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ABSTRACT 
 

In order to better understand the tribological behaviour of a poly(lactic) acid (PLA)-

polycarbonate urethane (PCU) blend for artificial articular cartilage applications, this study 

investigates the blend's composition, which is 90 wt.% PLA-10 wt.%PCU. Layer thicknesses 

of 0.10, 0.12, 0.14, and 0.16 mm were used when printing the samples. All the samples were 

put through a ball-on-disc tribo-test in which a normal load of 30, 50, and 70 N was applied. 

Ringer's lactate served as a lubricant and the simulating the environment in vivo. The 

hardness, contact angle, surface roughness, and surface morphology tests were also used to 

analyse the 3D-printed samples. Based on these tests, 3D-printed samples with 0.16 mm 

layer thickness outperform other samples with different viscosities of Ringer's lactate, 

regardless of the applied normal load during the tribo-test. The results showed that the PLA-

PCU polymer blend was well suited for artificial articular cartilage applications due to its 

favourable tribological characteristics, including a lower friction coefficient of around 0.10 

and wear rate of around 1x10-3mm3/Nm when tested with highest viscosity of Ringer’s 

lactate of 1.52mPa.s. PLA's mechanical integrity and wear resistance were enhanced by the 

addition of PCU, increasing PLA's durability. Additionally, the addition of Ringer's lactate 

enhanced the polymer blend's tribological performance, indicating its compatibility with the 

natural joint environment. By shedding light on the tribological behaviour of PLA-PCU 

polymer blends 3D printed for artificial articular cartilage, this work paves the way for future 

developments in additive manufacturing and biomaterial design. The findings are a 

promising first step toward creating durable prosthetic joint implants that will enhance 

mobility and quality of life for individuals with joint disorders. 
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SIFAT TRIBOLOGI CETAKAN-3D CAMPURAN POLIMER ASID POLI(LAKTIK) - 

POLIKARBONAT URETENA BAGI APLIKASI RAWAN ARTIKULAR BUATAN 

 

ABSTRAK 
 

Untuk memahami dengan lebih baik perilaku tribologis campuran asid poli(lactik) (PLA)- 

polikarbonat uretena (PCU) untuk aplikasi tulang rawan artikular buatan, kajian ini 

menyelidiki komposisi campuran tersebut, yang terdiri daripada 90 wt.% PLA-10 wt.%PCU. 

Ketebalan lapisan 0.10, 0.12, 0.14, dan 0.16 mm digunakan semasa mencetak sampel. 

Semua sampel diuji dengan ujian tribo ‘ball-on-disc’ di mana beban 30, 50, dan 70 N 

digunakan. ‘Ringer's lactate’ berfungsi sebagai pelincir dan menselimulasikan persekitaran 

secara in vivo. Ujian kekerasan, sudut sentuh, kekasaran permukaan, dan analisis morfologi 

permukaan juga digunakan untuk menganalisis sampel yang dicetak 3D. Berdasarkan ujian 

ini, sampel yang dicetak 3D dengan ketebalan lapisan 0.16 mm menunjukkan prestasi yang 

lebih baik berbanding sampel lain, selanjutnya diuji dengan kelikatan ‘Ringer's lactate’ 

yang berbeza, tanpa mengira beban normal yang dikenakan semasa ujian tribo. Keputusan 

menunjukkan bahawa campuran polimer PLA-PCU sangat sesuai untuk aplikasi tulang 

rawan artikular buatan kerana ciri-ciri tribologisnya yang baik, termasuk pekali geseran 

sekitar 0.10 dan kadar haus sekitar 1x10-3 mm3/Nm apabila diuji dengan kelikatan tertinggi 

Ringer's lactate iaitu 1.52 mPa.s. Integriti mekanikal dan ketahanan haus PLA ditingkatkan 

dengan penambahan PCU, meningkatkan ketahanan PLA. Selain itu, penambahan Ringer's 

lactate meningkatkan prestasi tribologis campuran polimer, menunjukkan keserasian 

dengan persekitaran sendi semula jadi. Dengan menjelaskan perilaku tribologis campuran 

polimer PLA-PCU yang dicetak 3D untuk tulang rawan artikular buatan, kajian ini 

membuka jalan untuk perkembangan masa depan dalam pembuatan tambahan dan reka 

bentuk biomaterial. Penemuan ini merupakan langkah pertama yang menjanjikan ke arah 

penciptaan implan sendi prostetik yang tahan lama yang akan meningkatkan mobiliti dan 

kualiti hidup bagi individu dengan gangguan sendi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and motivation 

Articular cartilage, the smooth flexible tissue that covers the ends of bones in human 

joints, is essential for the smooth and pain-free movement of human joints. Because of its 

unique composition and structure, it has low friction and wear resistance, allowing joints to 

withstand the enormous mechanical stresses of daily activities (Kanca et al., 2018a). However, 

articular cartilage injuries and degenerative diseases, such as osteoarthritis, can cause severe 

pain, reduced mobility, and a lower quality of life for those who suffer from them (Hudelmaier 

et al., 2001).  

Traditional treatments for damaged articular cartilage, such as total joint replacement, 

are effective but have drawbacks such as a short lifespan, a high risk of complications, and high 

costs (Kluyskens et al., 2022). As a result, there is an increasing demand for the creation of 

synthetic articular cartilage materials that can imitate the mechanical and tribological 

characteristics of natural cartilage while also being more durable and affordable. 

