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ABSTRACT 

 

An open-cell metal foam (OCMF) is a porous structure material that is widely known among 

researchers and industries for its many benefits, such as its lightweight, low density, good 

impact absorption, and ability to transfer heat within its porous structure. However, using 

the foam in a fully filled configuration results in a high pressure drop, suggesting the need 

for a partially filled configuration. Hence, an interface condition between the clear and 

porous regions of the partially filled configuration must be well-understood to take 

advantage of its porous structure. This research aims to investigate fluid flow characteristics 

in the partially filled configuration, leading to the development of a slip velocity model for 

the OCMF. The foams used in the experiments were produced using an additive 

manufacturing method, where the images of 5 PPI (pores per inch) OCMF structures were 

used as a base structure in manipulating various pore diameters and porosities. The fluid 

flow characteristics across the 3D printed foams were investigated experimentally using a 

hot-wire anemometer and Computational Fluid Dynamics (CFD) simulation in Ansys Fluent 

Software. This study configured the porous structure of open-cell foam in two-dimensional 

(2D) simulation, since it is easier to be completed with less computational cost and the 

channel setup with a foam block can be considered symmetrical due to its rectangular design. 

Additionally, this study focused on obtaining averaging data in the free stream region to 

understand the effects of foam properties in the partially filled configuration. Based on the 

experimental data, the slip velocity model was developed using dimensional and regression 

analyses. Results show that the fluid flow behaviours in the partially filled channel would be 

affected by the presence of the foam, especially in the downstream region, where the velocity 

fluctuates and larger at the interface and clear regions. The foam size, pore diameter and 

blockage ratio are the significant factors that influence the flow behaviours in the partially 

filled channel. The pressure drop also varies from 343.53 - 1818.26 Pa/m at an inlet velocity 

of 5.0 m/s. Meanwhile, the slip velocity obtained from the proposed model is within the 

measurement uncertainties of the experimental studies. The slip velocity model that used an 

averaging value slightly underpredicted the real phenomenon at the interface region with a 

maximum percentage difference is 0.13 %. The secondary flow from the porous region 

caused a fluctuation of slip velocities and the values were higher than the inlet velocity. 
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PENILAIAN TINGKAH LAKU ALIRAN DAN HALAJU GELINCIR MELALUI 

SALURAN SEPARA TERISI BUSA SEL TERBUKA 

  

 

ABSTRAK 

 

 

Busa logam sel terbuka adalah satu struktur berliang yg sangat terkenal di kalangan 

penyelidik and pengamal industri disebabkan kelebihannya seperti bersifat ringan, 

ketumpatan yang rendah, penyerapan hentaman yang baik serta keupayaannya untuk 

mengalirkan haba melalui struktur berliang. Walau bagaimanapun, penggunaan busa 

secara pengisian penuh dalam satu saluran bendalir menyebabkan susutan tekanan yang 

tinggi, di mana, pengisian separuh busa logam sel terbuka disarankan bagi mengurangkan 

susutan tekanan tersebut. Oleh itu, keadaan antara dua kawasan, iaitu di antara kawasan 

yang berliang dan tidak berliang pada sistem saluran pengisian separuh ini perlu difahami 

dengan baik bagi memanfaatkan struktur berliang dalam saluran tersebut. Penyelidikan ini 

bertujuan untuk mengkaji sifat bendalir di dalam sistem saluran pengisian separuh dan 

menghasilkan satu model halaju gelincir untuk busa logam sel terbuka. Dalam kajian ini, 

busa sel terbuka dihasilkan mengunakan kaedah teknologi pembuatan aditif di mana 

gambar struktur asal busa logam 5 PPI (5 liang per inci) digunakan sebagai satu struktur 

asas dalam memanipulasikan pelbagai saiz diameter leliang dan keliangan. Sifat aliran 

bendalir melalui busa-busa tersebut telah dikaji dengan menggunakan anemometer dawai 

