

Faculty of Electronics and Computer Technology and Engineering



Doctor of Philosophy

2024

INVESTIGATION OF WIFI OFFLOADING BEHAVIOR TRADE-OFF BASED ON THE QUALITY OF EXPERIENCE MEASUREMENT

RULIYANTA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis, "Investigation of Wi-Fi Offloading Behaviors Trade-off Based on the Quality of Experience Measurement," is the result of my research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted as a candidature for any other degree.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I now declare that I have read this thesis, and in my opinion, it is sufficient in terms of scope and quality for the award of a Doctor of Philosophy.

DEDICATION

To my beloved wife, son, daughter, and parents

for the endless support and prayer

ABSTRACT

Global mobile data traffic is forecast to grow by 63 percent in 2016; at the country level, Indonesia leads the highest global growth at 142 percent. From the results of a 2017 survey released by the Indonesian Internet Service Providers Association, internet user penetration by city/district is concentrated in urban areas with a percentage of 72.41 %, rural-urban (49.49 %), and rural regions (48.25 %). The problem statement in this research is the lack of sufficient data on Wi-Fi offloading in Indonesia has prompted research into its socioeconomic impacts. The study analyzes differences between economic strata, focusing on Wi-Fi usage patterns, network performance, and user behaviour. It aims to assess Wi-Fi performance through metrics like data usage, quality of service, and user experience, comparing these findings with manual survey data. The research objectives are to design a method for measuring Wi-Fi usage as a tool for conducting studies and to analyze network performance parameters, including end-to-end throughput and packet loss. Additionally, the study aims to measure QoE through user feedback and identify correlations between socioeconomic groups in terms of Wi-Fi utilization patterns, network performance, and QoE Fairness Indexes. The methodology involves monitoring the internet usage patterns of volunteers who access office Wi-Fi. This study investigates the pattern of Wi-Fi offloading in the workplace. The goal is to see the effectiveness and pattern of using Wi-Fi in office buildings using 100 volunteers. The users are grouped into two groups; the first group is for workers with salaries according to government standards and is called the Socio 1 group. and the second group with a wage higher than the salary of Group 1 is called Socio 2. The survey results show that internet user penetration in Indonesia grew by 8 % to 143.26 million, or 54.68 % of the population. The most common internet usage is 1-3 hours daily, with popular activities including chat applications, social media, and video viewing. In Socio 1, average Wi-Fi usage is 2.88 hours per day with 4.2 GB of data, an 87.11 % QoS rate, and an 86.19 % QoE. In Socio 2, usage is 2.37 hours with 2.55 MB of data, a 92.45 % QoS rate, and a 91.36 % QoE.

