

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

WIFI-BASED LOCATION-INDEPENDENT HUMAN ACTIVITY RECOGNITION AND LOCALIZATION USING DEEP LEARNING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DOCTOR OF PHILOSOPHY

Faculty of Electronics and Computer Technology and Engineering

Doctor of Philosophy

WIFI-BASED LOCATION-INDEPENDENT HUMAN ACTIVITY RECOGNITION AND LOCALIZATION USING DEEP LEARNING

FAHD SAAD AHMED ABUHOUREYAH

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DECLARATION

I declare that this thesis entitled "WiFi-based Location-Independent Human Activity Recognition and Localization Using Deep Learning" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

DEDICATION

To my beloved mother and father.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Detecting human activities holds paramount significance across diverse domains, encompassing healthcare, security, autonomous driving, and human-computer interaction. Leveraging wireless signals for activity sensing exploits the intricate influence of human activities on signal propagation phenomena such as reflection, diffraction, and scattering. Wireless signal-based human sensing, mainly through WiFi and radar technologies, presents notable advantages, including device-free sensing, resilience to environmental factors, obstacle penetration, and preservation of visual privacy. This work addresses the inherent challenges in WiFi-based Human Activity Recognition (HAR) by focusing specifically on critical aspects: the location dependency of WiFi sensing and the impact of multi-user interactions on signal reliability. Existing HAR systems encounter difficulties recognizing human activities due to variations in physical environments and the complexities introduced by multiple users within WiFi signals. The study aims to advance methodologies to mitigate challenges arising from environmental dependency and multi-user effects, enhancing the precision and adaptability of WiFi-based HAR systems for reliable and robust performance across diverse environmental contexts. The research highlights the role of Deep Learning methodologies in addressing challenges and advancing the capabilities of HAR technology. First, we employ the advanced Seq2Seq Recurrent Neural Network (RNN) technique to achieve high accuracy in HAR with few layers of the Long Short-Term Memory (LSTM) algorithm. Precise activity recognition and incorporation of through-wall sensing capabilities are achieved within the deep learning framework. Second, Multi-head Attention Mechanism Networks capture intricate patterns in Channel State Information (CSI) data, enhancing recognition accuracy for human activities detected through WiFi signals. Third, recognizing the capability of location independence, we propose a novel locationindependent HAR using a self-learning CSI-based technique for wireless sensor networks. This innovative approach reduces the impact of environmental factors on HAR accuracy, ensuring robust performance across diverse spatial contexts. Fourth, addressing the challenge of human interaction recognition in multi-user environments, WiFi signal processing with Independent Component Analysis (ICA) and Continuous Wavelet Transform (CWT) techniques is introduced. An efficient real-time localization method is introduced in the fifth section, which achieves location-independent localization by utilizing the fusion of the Received Signal Strength Indicator (RSSI) and CSI. The fusion contributes to the development of reliable and adaptable HAR systems across varying environmental contexts. A trajectory mapping approach using CSI-Triangulation with deep learning is proposed to refine the localization capabilities of WiFi-based HAR, offering an accurate and robust solution for localization in diverse real-world scenarios. The adaptive strategy accommodates variations in signal characteristics and environmental factors, highlighting the robustness of the presented methods in scenarios involving various user interactions and environmental conditions. The findings contribute to the improvement of HAR and localization systems and have acheived high accuracy of clasification up to 97.5% with enhancement of 6% of localization and tracking accuracy.