panas dan simulasi Pengkomputeran Dinamik Bendalir (CFD) menggunakan perisian 

“Ansys Fluent”. Kajian ini mengkonfigurasi struktur berliang busa sel terbuka di dalam 

simulasi dua dimensi (2D), kerana ianya lebih mudah diselesaikan secara pengkomputeran 

dan saluran bersama blok busa tersebut boleh dianggap simetri berdasarkan bentuk segi 

empat tepatnya. Fokus kajian ini adalah untuk mendapatkan data purata bagi aliran dalam 

kawasan yang kosong di mana kawasan tersebut mungkin dipengaruhi oleh sifat busa yang 

terletak berhampiran dan memenuhi sebahagian saluran tersebut. Menggunakan data 

eksperimen, model halaju gelincir telah dihasilkan melalui analisis dimensi dan regresi. 

Hasil kajian menunjukkan dengan adanya busa sel terbuka dalam saluran, ia menyebabkan 

perubahan pada aliran bendalir terutamanya pada kawasan hilir, dengan nilai halaju tidak 

tetap di kawasan antara muka serta menjadi lebih laju di kawasan tidak berliang. Saiz busa, 

diameter leliang dan nisbah halangan adalah faktor penting yang mempengaruhi aliran 

bendalir di dalam sistem saluran pengisian separuh. Susutan tekanan juga berlaku, di mana 

jumlah susutan adalah dalam lingkungan 343.53 - 1818.26 Pa/m pada halaju masuk 5.0 m/s. 

Manakala, model halaju gelincir yang yang dicadangkan berada dalam ketakpastian 

pengukuran halaju gelincir yang diperolehi daripada eksperimen. Model halaju gelincir ini 

menggunakan nilai purata dari pelbagai parameter, dimana ia menghasilkan nilai yang 

sedikit rendah berbanding keadaan sebenar yang berlaku pada antara muka kawasan 

berliang dengan peratusan perbezaan tertinggi adalah sebanyak 0.13 %. Kehadiran aliran 

sukender pada antara muka kawasan berliang telah menyebabkan nilai halaju gelincir 

berubah-ubah dan ianya adalah lebih tinggi daripada halaju masuk. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background of study 

Open-cell metal foam is a kind of porous media with a unique structure made of a 

solid matrix with interconnected pores. The open-cell metal foam is promising for wide 

applications due to its high strength, low density, good impact absorption, and its ability to 

move heat within its porous structure. The open-cell metal foam also has high porosity, 

commonly more than 90%, thus providing a large specific surface area and allowing the 

process of fluid mixing (Anuar, Malayeri, and Hooman, 2017). Due to its porous structure, 

naturally, the OCMF offers two different modes of heat transfer, (1) conduction which 

depends on the type of material used, and (2) convective heat transfer because of its pass-

through structure. In other applications, OCMF has gained interest among researchers and 

industries over the years such as sound absorbers (Wan et al., 2021), dampers, filters 

(Mehrizi and Ravari, 2019) and in fuel cells as coolant distributors (Tan et al., 2018;  

Vazifeshenas, Sedighi, and Shakeri, 2020). In heat exchanger applications, normally the 

OCMF is used in HVAC&R, electronics cooling and solar thermal plants (Kuruneru et al., 

2020). 

In current practice, the open-cell metal foam can be manufactured utilizing several 

procedures such as direct foaming of melts, solid-gas eutectic solidification, and investment 

casting. In IR 4.0 era, an additive technology could be used to manufacture porous structures 

using either metallic or non-metallic materials. However, the usage of non-metallic material 

may restrict its potential in the thermal application. Nevertheless, the complicated structure 
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of the porous foam in a pipe or channel may create a disturbance to the fluid flow, allowing 

a better fluid mixing for a higher heat transfer process. One major drawback of open-cell 

metal foam due to its complicated structure is a massive pressure drop. Alternatively, the 