PENYIASATAN KESEIMBANGAN TINGKAH LAKU PEMUNGGAHAN WIFI BERASASKAN PENGUKURAN KUALITI PENGALAMAN

ABSTRAK

Trafik data mudah alih global diramalkan berkembang sebanyak 63 peratus pada 2016; di peringkat negara, Indonesia mendahului pertumbuhan global tertinggi pada 142 peratus. Daripada tinjauan 2017 yang dikeluarkan oleh Persatuan Penyedia Perkhidmatan Internet Indonesia, penembusan pengguna internet mengikut bandar/daerah tertumpu di kawasan bandar dengan peratusan 72.41 %, luar bandar-bandar (49.49 %), dan kawasan luar bandar (48.25%). Pernyataan masalah dalam penyelidikan ini ialah kekurangan data yang mencukupi mengenai pemunggahan Wi-Fi di Indonesia telah mendorong penyelidikan terhadap kesan sosio-ekonominya. Kajian ini menganalisis perbezaan antara strata ekonomi, memfokuskan pada corak penggunaan Wi-Fi, prestasi rangkaian dan gelagat pengguna. Ia bertujuan untuk menilai prestasi Wi-Fi melalui metrik seperti penggunaan data, kualiti perkhidmatan dan pengalaman pengguna, membandingkan penemuan ini dengan data tinjauan manual. Objektif penyelidikan adalah untuk mereka bentuk kaedah untuk mengukur penggunaan Wi-Fi sebagai alat untuk menjalankan kajian dan untuk menganalisis parameter prestasi rangkaian, termasuk pemprosesan hujung ke hujung dan kehilangan paket. Selain itu, kajian ini bertujuan untuk mengukur QoE melalui maklum balas pengguna dan mengenal pasti korelasi antara kumpulan sosio-ekonomi dari segi corak penggunaan Wi-Fi, prestasi rangkaian dan Indeks Kesaksamaan QoE. Metodologi ini melibatkan pemantauan pola penggunaan internet sukarelawan yang mengakses Wi-Fi pejabat. Kajian ini menyiasat corak pemunggahan Wi-Fi di tempat kerja. Matlamatnya adalah untuk melihat keberkesanan dan corak penggunaan Wi-Fi di bangunan pejabat menggunakan 100 sukarelawan. Pengguna dikelompokkan kepada dua kumpulan; kumpulan pertama adalah untuk pekerja dengan gaji mengikut piawaian kerajaan dan dipanggil kumpulan Sosio 1, dan kumpulan kedua dengan gaji lebih tinggi daripada gaji Kumpulan 1 dipanggil Sosio 2. Hasil tinjauan menunjukkan penembusan pengguna internet di Indonesia meningkat. sebanyak 8 % kepada 143.26 juta, atau 54.68 % daripada populasi. Penggunaan internet yang paling biasa ialah 1-3 jam setiap hari, dengan aktiviti popular termasuk aplikasi sembang, media sosial dan tontonan video. Dalam Sosio 1, purata penggunaan Wi-Fi ialah 2.88 jam sehari dengan 4.2 GB data, kadar QoS 87.11 % dan QoE 86.19 %. Dalam Sosio 2, penggunaan ialah 2.37 jam dengan 2.55 MB data, kadar QoS 92.45 % dan QoE 91.36 %.

ACKNOWLEDGMENTS

In the name of Allah, the Most Gracious and the Most Merciful. First and foremost, I would like to take this opportunity to express my sincere acknowledgment to my supervisor, Prof. Dr. Mohd Riduan bin Ahmad from the Faculty of Electronics and Computer Technology and Engineering, Universiti Teknikal Malaysia Melaka (UTeM), for his supervision, support, and encouragement in completing this thesis. Even though it surely took me some time, the thesis has finally been completed, alhamdulillah.

I also would like to express my greatest gratitude to Associate Professor Dr. Azmi bin Awang Md. Isa from the Faculty of Electronics and Computer Technology and Engineering, the co-supervisor for this research, for his guidance, encouragement, time, and assistance throughout the research.

To my beloved wife, son, and daughter for being patient throughout this long and lonely journey, words are powerless to express my gratitude. I am forever indebted and thankful to my family and friends for their moral support and endless assistance; thank you for your part in my journey. I am very grateful to the Inalum Building Management Building for supporting this research and making it run smoothly. All workers in the Inalum Building have been willing to volunteer to participate in this research. Lastly, thank you to everyone who has been involved in the crucial parts of the realization of this thesis. The complCompletingsis has indeed become a reality with the kind support and assistance from many individuals. Thank you so much.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

PAGE

DECLARATION	i
APPROVAL	ii
DEDICATION	iii
ABSTRACT	iv
ABSTRAK	v
ACKNOWLEDGMENTS	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF ABBREVIATION	xiv
LIST OF APPENDICES	xvi
LIST OF PUBLICATIONS	xvii

CHAP '	TER	
1. INT	RODUCTION	18
1.1	Research Background	18
1.2	Problem Statement	10
1.3	Research Questions	12
1.4	Research Objectives	14
1.5	Scopes of Research	15
1.6	Research Significance	17
1.7	Research Contribution	18
1.8	Organization of Thesis	19
	INN .	
2. LIT	ERATURE REVIEW	21
2.1	Mobile Data Explosion	21
	2.1.1 Growth Trend in Indonesia	22
	2.1.2 Android-based Smartphone	24
2.2	Socio-Economics Group of Internet Users in Indonesia	25
2.3	Key Player and Internet Services in Indonesia	26
2.4	Wi-Fi Offloading	27
	2.4.1 Requirements of Coexistence from 5G Wireless Systems	27
	2.4.2 Network Selection Scheme	28
	2.4.2.1 Factors in Network Selections	29
	2.4.2.2 Handover Strategy	29
	2.4.2.3 Access Network Selection Algorithms	30
2.5	Classification According to Incentive of Wi-Fi Offloading	32
	2.5.1 Capacity	33
	2.5.1.1 Non-Delayed Offloading	33
	2.5.1.2 Delayed Wi-Fi Offloading	35
	2.5.2 Cost	37
	2.5.3 Energy	38