PENYETEMPATAN DAN PENGECAMAN AKTIVITI MANUSIA BERASASKAN WI-FI TAK BERSANDAR LOKASI MENGGUNAKAN PEMBELAJARAN MENDALAM

ABSTRAK

Pengesanan aktiviti manusia adalah sangat penting dalam pelbagai bidang, termasuk penjagaan kesihatan, keselamatan, pemanduan autonomi, dan interaksi antara manusiakomputer. Penggunaan isyarat tanpa wayar untuk mengecam aktiviti telah mengeksplotasi pengaruh activiti manusia yang rumit dalam fenomena perambatan isyarat seperti pantulan, pembelauan, dan penyerakan. Pengecaman aktiviti manusia berasaskan isyarat tanpa wayar, terutamanya melalui teknologi WiFi dan radar, menawarkan kelebihan yang ketara, termasuk pengecaman tanpa peranti, kecekapan terhadap faktor persekitaran, penembusan halangan, dan pemeliharaan privasi visual. Kajian ini menangani cabaran yang dihadapi dalam pengecaman aktiviti manusia (HAR) berasaskan WiFi dengan menumpukan khusus kepada aspek penting: penderiaan WiFi dengan kedudukan bersandar dan impak berinteraksi dengan pelbagai pengguna terhadap keboleh harapan isyarat. Sistem HAR yang sedia ada menghadapi kesulitan mengecam aktiviti manusia disebabkan perubahan dalam persekitaran fizikal dan kerumitan yang diperkenalkan oleh pelbagai pengguna dalam isvarat WiFi. Kajian ini bertujuan untuk memajukan metodologi untuk mengatasi cabaran yang tertimbul daripada kesan persekitaran dan kesan pelbagai pengguna, meningkatkan kepersisan dan kebolehsuaian sistem HAR dalam pelbagai konteks berkenaan alam sekitar. Pertama, kami menggunakan teknik Seq2Seq Recurrent Neural Network (RNN) untuk mencapai kepersian tinggi dalam HAR dengan menggunakan beberapa lapisan algoritma Long Short-Term Memory (LSTM). Pengecaman aktiviti yang tepat dan penggabungan keupayaan pengesan melepasi dinding dicapai dalam kerangka pembelajaran mendalam. Kedua, Rangkaian Mekanisme Perhatian yang berbilang kepala menangkap corak rumit dalam data matlumat keadan saluran (CSI), meningkatkan kepersisan HAR yang dikesan melalui isyarat WiFi. Ketiga, kami mencadangkan HAR dengan kedudukan tak bersandar menggunakan teknik berasaskan CSI pembelajaran sendiri untuk rangkaian sensor tanpa wayar. Pendekatan inovatif ini mengurangkan impak persekitaran ke atas kepersisan HAR, memastikan prestasi kukuh dalam pelbagai persekitran. Keempat, menangani cabaran pengecaman interaksi manusia dalam persekitaran pelbagai pengguna, pemprosesan isyarat WiFi dengan ICA dan teknik CWT diperkenalkan. Ini adalah penting dalam senario dengan pelbagai pengguna, di mana kerumitan isyarat memerlukan pemprosesan inovatif untuk mengenal pasti interaksi manusia dengan tepat. Kelima, kaedah penyetempatan masa nyata yang efisien diperkenalkan, menggunakan gabungan RSSI dan CSI untuk mencapai penyetempatan kedudukan tak bersandar. Gabungan ini menyumbang kepada sistem HAR yang boleh dipercayai dan mudah disesuaikan dalam pelbagai konteks persekitaran. Akhirnya, pendekatan pemetaan londar diusulkan menggunakan CSI-segitiga dengan pembelajaran mendalam untuk menyempurnakan keupayaan penyetempatan HAR berasaskan WiFi, memberikan penyelesaian untuk penyetempatan yang tepat dan kukuh dalam pelbagai senario dunia nyata. Penemuan ini menyumbang kepada penambahbaikan sistem HAR dan pengesanan lokasi, serta telah mencapai ketepatan klasifikasi yang tinggi sehingga 97.5% dengan peningkatan 6% dalam ketepatan pengesanan dan penjejakan lokasi.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, I praise and thank Allah SWT for His greatness and for giving me the strength and courage to complete this thesis.

First and foremost, I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr. Wong Yan Chiew and Dr. Ahmad Sadhiqin bin Mohd Isira. Their meticulous guidance and steadfast support have been instrumental in the successful completion of my PhD study. Their generous encouragement and enduring patience have cultivated in me an open and logical mindset. The depth of their knowledge and their rigorous approach to research have empowered me to evolve into an independent researcher, and I am honored and pleased to have had the privilege of working under their mentorship.