OCMF can be arranged to partially fill a part of a tube or channel, instead of fully-filled the 

configurations. However, the partially filled configuration that contains a porous region and 

a non-porous region may induce a slip condition at the interface. Thus, the fluid behaviours 

and slip conditions must be well-understood to make use of the complicated structure of the 

open-cell foam. There are certain debates on slip and no-slip conditions at an interface region 

between porous and non-porous (free stream) regions. The most popular theory, Darcy law 

deduces there should be a statistical average of the slip velocity value immediately outside 

the porous block (Beaver and Joseph, 1967). Therefore, Beavers-Joseph (1967) proposed the 

presence of the slip condition at the interface region. Researchers also started to investigate 

the slip condition using extended models from either the Darcy or Beaver-Joseph models to 

describe flow in open-cell foam. However, a recent experimental study on OCMF by Shikh 

Anuar, Ashtiani and Hooman (2018) found a noteworthy outgoing flow from the porous into 

the free stream regions in a vertical direction through the interface, and there exist no-flow 

regions in certain areas of the porous structure. Thus, the effects of this secondary flow (a 

flow that comes out vertically from the porous structure to the free stream region through 

the interface region) at the interface region is still debated due to the presence of slip velocity 

and non-slip condition, contributed by its pore-ligament constructions. Moreover, the 

exposed structure next to a clear region is a surface with the ligament structure spikes and 

randomly distributed the small pores. The characteristic of another secondary flow, which is 

formed inside the porous region also remains unclear (Kim et al., 2021).    

In this research, a reverse engineering technique is proposed to investigate the flow 

behaviours across a partially filled channel with open-cell foam. The exact structure of the 
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original open-cell metal foam was produced by using additive manufacturing (AM) methods, 

where the pore diameter was enlarged to the desired size so that velocities in the partially 

filled channel, including pore velocity (velocity in the porous structure) can be 

experimentally measured using a hot-wire anemometer. A morphology test was conducted 

in choosing a better 3D printing method to minimize the frictional effects on the fluid flow 

behaviours. This research also proposes an open-cell metal foam slip velocity model through 

dimensional and regression analyses and gaining insights of what happened in the partially 

filled configuration by focusing more on the effects of open-cell foam with various heights 

and pore sizes.  

 

1.2 Problem of statement 

An OCMF is very valuable since it is used in a very wide range of applications 

(Mehrizi and Ravari, 2019;  Vazifeshenas, Sedighi, and Shakeri, 2020) where it is typically 

produced using different types of conventional method (Banhart, 2000; Husain, Siddiquee, 

and Khan, 2022). The conventional method is seen to be very complicated and high in cost 

(Wan et al., 2021). For instance, an investment casting is a common method to produce 

OCMF where it may take a few steps to finalize the end product (Sutygina et al., 2020). 

However, with the introduction of the AM method, like 3D printing, (Zhang et al., 2022; 

Gama, Ferreira, and Barros-Timmons, 2019; Kim et al., 2021; Zhou et al., 2022; Wang et 

al., 2020) the open-cell foams have been successfully produced in a simpler method. 

The fully filled configuration with open-cell metal foam has always been proposed 

in many applications but there is a constraint in pressure drop, in which the intricate structure 

of metal foam contributes to high pressure drop (Khadhrawi et al., 2020; Jadhav et al., 2022). 

Normally, the corresponding pressure drop in the fully filled configuration is considerably 

high which may generally about three to four folds of magnitude higher compared to an  
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empty channel due to its complex structure (Qu, Xu, and Tao., 2012). At the same time, the 

pressure drop causes a reduction  in the performance efficiency of the system (Zargartalebi 

and Azaiez, 2019) and the fluid also needs more pumping power to compensate the pressure 

drop (Lu, Zhang, and Yang, 2016). Thus, many studies have considered a partially filled 

configuration (Lu, Zhang, and Yang, 2016; Sener and Yataganbaba, 2016;  Xu et al., 2018) 

to lessen the impact of pressure drop. However, the partially filled configuration with open-

cell foam needs further study to understand the effects on the flow behaviours and pressure 

drop, especially with the presence of an interface region between the clear (non-porous 

region) and the porous region (Shikh et al., 2018). The OCMF studies usually adapted the 

general classical equation of porous media for different types of porous media such as bed 

rocks, and sands (Alvandifar and Amani, 2018). However, the well-known classical 

macroscopic models such as Beaver and Joseph (1967) and  Kuznetsov (1996) could not 

accurately describe the real flow behaviours at the interface of OCMF (Anuar, Malayeri, and 