	2.5.4 Rate	40
	2.5.5 Continuity	41
2.6	User's Trace/Real-Time Measurement Study	42

	2.6.1 Related Works in Indonesia	44
	2.6.2 Parameters on Measurement Study	45
	2.6.2.1 End-to-End Throughput/QoS	45
	2.6.2.2 Behavioral Patterns of Smartphone Users	46
	2.6.2.3 Knowing the Sites Opened by Clients/Users	47
	2.6.2.4. Quality of Experience (QoE)	47
2.7	Chapter Summary	70
3. RES	EARCH METHODOLOGY	71
3.1	Introduction	71
3.2	Research Framework	71
3.3	Research Design	72
	3.3.1 Problem Definition	73
	3.3.2 Research Flowchart	74
3.4	Research Preparation	74
	3.4.1 Data Sources	74
	3.4.1.1 Location of Measurement Study	75
	3.4.1.2 Population and Android-based Platform	75
	3.4.1.3 Sample Size	77
	3.4.1.4 Instrumentation	79
	3.4.1.5 Procedure of Data Collection	100
	3.4.2 Data Understanding	101
	3.4.2.1 Data Tables and Parameters	101
	3.4.3 Data Preparation	104
	3.4.3.1 Cleaning the Data	105
~ ~	3.4.3.2 Data Collect Tools: Deep Packet Inspection	105
3.5	Implementation of Analysis	108
	3.5.1 Descriptive Analysis	109
0.6	3.5.2 Inferential Statistics	109
3.6	Validity and Reliability	111
	3.6.1 Validity	111
	3.6.2 Reliability TEKNIKAL MALAYSIA MELAKA	112
	3.6.2.1 Deep Packet Inspections Testing	112
27	3.6.2.2 Preliminary Study	115
3.7	Design of ANN Algorithm	116
3.8	Chapter Summary	117
	ULTS AND DISCUSSIONS	118
4.1	Introduction	118
4.2	Descriptive Statistics Analysis	118
4.3	Duration of Wi-Fi Offloading	121
	4.3.1 The daily total duration of Wi-Fi connectivity	122
	4.3.2 Traffic Data Offloading	123
	4.3.3 Temporal Coverage	129
	4.3.4 Temporal Coverage by Socio-Economics Group	131
4.4	Network Performance	134
	4.4.1 Quality of Service Measurements	135
	4.4.2 Quality of Experience Measurements	141
4.5	Accessed applications and Categories	147
	viii	

5. CON	CLUSI	ON AND RECOMMENDATIONS FOR FUTURE RESEARCH	156
5.1	Introd	uction	156
5.2	Concl	uding Remarks	156
	5.2.1	Time Duration of Wi-Fi accessed	156
	5.2.2	Network Performance Analysis and QoE Metric	159
	5.2.3	The User Behaviors	161
5.3	Recor	nmendation for Future Research Direction	161
REFEF	RENCES	5	163