Utmost appreciation, respect, and love are reserved for my family, whose unwavering support has been a cornerstone throughout this challenging journey. Their companionship and encouragement have been pivotal in overcoming difficulties and adversities. Without their unconditional support, this achievement would have been insurmountable. I express profound thanks to my parents for not only raising me but also instilling in me the courage to pursue my dreams. Their boundless love and unwavering support will serve as a perpetual source of motivation in all facets of my life.

TABLE OF CONTENTS

PAGES

DECLARATION
APPROVAL
DEDICATION
ABSTRACT
ABSTRAK
ACKNOWLEDGEMENT
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS
LIST OF APPENDICES
LIST OF PUBLICATIONS

Error! Bookmark not defined. Error! Bookmark not defined. Error! Bookmark not defined. iv vii viii xvi xvii xvii xvii xvii

CHAPTER

1.	INTRODUCTION	1
	1.1 Background	1
	1.1.1 Human Activity Recognition	2
	1.1.2 WiFi Sensing Overview	4
	1.1.3 Advancement of Wireless Sensing Technologies	7
	1.1.4 WiFi-based Sensing Challenges	9
	1.2 Problem Statement	11
	1.3 Research Question	13
	1.4 Research Objectives	13
	1.5 Scope of Research	14
	1.6 Significance of Study	15
	1.7 Review of Thesis Organization	16
2.	LITERATURE REVIEW 2.1 Introduction	20 20
	2.2 Wireless Sensing	20
	2.2.1 Human Activity Recognition via WiFi CSI Sensing	23
	2.3 Integrated CSI-Based Sensing	28
	2.3.1 CSI-based Human Activity Recognition Techniques	33
	2.3.2 LSTM networks and Seq2Seq	41
	2.3.3 Data collection tools	44
	2.4 CSI-based Human Activity Recognition Applications	45
	2.5 Through wall WiFi-based Sensing	50
	2.6 WiFi-based Localization	51
	2.7 Challenges for Deep Learning WiFi -based Human Activity Recognition	54
	2.8 Summary	62
3.	ADVANCEMENTS IN DEEP LEARNING FOR HUMAN ACTIVITY	
	RECOGNITION	63
	3.1 Introduction	63
	3.2 Background of Human Activity Recognition Based on WiFi	64

3.3	Preliminaries	65
3.4	Through-Wall Human Activity Recognition using Deep Learning	
	Recurrent Neural Networks	69
	3.4.1 Pre-processing	72
	3.4.2 Feature Extraction	74
	3.4.3 LSTM Classifier	75
	3.4.4 Performance Evaluation	78
3.5	Enhancement of WIFI Based Human Activity Recognition using Multi-	
	head Attention Mechanism Networks	93
	3.5.1 Sequence to Sequence and Attention Mechanism	94
	3.5.2 The Limitations of RNN's in HAR using CSI	95
	3.5.3 Experiment Results and Evaluation	103
3.6	Summary	112
4 CS	I-BASE LOCATION INDEPENDENT HUMAN ACTIVITY	
CS RF	COGNITION	114
4 1	Introduction	114
4.2	Background study	114
4 3	Fundamentals of CSI in Wireless Communication	118
4.4	A novel Location Independent HAR Using Self-Learning CSI-Based	110
	Techniques for Wireless Sensor Networks	121
	4.4.1 Pre-trained model	122
	4.4.2 Feature Extraction	124
	4.4.3 Eliminating spatial influence from the signal	126
	4.4.4 Self-Training Model	126
	4.4.5 Matching labels	131
	4.4.6 Implementation and Performance Evaluation	134
4.5	Human- Interaction of Multi-User HAR through Innovative WiFi Signal	
	Processing	150
	4.5.1 Data collection	152
	4.5.2 Preprocessing	153
	4.5.3 ICA and CWTNIKAL MALAYSIA MELAKA	155
	4.5.4 LSTM Classifier	159
	4.5.5 Matching Environments	160
	4.5.6 Implementation and Performance Evaluation	161
4.6	Summary	180
5. EN	HANCED WIFI-BASED FREE DEVICE LOCALIZATION	183
5.1	Introduction	183
5.2	Fundamental Aspects	185
5.3	Efficient Real-Time Localization Utilizing WiFi with fussing RSSI and	
	CSI	187
	5.3.1 CSI Data Pre-processing	188
	5.3.2 RSSI Data Pre-processing:	188
	5.3.3 Feature Extraction	189
	5.3.4 Position Estimating Method	190
	5.3.5 Performance Evaluation	197
5.4	A Next-Level Approach to Trajectory Mapping using CSI-Triangulation	L
	with Deep Learning technique	212
	v	

