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ABSTRACT 

 

 

Fused deposition modeling (FDM) is one of the most widely utilized additive manufacturing 

techniques. However, the main limitations of FDM are poor surface roughness, low tensile 

strength, and significant warping deformation, which affect manufacturability and hinder the 

precision and quality of printed components. This study presents a new technique that improves 

the quality of FDM printed specimens by incorporating inert gases, such as nitrogen or argon, 

into the 3D printing chamber. The chamber was designed with openings for the inert gas to flow 

in at 12 m³ h⁻¹ and +5 bar pressure and an outlet for gas to be released, monitored by an oxygen 

detector to control degradation factors. The effect of the inert gas on 3D printed specimens by 

the objectives, i.e. to investigate the effect of inert gas on the tensile strength of FDM-printed 

samples under varying printing process parameters, to analyze the surface roughness and 

bonding formation of the printed samples and to identify warping deformation in the printed 

samples. The research reveals several key findings. First, Cu/PLA exhibited the highest tensile 

strength compared to PLA and ABS at a layer thickness of 0.3mm, indicating that increased 

layer thickness correlates with increased tensile strength. Additionally, Cu/PLA showed 

superior SEM results, featuring structures with minimal air gaps compared to PLA and ABS. 

Second, both Ar-O₂(0%) and N₂-O₂(0%) conditions significantly improved tensile strength 

compared to printing without inert gas, with Ar-O₂(0%) demonstrating the most notable effect 

by producing uniform interlayer bonding, as evidenced by SEM images. Third, in terms of 

surface roughness, Cu/PLA outperformed PLA and ABS, with Face 4 achieving the best results 

under the N₂-O₂(0%) condition. The improvement in surface roughness was up to 24.71% 

between Face 4 and Face 1 at a 0.2mm layer thickness. SEM images revealed that areas with 

higher surface roughness correlated with more pronounced surface irregularities, such as grain 

boundaries and pores. Finally, both N₂-O₂(0%) and Ar-O₂(0%) inert conditions enhanced 

surface roughness compared to non-inert conditions. SEM analysis indicated that Ar-O₂(0%) 

produced minimal air gaps, facilitating strong connections between adjacent filaments and 

reducing void areas. In conclusion, the study affirms that the application of an inert gas 

environment during 3D printing is a highly effective strategy for improving the mechanical 

properties and surface quality of printed specimens. The findings offer valuable guidance for 

future research and development in the field of additive manufacturing, promoting the adoption 

of advanced techniques to achieve superior material performance and quality in 3D printed 

products. 
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PENGARUH KAWALAN TAHAP OKSIGEN TERHADAP KEKUATAN TEGANGAN, 

KEKASARAN PERMUKAAN, DAN LEDINGAN DALAM CETAKAN FDM 

 

ABSTRAK 

 

Pemodelan pemendapan terlakur (FDM) adalah salah satu teknik pembuatan tambahan yang 

paling banyak digunakan. Walau bagaimanapun, had utama kepada FDM adalah kekasaran 

permukaan yang tidak baik, kekuatan tegangan yang rendah, dan ubah bentuk ledingan yang 

ketara adalah mempengaruhi kemampuan pembuatan dan menghalang ketepatan serta kualiti 

komponen yang dicetak. Kajian ini memperkenalkan teknik baru yang meningkatkan kualiti 

spesimen cetakan FDM dengan mengalirkan gas lengai seperti nitrogen atau argon, ke dalam 

ruang pencetakan 3D. Ruang tersebut direka dengan bukaan untuk gas lengai mengalir masuk 

pada kadar 12 m³ h⁻¹ dan tekanan +5 bar, serta bukaan untuk pelepasan gas, yang dipantau 

oleh pengesan oksigen untuk mengawal faktor degradasi. Kesan gas lengai pada spesimen 

cetakan 3D dinilai berdasarkan objektif berikut iaitu untuk melihatt kesan gas lengai terhadap 

kekuatan tegangan sampel cetakan FDM di bawah pelbagai parameter proses pencetakan, 

menganalisis kekasaran permukaan dan pembentukan ikatan sampel cetakan, dan mengenal 

pasti ubah bentuk ledingan dalam sampel cetakan. Penyelidikan ini menunjukkan beberapa 

penemuan utama. Pertama, Cu/PLA menunjukkan kekuatan tegangan tertinggi berbanding PLA 

dan ABS pada ketebalan lapisan 0.3mm, yang menunjukkan bahawa peningkatan ketebalan 

lapisan berkorelasi dengan peningkatan kekuatan tegangan. Selain itu, Cu/PLA menunjukkan 

hasil SEM yang baik, dengan struktur yang mempunyai jurang udara yang minimum 

berbanding dengan bahan PLA dan ABS. Kedua, keadaan Ar-O₂(0%) dan N₂-O₂(0%) secara 

signifikan meningkatkan kekuatan tegangan berbanding pencetakan tanpa gas lengai, dengan 

Ar-O₂(0%) menunjukkan kesan yang paling ketara dengan menghasilkan ikatan antara lapisan 

yang seragam, seperti yang ditunjukkan oleh imej SEM. Ketiga, dari segi kekasaran permukaan, 

Cu/PLA lebih baik berbanding PLA dan ABS, dengan Permukaan 4 mencapai hasil terbaik di 

bawah keadaan N₂-O₂(0%). Peningkatan dalam kekasaran permukaan mencapai sehingga 

24.71% antara Permukaan 4 dan Permukaan 1 pada ketebalan lapisan 0.2mm.. Akhir sekali, 

kedua-dua keadaan lengai N₂-O₂(0%) dan Ar-O₂(0%) meningkatkan kekasaran permukaan 

berbanding dengan keadaan tanpa lengai. Analisis SEM menunjukkan bahawa Ar-O₂(0%) 

menghasilkan jurang udara yang minimum, memudahkan sambungan kuat antara filamen 

bersebelahan dan mengurangkan kawasan kosong. Kesimpulannya, kajian ini mengesahkan 

bahawa aplikasi persekitaran gas lengai semasa pencetakan 3D adalah strategi yang sangat 

berkesan untuk meningkatkan sifat mekanikal dan kualiti permukaan spesimen cetakan. 