3D-printing has become known as a promising technology for manufacturing 

customized implants and prostheses, including artificial articular cartilage, in recent years (Ngo 

et al., 2018). Poly(lactic) acid (PLA) and polycarbonate urethane (PCU) have shown significant 

promise among the various materials available for 3D-printing due to their biocompatibility, 

mechanical properties, and ease of processing (Hamad et al.; Beckmann et al., 2018). 

Understanding the tribological behaviour of these 3D-printed PLA-PCU polymer blends, on 

the other hand, is critical for their successful use in artificial articular cartilage. 



 

2 

1.2 Problem statement 

Poly(lactic) acid and its resulting composites have been extensively utilized in clinical 

applications, most notably for articular cartilage (DeStefano et al., 2020). This material is 

biocompatible, long-lasting, and wear-resistant. Due to lack of porosity, the existing formative 

manufacturing-created artificial cartilage implant is ineffective in preserving joint lubrication 

via the weeping mechanism. PLA has an enhanced elastic modulus than articular cartilage and 

is mechanically limited (Saini et al., 2016).  

Given that its elastic modulus corresponds to that of articular cartilage, PCU is a 

promising candidate for artificial articular cartilage (Beckmann et al., 2016; Kanca et al., 2018). 

Because of its mechanical properties and biocompatibility, PCU is used in many implants, 

including orthopaedic prostheses (Beckmann et al., 2018) , and it has good wear and friction 

performance (Kanca et al., 2018a). Also, since different processing methods (such as extrusion 

and injection moulding) are frequently needed for different polymers. Securing a homogeneous 

mixture with the intended characteristics can present technological difficulties and financial 

inefficiencies. Hence, to ensure that PLA and PCU are distributed uniformly, extrusion can be 

utilized to thoroughly mix the two polymers. Extruders with twin screws work especially well 

for this. 

Fused filament fabrication (FFF) is a form of AM, designed to minimize procedure time 

and steps. It is also cheaper, quicker, and simpler to apply than the other processes. Regardless, 

FFF samples have poor mechanical properties and rougher surfaces (Rouf et al., 2022). 

Although 3D printing technology is used to fabricate PCU-based products, due to the soft 

polymer properties, the manufacturing process demands the use of a high-end 3D printer with 

specific nozzles or techniques (Miller et al., 2017). A 3D-printed blend of PLA and other 

biodegradable and biocompatible polymers, such as PCU, may be able to address this issue. 
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As stand-alone substitutes for a natural articular cartilage implant, PLA and PCU are 

already excellent. However, the drawbacks of both materials could be compensated for by 

combining PLA with PCU to create an artificial articular cartilage material that is more 

dependable. Printing performance such as layer thickness, infill density, and printing 

temperature have been demonstrated in studies to influence tribology performance (Tanveer et 

al., 2022). The primary focus of the research is on how polymer blends with different layer 

thicknesses will affect the tribology properties with different applied normal load and the extent 

to which there will be an optimal printing parameter. 

1.3 Research objectives 

The main objectives of this thesis are to look into the tribological properties of 3D-

printed PLA-PCU polymer blends as potential substitutes for artificial articular cartilage. The 

research specifically seeks to: 

i. To analyse the synergistic effect of applied normal load during tribo-test and printed 

layer thickness on the tribological behaviour of 3D-printed PLA-PCU polymer blend. 

ii. To analyse the tribological behaviour of 3D-printed PLA-PCU polymer blend with 

different Ringer’s lactate viscosities. 

1.4 Research scope 

Scope of this research emphasises on: 

i. PLA and PCU polymer blend; developed using fused filament fabrication; 3D printing 

and compression moulding; 

ii. Ball-on-disc tribometer test as per ASTM G99 is performed under lactated Ringer’s 

condition with applied normal load of 30, 50 and 70N;  

iii. Additional testing like hardness, contact angle, surface roughness and surface 

morphology analysis also conducted. 
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1.5  Thesis Organization 

 This thesis is divided into eight chapters, each with a distinct role in the research 

process. 

i. Chapter 1: Introduction - The introduction describes the study's problem, objectives, and 

importance of the study. It sets the tone for the following chapters by offering 

background knowledge and context. 

ii. Chapter 2: Literature Review - The literature review analyses current study on the topic. 

It includes relevant theories, models, and results from experiments that guide and 

reinforce the current research. 

iii. Chapter 3: Materials and Methodology - This chapter describes the research planning 

and techniques used in the research. It describes the data accumulation methods, 

instruments, and analysis techniques used to answer the research questions. 

iv. Chapter 4: Results and Discussions - The results chapter unveils the study's findings. It 

consists of analysing and interpreting data, with a focus on the most significant findings 

and patterns. 

v. Chapter 5: Conclusion and Recommendations - The discussion places the findings in 

the light of the objectives of the study. It investigates the consequences of the findings, 

discusses limitations, and suggests future research directions. Also in this chapter, the 

study is summed up, highlighting its importance and possible consequences. It also 

makes recommendations based on research findings. 

vi. Chapter 6: References - This chapter lists all of the sources used in the thesis to ensures 

proper acknowledgement of the works cited throughout the study. 

vii. Chapter 7: Appendices - The appendices contain additional resources such as 

unprocessed responses to surveys, and comprehensive methodological descriptions. 

These additional documents supplement the main text and offer additional insights. 