	5.4.1 Signal Propagation and Multipath Geometry mappin	ng WiFi
	triangulation method	214
	5.4.2 System architecture	218
	5.4.3 Performance Evaluation	219
5.5	Discussion	226
5.6	Summary	228
COI	NCLUSION AND RECOMMENDATIONS FOR FUTUR	E RESEARCH
COl	NCLUSION AND RECOMMENDATIONS FOR FUTUR	E RESEARCH 230
CO 1 6.1	NCLUSION AND RECOMMENDATIONS FOR FUTUR Introduction	E RESEARCH 230 230
6.1 6.2	NCLUSION AND RECOMMENDATIONS FOR FUTUR Introduction Summary of the Research Objectives	E RESEARCH 230 230 230
6.1 6.2 6.3	NCLUSION AND RECOMMENDATIONS FOR FUTUR Introduction Summary of the Research Objectives Research Contributions	E RESEARCH 230 230 230 232
6.1 6.2 6.3 6.4	NCLUSION AND RECOMMENDATIONS FOR FUTUR Introduction Summary of the Research Objectives Research Contributions Practical Implications and Beneficiaries	E RESEARCH 230 230 230 232 232 234
6.1 6.2 6.3 6.4 6.5	NCLUSION AND RECOMMENDATIONS FOR FUTUR Introduction Summary of the Research Objectives Research Contributions Practical Implications and Beneficiaries Limitations of The Present Study	E RESEARCH 230 230 230 232 234 235
	5.5 5.6	 5.4.1 Signal Propagation and Multipath Geometry mappin triangulation method 5.4.2 System architecture 5.4.3 Performance Evaluation 5.5 Discussion 5.6 Summary

REFERENCES APPENDICES

238 Error! Bookmark not defined.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE

TITLE

Table 1.1	Outline and original contributions of thesis which is composed of six chapters in total	18
Table 2.1	Techniques for feature extraction methods using WiFi	34
Table 2.2	Existing deep-learning approaches for WiFi sensing	38
Table 2.3	Applications using CSI with variant activities recognitions.	48
Table 2.4	Benchmarking for HAR with free location dependent	57
Table 3.1	Performance comparison of through wall HAR using machine learning methods.	90
Table 3.2	Recognition accuracy using different Methods with two datasets 10	04
Table 4.1	Publicly available datasets - building a solid foundation for location- independent evaluation	44
Table 4.2	The accuracy of recognition in scenarios involving single locations, mixtures of locations, and location-independence 14	48
Table 4.3	Comparative analysis of WiFi-based HAR, highlighting methods, techniques, and varied factors among different studies	78
Table 5.1	Accuracy Evaluation Criteria MALAYSIA MELAKA 19	99
Table 5.2	Summary of recent works in CSI fingerprinting-based indoor localization, including the methods, limitations, and potential challenges.	07
Table 5.3	Computation training and localization time comparison 2	10