LIST OF TABLES

TABLE

TITLE

PAGE

1.1	Research Questions	13
1.2	Summary and relationship of RQ and RO	15
2.1	Smartphone Penetration of Population Indonesia	23
2.2	Mobile Operating System Market Share Worldwide	24
2.3	Mobile Operating System Market Share Indonesia	24
2.4	Considerations for NSS	29
2.5	Traditional Offloading According to Enhancing Capacity	34
2.6	Techniques According to the Further Incentive Continuity	42
2.7	Related Work in Indonesia	44
2.8	Key parameter related to Wi-Fi offloading	45
2.9	The most significant supervised learning approaches	53
2.10	The relationship between biological neural networks and ANN	68
3.1	Detail of Client Statistic	82
3.2	Deep Packet Inspection	83
3.3	Client History Monitor	83
3.4	The QoE Measurement Parameter	88
3.5	Determining the model reliability level concerning the Correlation Model	100
3.6	Key parameter related to Wi-Fi offloading	102
3.7	A Primary Filter	106
3.8	A secondary filter TI TEKNIKAL MALAYSIA MELAKA	106
3.9	Android app grouping by category	107
3.10	Summary Table for Descriptive Statistics	110
4.1	The critical parameter related to Wi-Fi offloading	119
4.2	The ratio between average upload and download data on Socio 1 and Socio 2	125
4.3	User segmentation based on data traffic offload	127
4.4	Average Wi-Fi Traffic in the office compared to Estimated data users per	
	capita in Indonesia in 2021	128
4.5	Proportion of Temporal Covered in Socio 1 and Socio 2	133
4.6	quality of service measurement in the Socio 1	137
4.7	quality of service measurement in the Socio 2	139
4.8	Important parameters of quality of service measurement results	140
4.9	Comparison between quality of service and QoE	144
4.10	The correlation value and description	145
4.11	The quality of service and QoE Correlation value based on the Pearson	
	Correlation Algorithm	147
4.12	Applications used based on total traffic data	148

4.13 Result comparation

4.14 Chapter Summary

153 155

LIST OF FIGURES

FIGURE

TITLE

1.1	Internet user growth in Indonesia 2017	3
1.2	In 2021, 63 percent of total mobile data traffic will offload to Wi-Fi	4
1.3	Historical evolution and future of wired and wireless technologies	6
1.4	Mobile Data Offloading	7
1.5	QoE fairness index	9
1.6	Problem Statement Diagram	12
1.7	Research Scope using K-Chart Approach	16
2.1	Offload pertains to traffic from dual-mode devices (excluding laptops) of	over Wi-Fi
	or small-cell networks	22
2.2	The market share of Indonesian Cellular Operators 2019	26
2.3	Classification of Wi-Fi Offloading ((He et al., 2016))	32
2.4	The main idea of the AMUSE mechanism	38
2.5	The evaluation method of the Quality of Experience	48
2.6	The QoS-QoE domains of the appliance	49
2.7	General block diagram to perform QoE management	51
2.8	Relationship of Quality of Service Parameters with QoE Measurements	65
3.1	Research Framework	72
3.2	Research Flow Chart	73
3.3	Composition of Internet Users in Indonesia	76
3.4	Mobile OS Market Share in Indonesia MALAYSIA MELAKA	77
3.5	Rasoft, online sample Size Calculator	78
3.6	Method of Data Collection	80
3.7	The Wi-Fi Networks	81
3.8	Deep Packet Inspection Flowchart	84
3.9	5G KPIs–QoS-QoE mapping model (Berger, 2019)	87
3.10	The method of determining QoE with the ANN method	90
3.11	The structure of an ANN	94
3.12	The QoE model creation by using the ANN method	96
3.13	Chronology of Data Collection Process	101
3.14	Type of Measured Parameter	103
3.15	Controller User Guide	108
3.16	Subtypes of Various Forms of Validity Test	111
3.17	SSL/TSL Deep Inspection	114
3.18	The algorithm used in this research	117
4.1	The number of valid experimental days for each user, users are sorted in	
	descending order of total duration	120
4.2	Cumulative Distribution Function (CDF) for Wi-Fi Offloading duration	123

4.3	Number of Data Offloaded	124
4.4	The relationship between time duration and the amount of AP traffic data	126
4.5	Temporal coverage of all users	130
4.6	Temporal coverage for Socio 1	131
4.7	Temporal coverage for Socio 2	132
4.8	Measurement graph of the average quality of service users in the Socio 1 group	138
4.9	The average QoS users in the Socio 2 group	140
4.10	Cumulative Distribution Function of QoS and QoE on Socio 1	142
4.11	Cumulative Distribution Function of QoS and QoE on Socio 2	143
4.12	Applications used based on total traffic data on Socio 1	149
4.13	Applications used based on total traffic data on Socio 2 group	151
4.14	Applications used based on total traffic data on all data	152