Penemuan ini menawarkan panduan yang penting untuk penyelidikan dan pembangunan masa 

depan dalam bidang pembuatan tambahan, meningkatkan penggunaan teknik terkini untuk 

mencapai prestasi bahan dan kualiti yang baik dalam produk cetakan 3D. 
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L = Total initial length 

ΔA or ACAD = Different in Area or Area from dimension 

T or T0 = Initial temperature 

ΔH or HCAD = Changes in height or height from dimension 

A or A0 = Initial surface area 

D = Distance between two points 

𝛥𝐿 or  = Different in length over initial length 

𝛥𝐴

𝐴
 

= Different in surface area over the initial surface area 

σ = Stress 

𝐸 = Modulus of elasticity 

ε = Strain 

Ra = Surface roughness 

 

 

  

V- AYS/„

UNIVERSITI TEKNIKAL MALAYSIA MELAKA



xvii 

 

 

LIST OF PUBLICATION 

 

 

JOURNAL PAPER 

1. Che Mat, M.A., Ramli, F.R., Sudin, M.N., Herawan, S.G., and Alkahari, M.R. The effect 

of tensile strength and surface roughness by varying oxygen level in 3D printer chamber. 

Jurnal Tribologi, Vol 33, pp. 80–96 (2022). 

 

CONFERENCES ATTENDED 

1. Che Mat, M.A., Ramli, F.R., Sudin, M.N., Herawan, S.G., Mat, M.S., Alkahari, M.R. 

(2022). The Effects of Varying Oxygen Concentrations on Tensile Strength and Surface 

Roughness of 3D Printer. Proceedings of the 7th International Conference and Exhibition 

on Sustainable Energy and Advanced Materials (ICE-SEAM 2021).  

 

2. Che Mat, M.A., Ramli, F.R., Alkahari, M.R., Sudin, M.N., Abdollah, M.F., Mat, S.  

      Influence of layer thickness and infill design on the surface roughness of PLA, PETG and  

      metal copper materials. Proceedings of Mechanical Engineering Research Day 2020, pp.  

      64-66, December 2020.

V- AYS/„

UNIVERSITI TEKNIKAL MALAYSIA MELAKA



1 

 

CHAPTER 1 
 

INTRODUCTION 
 

1.1 Background of the Project 

Fused Deposition Modeling (FDM) is a widely used additive manufacturing technique 

where thermoplastic filaments are melted and deposited layer by layer to create 3D objects. It is 

classified among additive manufacturing methods and is gaining popularity among researchers 

and industry professionals for study and development purposes. Additive manufacturing 

techniques enable the production of intricate shapes and structures with efficient material 

management, reducing waste and numerous other benefits compared to traditional 

manufacturing methods, which are increasing in popularity (Kristiawan et al., 2021). 

Fused Deposition Modeling (FDM) is a popular technique in additive manufacturing, 

known for its ability to produce complex geometries with a wide range of materials (Acierno 

and Patti, 2023). Nevertheless, due to the complexity of the FDM process, identifying the 

optimal parameters can pose a challenge, leading to a notable impact on the quality and material 

properties of the final product. 

FDM also has disadvantages that require further consideration, with the primary 

drawback being its low strength attributed to the weakened interlayer bond formed between 

layers. This limitation has impeded the utilization of this 3D printing technology to produce 

functional parts. (Yasa and Ersoy, 2020). In their study, Lederle et al. (2016) observed that 

oxygen under high-temperature conditions leads to material breakdown in ABS due to oxidation 

mechanisms. Oxidative reactions primarily influence the polybutadiene phase, which contains 

active double bonds, resulting in a substantial strength loss. This effect becomes particularly 
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apparent when the finished surface of the 3D-printed component undergoes bending or 

alteration. 

In addition, FDM-printed parts may have a coarse surface finish, necessitating post-

processing methods to refine their appearance and enhance performance. The layer-by-layer 

deposition technique inherent to FDM printing produces visible layer lines, which can 

compromise the surface finish and dimensional accuracy of printed parts. Consequently, FDM's 

suitability for end-use applications is restricted. Moreover, temperature variations in the 

surroundings during 3D printing may result in uneven distribution between adjacent printing 

layers, leading to shrinkage and warping. Therefore, a controlled and enclosed build 

environment is essential to minimize the occurrence of warping and shrinkage in FDM (Kuo et 

al., 2021).  

Mazlan et al. (2018a) researched to enhance strength, surface roughness, and warping 

deformation limitations in FDM parts. They employed pre-processing techniques, such as 

optimizing process parameters. Additional in-processing methods, such as the integrated 

pressing mechanism, adaptive slicing and vacuum system (Maidin et al., 2018), along with post-

processing methods such as chemical vapour treatment (Sunay et al., 2020), have demonstrated 

improvements in FDM-printed parts. Therefore, to fully harness FDM's potential for functional 

component fabrication, the exploration of more innovative or refined techniques is essential. 

 

1.2 Problem Statements 

While FDM remains a widely adopted 3D printing technique due to its ease of use and 

affordability, research on enhancing its capabilities using inert gas flooding within the printing 

chamber remains relatively limited. Mazlan et al. (2018a) demonstrated an increase in tensile 

strength and surface roughness when employing inert gas-assisted 3D printers compared to 
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