of Electrical and Electronics Engineering Technology (FTKEE), and Center of Excellence for Advanced Research in Fluid Flow (CARiFF) and Ministry of Higher Education Malaysia (MOHE) for financial sponsorship through the Academic Training Scheme (SLAB-KPT/453/2020/2).

My personal expression during the writing process.

"As I spent many thoughtful hours in my room. Most of the time ~ staring at my PC, it can seem almost like the definition of wasted time, procrastination and with no purpose. But it is more than that. It is actually an exercise in discovering the contents of our own minds. It is easy to imagine that we know what we think but we rarely do entirely. If we doing right, staring at the PC offers a way for us to listen to the quieter suggestions and perspectives of our deep inside selves."

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS	xiii
LIST OF APPENDICES	xiv
LIST OF PUBLICATIONS	XV

CHAPTER

1.	INTRODUCTION	1
	1.1 Background	1
	1.2 Problem Statement	4
	1.3 Research Objective	7
	1.4 Scope of Research	8
	1.5 Main Contribution of the Best Recipe for New formulation GNP/Ag/Cu	
	Highly Conductive Ink	9
	1.6 Thesis Outline	10
_	SALING	
2.	LITERATURE REVIEW	13
	2.1 Introduction	13
	2.2 Principle of Nanocomposite Materials	16
	2.2.1 Graphene Nanoplatelet as Function Nanomaterial	17
	2.2.2 Graphene Nanoplatelet Overview	18
	2.2.3 Properties of Graphene Nanoplatelet	21
	2.2.4 Application Graphene Nanoplatelet as Conductive Material	23
	2.2.5 The Advantages of Graphene Nanoplatelet	24
	2.3 Metals of Conductive Materials	25
	2.3.1 Fundamental of Silver (Ag) Material	26
	2.3.2 Silver Chemical Properties	27
	2.3.4 Advantages and Application of Silver	28
	2.3.5 Fundamental of Copper (Cu) Material	30
	2.3.6 Copper Chemical Properties	31
	2.3.7 Advantages and Application of Copper	32
	2.3.8 The Existing Graphene-Based Mixture	32
	2.4 The Ultra-Wide Band Frequency	34
	2.5 Wearable Textile Antenna	37
	2.6 Extensive Study on Antenna Design	42
	2.6.1 Design of Patch Antenna	47
	•	

		2.6.2 Design of the CPW-fed Wearable Antenna	49
		2.6.3 Basic Mathematical Equation	50
	2.7	Fabrication Method of Wearable Antenna	52
	2.8	Antenna Properties and Parameters	55
		2.8.1 Permittivity of Substrate	55
		2.8.2 Electrical Conductivity of Substrate	55
		2.8.3 Antenna Gain	56
		2.8.4 Return Loss (RL) of the Antenna	56
		2.8.5 Voltage Standing Wave Ratio (VSWR)	58
		2.8.6 Antenna Radiation Pattern	58
		2.8.7 Specific Absorption Rate (SAR)	60
	2.9	Application of Wearable Antenna	63
	2.10	Research Gap and Main Contribution	65
	2.11	Summary	66
3.	MET	THODOLOGY	68
	3.1	Introduction	68
	3.2	Description of Methodology	71
		3.2.1 Phase 1: The Preparation of GNP/Ag/Cu Nanocomposites Sample	
		Solution	71
	K	3.2.2 Phase 2: Morphology and Electrical Conductivity Testing	71
	F	3.2.3 Phase 3: Antenna Design and Simulation	72
	1	3.2.4 Phase 4: Printing Preparation of GNP/Ag/Cu Nanocomposites Ink	on
		Textile by Silk-screen Printing	72
		3.2.5 Phase 5: Characterization and Testing of the Wearable Antenna	73
	3.3	Nanocomposite Material Synthesizing	74
	3.4	Nanocomposite Morphology Analysis	77
	3.5	Electrical Conductivity Analysis	78
	3.6	Measurement of Substrate Permittivity	82
	3.7	Antenna Design and Simulation MALAYSIA MELAKA	83
	3.8	Methodology of Conductive Ink	85
	3.9	Methodology of Antenna Fabricating	87
	3.10	The Measurement of Wearable Antenna	91
4.	RES	ULT AND DISCUSSION 9	95
	4.1	Introduction	95
	4.2	Nanocomposite Material Result	95
		4.2.1 GNP/Ag/Cu Morphology and Composition Analysis	96
	4.3	Four-Point Probe	04
	4.4	Measurement of Dielectric Properties and Thickness of Substrate 10	06
	4.5	Fabrication and Printing of Wearable Textile Antenna111	11
	4.6	Proposed Design CPW Wearable Antenna	12
	4.7	Antenna Parameters	14 15
		4./.1 Analysis of Return Loss (S-11)	15
		4.7.2 Analysis of Voltage Standing Wave Ratio (VSWR)	18

