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ABSTRACT 
 

Detecting human activities holds paramount significance across diverse domains, 
encompassing healthcare, security, autonomous driving, and human-computer interaction. 
Leveraging wireless signals for activity sensing exploits the intricate influence of human 
activities on signal propagation phenomena such as reflection, diffraction, and scattering. 
Wireless signal-based human sensing, mainly through WiFi and radar technologies, presents 
notable advantages, including device-free sensing, resilience to environmental factors, 
obstacle penetration, and preservation of visual privacy. This work addresses the inherent 
challenges in WiFi-based Human Activity Recognition (HAR) by focusing specifically on 
critical aspects: the location dependency of WiFi sensing and the impact of multi-user 
interactions on signal reliability. Existing HAR systems encounter difficulties recognizing 
human activities due to variations in physical environments and the complexities introduced 
by multiple users within WiFi signals. The study aims to advance methodologies to mitigate 
challenges arising from environmental dependency and multi-user effects, enhancing the 
precision and adaptability of WiFi-based HAR systems for reliable and robust performance 
across diverse environmental contexts. The research highlights the role of  Deep Learning 
methodologies in addressing challenges and advancing the capabilities of HAR technology. 
First, we employ the advanced Seq2Seq Recurrent Neural Network (RNN) technique to 
achieve high accuracy in HAR with few layers of the Long Short-Term Memory (LSTM) 
algorithm. Precise activity recognition and incorporation of through-wall sensing 
capabilities are achieved within the deep learning framework. Second, Multi-head Attention 
Mechanism Networks capture intricate patterns in Channel State Information (CSI) data, 
enhancing recognition accuracy for human activities detected through WiFi signals. Third, 
recognizing the capability of location independence, we propose a novel location-
independent HAR using a self-learning CSI-based technique for wireless sensor networks. 
This innovative approach reduces the impact of environmental factors on HAR accuracy, 
ensuring robust performance across diverse spatial contexts. Fourth, addressing the 
challenge of human interaction recognition in multi-user environments, WiFi signal 
processing with Independent Component Analysis (ICA) and Continuous Wavelet 
Transform (CWT) techniques is introduced. An efficient real-time localization method is 
introduced in the fifth section, which achieves location-independent localization by utilizing 
the fusion of the Received Signal Strength Indicator (RSSI) and CSI. The fusion contributes 
to the development of reliable and adaptable HAR systems across varying environmental 
contexts. A trajectory mapping approach using CSI-Triangulation with deep learning is 
proposed to refine the localization capabilities of WiFi-based HAR, offering an accurate and 
robust solution for localization in diverse real-world scenarios. The adaptive strategy 
accommodates variations in signal characteristics and environmental factors, highlighting 
the robustness of the presented methods in scenarios involving various user interactions and 
environmental conditions. The findings contribute to the improvement of HAR and 
localization systems and have acheived high accuracy of clasification up to 97.5% with 
enhancement of 6% of localization and tracking accuracy.   
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PENYETEMPATAN DAN PENGECAMAN AKTIVITI MANUSIA BERASASKAN 
WI-FI TAK BERSANDAR LOKASI MENGGUNAKAN PEMBELAJARAN 

MENDALAM 
 

ABSTRAK 
 

Pengesanan aktiviti manusia adalah sangat penting dalam pelbagai bidang, termasuk 
penjagaan kesihatan, keselamatan, pemanduan autonomi, dan interaksi antara manusia-
komputer. Penggunaan isyarat tanpa wayar untuk mengecam aktiviti telah mengeksplotasi 
pengaruh activiti manusia yang rumit dalam fenomena perambatan isyarat seperti pantulan, 
pembelauan, dan penyerakan. Pengecaman aktiviti manusia berasaskan isyarat tanpa 
wayar, terutamanya melalui teknologi WiFi dan radar, menawarkan kelebihan yang ketara, 
termasuk pengecaman tanpa peranti, kecekapan terhadap faktor persekitaran, penembusan 
halangan, dan pemeliharaan privasi visual. Kajian ini menangani cabaran yang dihadapi 
dalam pengecaman aktiviti manusia (HAR) berasaskan WiFi dengan menumpukan khusus 
kepada aspek penting: penderiaan WiFi dengan kedudukan bersandar dan impak 
berinteraksi dengan pelbagai pengguna terhadap keboleh harapan isyarat. Sistem HAR 
yang sedia ada menghadapi kesulitan mengecam aktiviti manusia disebabkan perubahan 
dalam persekitaran fizikal dan kerumitan yang diperkenalkan oleh pelbagai pengguna 
dalam isyarat WiFi. Kajian ini bertujuan untuk memajukan metodologi untuk mengatasi 
cabaran yang tertimbul daripada kesan persekitaran dan kesan pelbagai pengguna, 
meningkatkan kepersisan dan kebolehsuaian sistem HAR dalam pelbagai konteks berkenaan 
alam sekitar. Pertama, kami menggunakan teknik Seq2Seq Recurrent Neural Network 
(RNN) untuk mencapai kepersian tinggi dalam HAR dengan menggunakan beberapa lapisan 
algoritma Long Short-Term Memory (LSTM). Pengecaman aktiviti yang tepat dan 
penggabungan keupayaan pengesan melepasi dinding dicapai dalam kerangka 
pembelajaran mendalam. Kedua, Rangkaian Mekanisme Perhatian yang berbilang kepala 
menangkap corak rumit dalam data matlumat keadan saluran (CSI), meningkatkan 
kepersisan HAR yang dikesan melalui isyarat WiFi. Ketiga, kami mencadangkan HAR 
dengan kedudukan tak bersandar menggunakan teknik berasaskan CSI pembelajaran 
sendiri untuk rangkaian sensor tanpa wayar. Pendekatan inovatif ini mengurangkan impak 
persekitaran ke atas kepersisan HAR, memastikan prestasi kukuh dalam pelbagai 
persekitran. Keempat, menangani cabaran pengecaman interaksi manusia dalam 
persekitaran pelbagai pengguna, pemprosesan isyarat WiFi dengan ICA dan teknik CWT 
diperkenalkan. Ini adalah penting dalam senario dengan pelbagai pengguna, di mana 
kerumitan isyarat memerlukan pemprosesan inovatif untuk mengenal pasti interaksi 
manusia dengan tepat. Kelima, kaedah penyetempatan masa nyata yang efisien 
diperkenalkan, menggunakan gabungan RSSI dan CSI untuk mencapai penyetempatan 
kedudukan tak bersandar. Gabungan ini menyumbang kepada sistem HAR yang boleh 
dipercayai dan mudah disesuaikan dalam pelbagai konteks persekitaran. Akhirnya, 
pendekatan pemetaan londar diusulkan menggunakan CSI-segitiga dengan pembelajaran 
mendalam untuk menyempurnakan keupayaan penyetempatan HAR berasaskan WiFi, 
memberikan penyelesaian untuk penyetempatan yang tepat dan kukuh dalam pelbagai 
senario dunia nyata. Penemuan ini menyumbang kepada penambahbaikan sistem HAR dan 
pengesanan lokasi, serta telah mencapai ketepatan klasifikasi yang tinggi sehingga 97.5% 
dengan peningkatan 6% dalam ketepatan pengesanan dan penjejakan lokasi. 
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