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF ABBREVIATION

3G	– Third Generation
3GPP	– Third Generation Partnership Project
4G	– Fourth Generation
5G	– Fifth Generation
ANN	 Artificial Neural Network
ANDSF	 Access Network Discovery and Selection Function
AP	– Access Points
BTS	– Base Transceiver Station
CAPEX	– Capital Expenditures
DAWONs	– Delay-Aware Wi-Fi Offloading and Network Selection
DHCP	- Dynamic Host Configuration Protocol
DPI	– Deep Packet Inspection
GZRP	Constin Zone Bouting Protocol
HEW	– High-Efficiency Wireless
HWN	– Heterogeneous Wireless Networks
IEEE	Institute of Electrical and Electronics Engineers
ISP	- Internet Service Provider
KPI	– Key Performance Indicator
LTE _	- Long Term Evolutions
MAC	– Media Access Control
MADM —	– Multi-Attribute Decision-Making
MAPE 📋	- Mean Average Percentage Error ALAYSIA MELAKA
MN	– Mobile Node
MNO	 Mobile Network Operators
MOS	– Main Opinion Score
NSS	– Network Selection Scheme
OPEX	– Operating Expenditure
OS	– Operating System
QoS	– Quality of Services
QoE	– Quality of Experience
RAM	– Random Access Memory
RAT	– Radio Access Technology
RO	– Research Objective
RQ	– Research Questions
RSS	– Received Signal Strength
RTT	– Return Trip Time
SINR	– Signal to Interference Noise Ratio
SSID	- Service Set Identification
TCP	– Transport Control Protocol

- UE - User Equipment
- Universiti Teknikal Malaysia Melaka
 Vertical Handover
 Wireless Fidelity UTeM
- VHO
- Wi-Fi

LIST OF APPENDICES

APPENDI	X TITLE	PAGE
А	Briefing Details on Measurement Study	180
В	Participant's Declaration Form	181
С	Application Letter from Building Management Inalum Main	
	Office, Kuala Tanjung	182
D	Initial Survey results	183
E	Survey results on the average quality of experience	187
F	Data duration connected to Wi-Fi and Traffic Offloading	190
G	User-access application traffic data	194
Н	Quality of service and QoE measurement results	200
	6ª	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF PUBLICATIONS

Conference Articles

Ruliyanta, R., Ahmad, M. R., Md Isa, A. A., Ronald Repi, V. V., Yasher, L. O., and Jusuf, H., 2022. Wifi-6 Antenna Design to Increase Data Traffic Offloading with HFSS and PCAAD Software. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 06-07 October 2022, pp. 441–445.

Journal Articles

Ruliyanta, Ahmad, M. R., and Isa, A. A. M., 2024. QOE Measurement model in wi-fi networks : analysis of socio- economics influences in Indonesia. *Przegląd Elektrotechniczny*, 2024(6), pp. 83–87.

Ruliyanta, Ahmad, M. R., and Isa, A. A. M., 2023. Wi-Fi offloading on mobile data communication in the office, the measurement study. *Przeglad Elektrotechniczny*, 2023(10), pp. 165–170.

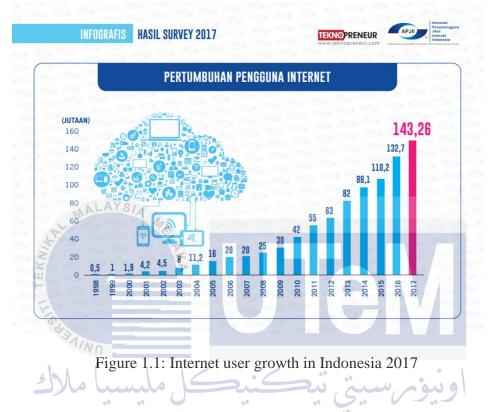
Ruliyanta, R., Riduan Ahmad, M., and Md Isa, A. A., 2022. Adaptive Wi-Fi offloading schemes in heterogeneous networks, the survey. *Indonesian Journal of Electrical Engineering and Computer Science*, 28(1), pp. 254–268.