		4.7.3 Analysis of Antenna Gain	120
		4.7.4 Analysis of Antenna Radiation Pattern	125
		4.7.5 Analysis of Surface Absorption Rate (SAR)	130
	4.8	Summary	132
5.	CON	NCLUSION AND RECOMMENDATIONS FOR FUTURE	RESEARCH
			135
	5.1	Introduction	135
	5.2	Summary of the Research Objectives	135
	5.3	Future Works and Recommendation	138
REFE	REN	CES	139
APPE	NDIC	CES	155

LIST OF TABLES

TABLE	TITLE	
Table 2.1	Comparison between material and electrical conductivity previous study	from 33
Table 2.2	Dielectric properties of normal textiles (Cicchetti, Miozzi and T 2017)	esta, 40
Table 2.3	Various substrate and conducting materials of textile wea antenna	rable 41
Table 2.4	The comparison of various wearable antenna design	43
Table 2.5	The description of antenna design	48
Table 2.6	The example of Return Loss and its interpretation (Li, 2012)	57
Table 2.7	SAR exposure limits between the countries (Madjar, 2016)	63
Table 2.8	The various wearable antenna application (Movassaghi et al., 2	014) 64
Table 4.1	The measurement of thickness	100
Table 4.2	The electrical conductivity of different concentrations of silver copper loadings	r and 105
Table 4.3	Comparison between material and electrical conductivity previous study TEKNIKAL MALAYSIA MELAKA	from 106
Table 4.4	The respective values of three (3) types of textiles	109
Table 4.5	Comparison between permittivity value of substrate and gain previous study	from 110
Table 4.6	The dimension of proposed wearable antenna	113
Table 4.7	Comparison between various textile and its performance	134

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Wearable devices and its applications	15
Figure 2.2	Atomic structure of graphene nanoplatelets (Madhad et al., 2021)	19
Figure 2.3	SEM micrographs (a) low magnification and (b) high magnification	n 20
Figure 2.4	Schematic of three (3) morphological states for graphene-based polymer nanocomposites	d 22
Figure 2.5	Spectrum use of various radio frequency applications	37
Figure 2.6	Schematic view of basic patch antenna	47
Figure 2.7	Structure of a patch antenna with (a) microstrip feedline, (b) CPW fed	- 48
Figure 2.8	The concept of coplanar waveguide antenna design	49
Figure 2.9	The concept of silk-screen printing	54
Figure 2.10	A typical polar radiation map (Balanis, 2016)	59
Figure 2.11	Cube of 1 and 10 g average on phantom (Zhang, 2011)	61
Figure 2.12	Models of voxel human body in CST	62
Figure 3.1	Infographic of overall process	70
Figure 3.2	Flow chart of GNP/Ag/Cu nanocomposite	76
Figure 3.3	The fine grind nanoccomposite solution using mortar and pestle porcelain	e 77
Figure 3.4	Scanning electron microscopy (Hitachi TM3030 Plus)	78
Figure 3.5	(a) Disc-pallet mould (b) Hydraulic press machine (ASTM D999-89 model)	9 79
Figure 3.6	The samples pallet	79
Figure 3.7	In-line four-point probe test equipment	80

Figure 3.8	Schematic of four-point probe testing configuration	81
Figure 3.9	The N1501A dielectric probe kit	82
Figure 3.10	The antenna evaluation design from (a) to (e)	84
Figure 3.11	The flow chart of preparation for GNP/Ag/Cu nanocomposites for ink adhesive	or 86
Figure 3.12	The apparatus of preparation for GNP/Ag/Cu nanocomposites for ink adhesive	or 86
Figure 3.13	Representations for the proposed GNP/Ag/Cu antenna from simulation to prototype	n 88
Figure 3.14	The heat press machine	89
Figure 3.15	SMA port connected to the textile antenna	90
Figure 3.16	The thickness measurement	91
Figure 3.17	The VNA antenna measurement	92
Figure 3.18	The far-field antenna measurement system	92
Figure 3.19	Patch antenna mounted on the body phantom of human body	94
Figure 4.1	The texture result of GNP/Ag/Cu conductive ink	96
Figure 4.2	The surface morphology of GNP/Ag/Cu conductive ink. (a) 1.0k magnification (b) 5.0kx magnification	x 97
Figure 4.3	SEM micrograph of GNP/Ag/Cu at 0.25 wt% of Ag/Cu loading	98
Figure 4.4	SEM micrograph of GNP/Ag/Cu at 0.50 wt % of Ag/Cu loading	98
Figure 4.5	SEM micrograph of GNP/Ag/Cu at 0.75 wt % of Ag/Cu loading	99
Figure 4.6	SEM micrograph of GNP/Ag/Cu at 1.0 wt % of Ag/Cu loading	99
Figure 4.7	The cross-sectional SEM image of the textile substrate	101
Figure 4.8	The electrical conductivity vs the thickness of nanocomposit coating	e 102
Figure 4.9	The composition of tri- nanocomposites	103