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1	Sensing and data collection in both personal and ambient contexts enhancing the understanding of human interactions and environmental dynamics (Ariza-colpas et al., 2022)	, 1 3
Figure 1.2	HAR techniques employed in recognizing human activities highlighting the versatility in data-driven insights	, 4
Figure 1.3	Scheme of WiFi-based HAR system (Muaaz et al., 2022)	5
Figure 1.4	The Work Flowchart	19
Figure 2.1	Representation of RSSI and CSI propagation in WiFi systems (Sharma et al., 2021)	s 24
Figure 2.2	Illustration of CSI and RSSI for transmission measurments o distinct paths (Komamiya, Tang and Obana, 2020)	f 25
Figure 2.3	Multi-input, Multi-output (MIMO) configuration	26
Figure 2.4	MIMO configuration for enhanced wireless performance	26
Figure 2.5	Multi-path channels alterations in the spatial, harmonic, and time domains, involving intensity attenuation and phase shifts. (Ma, Zhou and Wang, 2019)	e 1 27
Figure 2.6	Environmental effects on CSI propagation (Wang et al., 2019)	28
Figure 2.7	General pipeline implementation analog OFDM system classifier	30
Figure 2.8	The association between target activities and CSI amplitude deviations. (a) mark shifts from location a to zone e. (b) phaso illustration of perfect CSI, which is formed of the stationary associate Hs and the dynamic segment Hd. (c) CSI amplitude for different target places (Zeng et al., 2021)	e r y r 31
Figure 2.9	HAR Model-based approach maps	37
Figure 2.10	Interacting layers within an LSTM module (Greff et al., 2017)	41
Figure 2.11	LSTM Seq2seq principle	42
Figure 2.12	Encoder-Decoder LSTM Seq2seq with RNN	43
Figure 2.13	CSI Propagation Model Effects (Wang et al., 2019)	46

Figure 2.14	Through wall human activity recognition using WiFi	50
Figure 2.15	WiFi-based localization tracking of individuals, elucidating the intricate interplay of WiFi signal propagation influenced by environment	52
Figure 2.16	Fresnel zone sensing model (J. Ding, Yong Wang, Si, Gao and Xing, 2022)	, 55
Figure 2.17	CSI based HAR with Angle Difference of Arrival (ADoF) (Y. Li et al., 2020)	56
Figure 2.18	Complexity of human activities	60
Figure 3.1	Visualization of a MIMO system	65
Figure 3.2	CSI amplitude for 2.4Ghz/20MHz bandwidth	67
Figure 3.3	Wall effects on the propagation of CSI subcarriers in WiFi signals	69
Figure 3.4	Hardware system architecture using Raspberry Pi 4B and Alfa AWUS1900	, 70
Figure 3.5	The flowchart of CSI-based through wall sensing via WiFi	71
Figure 3.6	Stages of data preprocessing and signal filtering (Schäfer et al., 2021)	, 72
Figure 3.7	CSI amplitude signal filtering sing outliers' removal	73
Figure 3.8 🚄	CSI signal denoising using Wavelet Decomposition (a) CSI amplitude for empty activity, (b) denoised CSI data	74
Figure 3.9	LSTM architecture (Koutník et al., 2014) YSIA MELAKA	75
Figure 3.10	Schematic of LSTM architecture layers	77
Figure 3.11	Algorithm for Through-Wall HAR using CSI	78
Figure 3.12	Experimental layout (a) depicts the positions (1, 2, 3, 4, and 5) for through-wall HAR, (b) experimental location for capturing activities through a wall	79
Figure 3.13	Integration of Raspberry Pi with Alfa AWSUS1900 router	80
Figure 3.14	LoS and nLoS with two walls blocking signal	82
Figure 3.15	CSI amplitude represents (a) walking activity along path in scenario 2, covering 6m distance when Tx and Rx are separated by one wall, (b) the CSI with distance of 12m between the Tx and Rx seprated by two walls	83