Hooman, 2017; Sauret, Abdi, and Hooman, 2014) and the findings contributed to additional 

modified models based on the Beaver-Joseph model. A lot of numerical studies (Yerramalle, 

Premachandran, and Talukdar, 2020; Kotresha and Gnanasekaran, 2020; Xu and Gong, 2018; 

Khadhrawi et al., 2020) and analytical studies (Mahmoudi, Karimi, and Mazaheri, 2014; Xu 

et al., 2018; Li and Hu, 2019) have been conducted on the partially filled configuration with 

porous medium. However, an intricate flow phenomenon at the interface region, including 

the slip velocity could not be accurately explained using a continuity equation since more 

experimental studies are required to address the real phenomenon occurs in that region   (Nair 

and Sameen, 2015). The underlying theory on the interface condition, specifically for the 

open-cell metal foam should be investigated and validated by experiments. There are limited 

experimental works with open-cell metal foams that discussed the interface conditions, due 

to expensive foam samples, tedious, and time-consuming work. Nevertheless, additional 
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experimental works are required to obtain accurate information in describing the flow 

behaviours and slip velocity at the interface of foam-fluid regions, and understanding the 

pressure drop effects.  

 

1.3 Objectives of study 

The main objectives of this research are: 

1. To produce 3D printed open-cell foams based on a conventional open-cell 

metal foam structure. 

2. To investigate flow characteristics patterns across a partially filled channel 

with open-cell foams. 

3. To propose a predicted model for slip velocity at the interface of the metal 

foam-fluid region by correlating the flow characteristics with foam geometrical 

properties. 

 

1.4 Scope of study 

The scopes in this research are: 

a) Three Dimensional (3D) printed open-cell foam structure is redesigned from 

the original 5 PPI open-cell metal foam, where the pore diameters are 

manipulated. Normally, the open-cell metal is classified based on pore density 

such as 5 PPI, 10 PPI, 30 PPI etc. This study used 5 PPI as a benchmark to 

produce 3D printed open-cell foam. 

b) The 3D printed open-cell foams are manufactured using two types of AM 

technologies and morphology tests are conducted to select the best technology 

to produce the open-cell foams.  
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c) This research focuses on the effects of pore diameter and foam height on the 

flow behaviours and slips velocity in a partially filled channel. The flow inside 

the porous and non-porous regions is investigated experimentally and 

numerically.  

d) This research will develop a slip velocity model from the 3D printed foam data 

that is applicable for 5 PPI open-cell foam and smaller pore diameters. 

e) The effect of pressure drops due to the manipulating parameters e.g., the foam 

geometrical properties are also investigated as a part of this research, expecting 

their influences on the flow behaviours in the partially channel. 

f) The numerical study is based on a two-dimensional model using the existing 

porous model in Ansys Fluent software and is compared to the results of the 

predicted model and experiments using the open-cell foams. 

 

1.5 Thesis structure 

This thesis structured in five chapters consists of an introduction, literature review, 

methodology, results and discussions, and also a conclusion and recommendations. 

Chapter 1 - Introduction 

This chapter describes the basis of this research that is relatable to the uses of 

open-cell metal foam in a partially filled configuration. A brief background of the research 

is presented along with the problem statement and the objectives of this research in giving 

the novelty and the purposes of this research. The scope of the study has also been outlined 

to illustrate the boundaries of this research. 

Chapter 2 – Literature Study 

A review of the previously published works is conducted to have more understanding 

of all aspects of the research and used as a guideline for achieving better results. It concludes 

'tin

UNIVERSITI TEKNIKAL MALAYSIA MELAKA