Figure 4.10	The electrical conductivity vs respective concentra	104
Figure 4.11	The dielectric properties of three (3) different textiles	108
Figure 4.12	The measurement values of three (3) different textiles using Calipe Electronic Gauge	er 109
Figure 4.13	The relation between permittivity and gain from previous studies	110
Figure 4.14	The printed of textiles antennas	112
Figure 4.15	The front view of proposed wearable antenna	114
Figure 4.16	The perspective view of proposed wearable antenna	114
Figure 4.17	The comparison of simulation and measurement return loss of leather	of 116
Figure 4.18	The comparison of simulation and measurement return loss of cotto 117	n
Figure 4.19	The comparison of simulation and measurement return loss of felt	117
Figure 4.20	The comparison of simulation and measurement VSWR of leather	119
Figure 4.21	The comparison of simulation and measurement VSWR of cotton	119
Figure 4.22	The comparison of simulation and measurement VSWR of felt	120
Figure 4.23	The wearable antenna simulated gain for leather substrate	121
Figure 4.24	The wearable antenna simulated gain for cotton substrate	122
Figure 4.25	The wearable antenna simulated gain for felt substrate LAKA	122
Figure 4.26	The wearable antenna simulated and measured gain for leather substrate	er 124
Figure 4.27	The wearable antenna simulated and measured gain for cotto substrate	n 124
Figure 4.28	The wearable antenna simulated and measured gain for felt substrat 125	te
Figure 4.29	The leather wearable antenna radiation pattern E-plane (left) and H plane (right)	I- 127
Figure 4.30	The cotton wearable antenna radiation pattern E-plane (left) and H plane (right)	I- 128

Figure 4.31	The felt wearable antenna radiation pattern E-plane (left) and plane (right)	d H- 129
Figure 4.32	The wearable antenna simulated SAR for leather substrate	131
Figure 4.33	The wearable antenna simulated SAR for cotton substrate	131
Figure 4.34	The wearable antenna simulated SAR for felt substrate	132

LIST OF ABBREVIATIONS

AUT	-	Antenna Under Test
CPW	-	Co-planar Waveguide
CST	-	Computer Simulation Technology
EDS	-	Energy Dispersive X-ray Spectroscopy
FCC	-	Federal Communications Commission
FTKEK	-	Faculty of Electronics & Computer Technology & Engineering
FR4	-	Flame Retardant Glass Epoxy Laminate
GNP	MA	Graphene Nanoplatelet
GO	-	Graphene Oxide
ICNIRP	-	International Commission on Non-Ionizing Radiation Protection
OCP	711	Open-ended Coaxial Probe
PCB	. 14	Printed Circuit Board
RF		Radio Frequency
	Æ	Return LossKNIKAL MALAYSIA MELAKA
SAR	-	Specific Absorption Rate
SEM	-	Scanning Electron Microscopy
UTeM	-	Universiti Teknikal Malaysia Melaka
UWB	-	Ultra-wide Band
VNA	-	Vector Network Analyzer
VSWR	-	Voltage Standing Wave Ratio
WBAN	-	Wireless Body Area Network

LIST OF SYMBOLS

Ag	-	Silver
Cu	-	Copper
AgNS	-	Silver Nanosheets
ε _r	-	Relative Permittivity
tan δ	-	Loss tangent
σ	-	Conductivity
ρ	IA AL	Resistivity
°C	AL-	Degree celcius
w %	-	Weight Percent
dB	E -	Decibel
dBi	SUITERS	Decibels Relative to Isotropic
Ω	املاك	اونيۇمرسىنى نېكنىكل مليسىي
Ī	JNIVE	RSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDICES

APPEND	IX	TITLE	
Appendix	A	The Synthesis Apparatus	155
Appendix	В	Hitachi tabletop Microscope TM3030	157
Appendix	C	JG Model M3-mini Type Four-point Probe Specification Calibration Process	and 158
Appendix	D	Keysight N1501A Dielectric Probe Kit	160

LIST OF PUBLICATIONS

The followings are the list of publications related to the work on this thesis:

Radi, N.H.M., Ismail, M.M., Zakaria, Z., Abd Razak, J. and Abdullah, S.N.I., 2022. Development and design of wearable textile antenna on various textile substrate for unlicensed ultra-wideband applications. *TELKOMNIKA (Telecommunication Computing Electronics and Control)*, 20(6), pp.1181-1188. (SCOPUS indexed).