Figure 3.16	Signal power transmission at (a) the LoS, (b) LoS transmitted power losses for 2.4 and 5 GHz	84
Figure 3.17	CSI amplitude captured for activities at position 3, located approximately 12m away behind a wall. (a) represents the CSI obtained using the proposed wider-angle system, while (b) is the signal captured solely using the Raspberry Pi	85
Figure 3.18	Performance of the wider-angle system: (a) CSI data obtained using the Alfa router in conjunction with RPi , and (b) CSI data acquired solely with the RPi	86
Figure 3.19	Different material detection accuracy at first position with 2.4GHz frequency	87
Figure 3.20	Through-wall detection using 2.4 GHz and 5 GHz frequencies. Subfigures (a) and (b) depict the signal at positions 4 and 5 when utilizing 5 GHz frequency. Subfigures (c) and (d) illustrate the signal at positions 4 and 5 without antennas employing the 2.4 GHz frequency	88
Figure 3.21	Performance of the proposed model conducted under experimental conditions (a) LSTM at 1 st position with antennas using 2.4 GHz and (b) utilization of 5 GHz frequency, (c) analysing the accuracy of using 2.4 GHz and 5 GHz frequencies at designated positions (1-3), and (d) shows the accuracy through walls employing an Alfa router with varying inter-antenna spacing	89
Figure 3.22	Comparative analysis of model performance and computational efficiency in sequential HAR using CSI data	91
Figure 3.23	Sequence to sequence model connection	94
Figure 3.24	Encoder in Seq2Seq architecture	94
Figure 3.25	Decoders in Seq2Seq architecture	95
Figure 3.26	Performance drop with sequence length	95
Figure 3.27	Vanishing gradient in high density and long sequence in RNN	96
Figure 3.28	Simplified version of attention mechanism based architecture	97
Figure 3.29	Attention mechanism dynamic wights encoding	99
Figure 3.30	Flowchart of the CSI HAR incorporating multi-head attention mechanism	99
Figure 3.31	Scaled Dot-Product Self-attention Mechanism	.01

Figure 3.32	Self attention to Multi-head Attention Mechanism	102
Figure 3.33	Multi-head LSTM attention mechanism algorithm	102
Figure 3.34	Confusion matrix for performance of the compared algorithms	105
Figure 3.35	Performance comparisons of different models	106
Figure 3.36	Comparison of training convergence among different models	109
Figure 3.37	Variance of training different sequence modelling architectu (LSTM, GRU, bi-LSTM, single-head attention mechanism, multi-head attention mechanism)	ares and 110
Figure 4.1	An overview of the WiFi HAR system	115
Figure 4.2	The dynamic influence of LoS and nLoS on CSI signals, environmental effects in wireless communication scenarios	and 116
Figure 4.3	Multi-path propagation of WiFi	119
Figure 4.4	Variability in CSI amplitude across distinct locations duridentical activities	ring 120
Figure 4.5	The proposed semi-supervised domain adaptation framew comprises primarily of trained domain and pseudo-label refinem	ork ent122
Figure 4.6	Workflow of utilizing pre-trained models in machine learning	123
Figure 4.7	Denoising process and removing outliers of CSI amplitude	124
Figure 4.8	Denoising algorithm and removing outliers of CSI signal	125
Figure 4.9	The self-training process for CSI HAR illustrates the itera alignment of features between source and target domains, pseudo-labeling of unannotated data	tive the 127
Figure 4.10	Self-training process process for labeling new dataset	128
Figure 4.11	Pseudo Self-Training Algorithm process	131
Figure 4.12	Algorithm of matching lables using Self-Training	133
Figure 4.13	Schematic layering of location independent CSI-based self-train model	ning 134
Figure 4.14	Environments layouts (a) Lab (b) classroom and (c) home	135
Figure 4.15	Simulation and spacing layout for the process of capturing signal home	s at 136