Abdullah, S.N.I., Ismail, M.M., Abd Razak, J., Zakaria, Z., Ab Rashid, S.R. and Radi, N.H.M., 2022. Design of triple band antenna for energy harvesting application. *Bulletin of Electrical Engineering and Informatics*, 11(4), pp.2359-2367. (SCOPUS indexed).

Radi, N.H.M., Ismail, M.M., Zakaria, Z. and Abd Razak, J., 2022. The Performance Comparison between CPW-fed and Microstrip Feedline Leather Antenna for UWB Applications. *Proceedings of 4th International Conference on Telecommunication, Electronic and Computer Engineering (ICTEC'22)*, pp.98-99

Radi, N.H.M., Ismail, M.M., Zakaria, Z. and Abd Razak, J., 2024. The effect of thickness of a conductive nanocomposite ink printed on textile co-planar waveguide antenna. *Bulletin of Electrical Engineering and Informatics*, 13(1), pp.208-214. (SCOPUS indexed)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1

INTRODUCTION

1.1 Background

The popularity of wearable antennas is on the rise due to their compactness, reconfigurability, flexibility, and durability, making them suitable for various wireless communication applications. Their versatility extends to diverse fields, including medical, sports, military, and beyond, underscoring their immense the possibility exists for a variety of applications. (Ashyap et al., 2017; Sabban, 2018, 2019, 2020a, 2020b; Khajeh-Khalili, Haghshenas and Shahriari, 2020; Khajeh-Khalili, Shahriari and Haghshenas, 2021; Bahmanzadeh and Mohajeri, 2022). In medical applications, wearable antenna systems play a significant role in keeping track of body performance while exercising, as well as keeping track of important signs such as heart rate and blood pressure. These systems serve medical professionals in assessing patient health and facilitating timely interventions. Additionally, they contribute to broader network connectivity, enabling data transmission for remote **AYSIA** FKNI monitoring and analysis beyond the medical facility setting (Ashyap et al., 2017; Sabban, 2018; Khajeh-Khalili, 2021). Furthermore, wearable antennas, also known as body-worn antennas, are gaining significant attention due to their comfort and versatility. Textiles have emerged as a promising substrate for these antennas, allowing for integration into clothing and accessories. A variety of textiles, including cotton (Tan et al., 2018), denim (Jalil et al., 2012), leather (Ahmed, Ahmed and Shaalan, 2017), and drill fabric (Jamal et al., 2024), have been investigated for their suitability as substrates for wearable antennas. This diversity in textile options enables customization to suit different applications and preferences, making wearable antennas more accessible and practical for everyday use (Jalil et al., 2012; Mahmud, Jabri and Mahjabeen, 2013; Ahmed, Ahmed and Shaalan, 2017; Tan et al., 2018; Regina and Merline, 2021; Salman et al., 2022). In this study proposed the wearable highly conductive and textile antenna that covering the UWB bands.

This research aims to evaluate the potential of a new formulation of Graphene Nanoplatelet/Silver/Copper (GNP/Ag/Cu) conductive nanocomposites for a new type UWB flexible wearable leather antenna. Silk-screening printing technology will be applied to incorporate GNP/Ag/Cu nanocomposites for highly conductive radiating patch and implementing the Co-planar Waveguide (CPW) ground plane antenna fabrication. The impact of GNP loading on the antenna radiating properties for GNP/Ag/Cu-textiles nanocomposites will be studied and the evaluation is carried out using standard physical and electrical characterization methods. These methods may include measurements of electrical conductivity, dielectric properties, antenna radiation patterns, impedance matching, and resonant frequencies. By systematically varying the GNP loading and analyzing its effects on these properties, researchers can gain insights into the optimal formulation for achieving desired antenna performance characteristics in GNP/Ag/Cu-textiles nanocomposites.

Previously, copper was commonly used to construct the conductive patch of an antenna, which posed several challenges. Copper was expensive, bulky, environmentally sensitive, and difficult to manufacture. These limitations hindered the widespread adoption and practical implementation of antenna technologies, particularly in applications where cost-effectiveness, lightweight design, environmental sustainability, and ease of manufacturing were crucial factors (Mohd Zaini and Abdul Rani, 2018). Because graphene