Figure 4.16	Experimental setup in (a) controlled laboratory environment, (b within a classroom setting, and (c) data acquisition at hom environment	e) 137
Figure 4.17	Confusion matrix for pretrained model in the lab environment	138
Figure 4.18	Visualization of the distinctive patterns in CSI amplitudes across th environments representing the effects of surroundings	e 139
Figure 4.19	Matching activities through signal variance between laboratory and classroom environemts	d 140
Figure 4.20	Confusion matrix for self-trained model using unlabeled dataset is the classroom	n 142
Figure 4.21	Confusion matrix for model with attention mechanism using dataset 3 (training and testing on Sharp dataset s3) - achieving a comparabl 94% accuracy at two new locations a) 89% b) 88% (Meneghello e al., 2022)	e e t 145
Figure 4.22	Comparison of computational efficiency between self-supervise learning self-training and supervised learning models	d 147
Figure 4.23 Figure 4.24	Illustration of multi-people sensing using WiFi signals Schematic of data through key components, including pre-traine model process from extraction ICA and CWT feature extraction, and	151 d d
Figure 4.25	an LSTM classifier Filtering and enhancing process CSI amplitude signal qualit through denoising and outlier removal	y 155
Figure 4.26	Separated signals with ICA MALAYSIA MELAKA	156
Figure 4.27	Simplified plot of the ICA algorithm for signal separation in CS data	I 158
Figure 4.28	Illustration of the architectural layers of LSTM model	159
Figure 4.29	Algorithm of Multi-user WiFi Sensing based on ICA	161
Figure 4.30	A Graphical representation, featuring (a) 3D simulation, (b meticulous 2D layout, and (c) real-world experiment location) 163
Figure 4.31	The subsequent ICA separation the combined signals, wher subplots(a), (b), (c) and (d), are the unique signals corresponding to standing activity, single-person walk, two-person walk, and three person walk, respectively	e o >- 165

Figure 4.32	CWT analysis showcasing time-frequency representations for various activities - (a) Static activity, (b) Single person walk, (c) Two people walk, and (d) Three people walk	r o 166
Figure 4.33	3D CWT and the variance between static and walking activities	167
Figure 4.34	ICA separation of signals distinction between static and dynami activities and ICA segregates signals, revealing the intrinsic feature of stationary postures in static activities	c s 168
Figure 4.35	Implementation of ICA and CWT for distinctive analysis of the number of individuals in activities	e 169
Figure 4.36	Exhibit discernible variances in frequency changes over time highlighting ICA to distinguish between scenarios involving different numbers of individuals engaged in walking activities	e, g 171
Figure 4.37	Analysis of 3D CWT classification of (a) one person, (b) two people and (c) three people walking, followed by (d) one person, (e) two people, and (f) three people running	e, o 172
Figure 4.38	Model's discernment between three people walking and thre running highlighting the robustness of the employed methodology in complex HAR	e n 174
Figure 4.39	Comparative assessment of classifier performance, showcasing th accuracy achieved by SVM, Naive Bayes (NB), LSTM, GRU BiLSTM, and Attention mechanism models	e , 175
Figure 4.40	Model accuracy exhibits sensitivity to activity, people, and samples	s177
Figure 4.4 <u>1</u>	Variations across locations before matching (a-d) and subsequent after matching process (e-h) _ MALAYSIA MELAKA	ıt 180
Figure 5.1	Indoor localization framework	187
Figure 5.2	CSI data pre-processing and denoising: (a) noisy CSI data for RPi1 (b) filtered CSI data for RPi1	, 188
Figure 5.3	Filtering raw RSSI of three RPi (rx) units, (a) raw RSSI, (b) filtered Signal	d 189
Figure 5.4	Fingerprinting Algorithm 5.1 using RSSI	191
Figure 5.5	Segmentation technique for CSI using motion variation: (a, b walking activity and (c, d) static activity) 193
Figure 5.6	Localization Algorithm 5.2 of RSSI and CSI for estimating positioning zone and vertical dimensions	g 193

Figure 5.7	The integration of RSSI and CSI for tracking of location horizontal and vertical dimensions	in 194
Figure 5.8	Localization Algorithm 5.3 of RSSI and CSI for estimating person orientation area	n's 197
Figure 5.9	Evaluated trajectory used for analysis of system performance	198
Figure 5.10	Layout spacing and distancing between nodes	199
Figure 5.11	Layout and location used for evaluation.	200
Figure 5.12	CSI amplitude for trajectory path using both 5 GHz and 2.4 GH frequencies.	Hz 201
Figure 5.13	CDF of localization error based on frequency	202
Figure 5.14	Influence of distance between RPi Nodes at 2x6m and 1x6 intervals using 2.4 GHz frequency for the trajectory path	om 203
Figure 5.15	Trajectory tracking based on RSSI and CSI parameters.	204
Figure 5.16	Analysis of positioning error metrics (RMSE, MAE, and Maximu Error) for RSSI, CSI, and Both RSSI-CSI methods.	im 205
Figure 5.17	Comparison of CDF and localization error using proposed models	s. 206
Figure 5.18	The integration of a real-time tracking system with monitoring C and RSSI components	SI 208
Figure 5.19	Trajectory mapping utilizing WiFi signals through the analysis WiFi signal strength and connectivity patterns	of 213
Figure 5.20	The triangulation technique utilizing CSI for location detection location of a target within the wireless coverage range	on 215
Figure 5.21	Triangulation method with (a) LoS depicting the direct LoS betwee nodes, (b) data collection environment	en 217
Figure 5.22	Indoor localization framework	219
Figure 5.23	The experimental layout trajectory paths to capture and analyze C amplitude changes	SI 220
Figure 5.24	The outlines trajectory path during the experiment and t corresponding triangulation nodes involved in the analysis	he 221
Figure 5.25	Trajectory signal variance across the different directions movement shows the system's capability to map and estima trajectories based on CSI amplitude changes	of ite 222

- Figure 5.26 Through wall experimental layout depicting location analysis and trajectory with arrows indicate the directional flow 223
- Figure 5.27 Through-wall trajectory using the triangulation method affirms the effectiveness of the triangulation method in capturing and interpreting trajectory data through physical barriers. 224
- Figure 5.28 Distance error based on the separation distance between triangulation nodes 225

LIST OF ABBREVIATIONS

BiLSTM	-	Bi-directional Long Short-Term Memory
CIR	-	Channel Impulse Response
ANN	-	Artificial Neural Network
DNN	-	Deep Neural Network
GPS	-	Global Positioning System
CNN	-	Convolutional Neural Network
CWT	-	Continuous Wavelet Transform
CSI	-	Channel State Information
RL	MA	Reinforcement Learning
DWT	-	Discrete Wayelet Transform
DL	-	Deep Learning
FFT	111	Fast Fourier Transform
HAR	-	Human Activity Recognition
ннт – – – – – – – – – – – – – – – – – –		Hilbert-Huang Transform
KNNUNI	Æ	k Nearest Neighborhood MALAYSIA MELAKA
LOS	-	Line-of-Sight
LSTM	-	Long Short-Term Memory
LSTM- RNN	-	Long Short-Term Memory Recurrent Neural Networking
mmWave	-	Millimeter Wave
NIC	-	Network Interface Card
Non-LOS	-	Non-Line-of-Sight
PCA	-	Principal Component Analysis

RFID	-	Radio-Frequency Identification
RNN	-	Recurrent Neural Networking
RSSI	-	Received Signal Strength Indicator
RSSI-based	-	RSSI for WiFi-based
HAR		Human Activity Recognition
SVD	-	Singular Value Decomposition
OFDM	-	Orthogonal Frequency Division Multiplexing
SVM	-	Support Vector Machine
RSS	-	Received Signal Strength

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A MATLAB C	Codes and Dataset	267
Appendix B Hardware an	nd Data Sheet Raspberry Pi 4B	270
Appendix C Firmware an	d Monitoring Sittings	274
Appendix D Data Collect	ion	276
Appendix F Time Activit	y Classifcation	280
Appendix G Acheivemen	ts	281