CHAPTER 1

INTRODUCTION

1.1 Research Background

There remains controversy about the use of smartphones for work. Some employers still prohibit the use of smartphones during work hours. Some businesses even use smartphones to boost employee efficiency at work. Naturally, smartphone productivity only applies to some kinds of employment. According to Cisco, the world's first 5G (fifth generation) networks are expected to be launched early in 2017 (Cisco Visual Networking Index, 2017). This includes wireless networks and smartphone manufacturers. The carriers have already fought to be perceived as having the best network, and chipmakers have already revealed their first 5G modems. With higher speeds and more dependable connections, 5G networks represent the next generation of mobile internet connectivity for smartphones and other devices with state-of-the-art network technology, and the most recent research will enable 5G to deliver connections millions of times faster than today, with average download rates of about 1 GBps predicted to become the standard so on (Andrews et al., 2014).


There has been a significant surge in global mobile data traffic, and no indications of it decelerating. Due to the escalating speed, greater utilization of mobile data will be seen in the future. The increasing utilization of massive data traffic volumes poses a significant challenge for service providers in meeting the surging demand.

Cellular networks view Wi-Fi offloading, also known as Wireless Fidelity offloading, as a potential solution to the problem of excessive mobile data usage (Cheng et al., 2014). Wi-Fi offload involves transferring data traffic from costly cellular networks to Wi-Fi infrastructure, significantly reducing infrastructure expenses. Furthermore, it improves user connectivity and provides additional value-added Wi-Fi services.

Nevertheless, the deployment of Wi-Fi offloading presents challenges. A Wi-Fi operator warned at the Wi-Fi Global Congress 2015 that the maximum capacity of 200 simultaneous active users severely restricts the ability to provide carrier-grade voice service on Wi-Fi. This translates to approximately 4 to 10 active voice calls. It is imperative to deliver solutions that employ efficient algorithms to address the constraints imposed by the restrictive conditions. This will ensure the reliability of Wi-Fi offloading, allowing a seamless transition between Wi-Fi and cellular networks based on the user's requirements.

In 2016, there will be a 63 % increase in cellular data traffic worldwide. The Middle East and Africa have the highest growth rates (96 percent), followed by Asia Pacific (71 percent), Latin America (66 percent), and Europe Central and East (64 percent). In 2016, growth in Western Europe was over 52 %, whereas North America expanded at a slower rate of 44 %. India, China, and Indonesia had the fastest global growth rates at the national level—142, 86, and 76 percent, respectively. These three nations also had the quickest traffic increase in 2015. However, in 2016, Indonesia's traffic growth accelerated (129 % in 2015), while China and India's traffic growth decreased from 2015 (89 % in India and 111 % in China).

Based on cities and districts, metropolitan areas had the highest percentage of Internet users (72.41 %), followed by rural-urban regions (49.49 %) and rural areas (48.25 %), according to the findings of a 2017 survey published by the Indonesian Internet Service Providers Association (APJII, 2017). This high penetration indicates the prevalence of fiber optics and other internet-related infrastructure. The results of this poll pertain to Indonesia's overall internet penetration rate, which increased by only 8 % to 143.26 million users, or 54.68 % of the country's 262 million total population, relative to the 132.7 million individuals in the prior results, as shown in Figure 1.1.

People most commonly use a smartphone to access the internet. The ownership of UNIVERSITI TEKNIKAL MALAYSIA MELAKA smartphones in urban areas stands at 70.96 %, while in rural-urban regions, it is 45.42 %, and in rural areas, it is 42.06 %. Urban areas (31.55 %), rural-urban areas (23.42 %), and rural areas (23.83 %) use computers less frequently. According to the APJII (2017)l, most individuals (43.89 %) spend 1-3 hours daily using the internet, the longest reported length. As a result, there are 4–7 hours, accounting for 29.63 % of the total, and more than 7 hours, accounting for 26.48 %. Most users primarily access chat programs (89.35 %), social media platforms (87.13 %), search engines (74.84 %), see photographs and photos (72.79 %), view videos (69.64 %), and engage in various other internet activities. The study results indicate

that the least popular activity among respondents is accessing banks, with a participation rate of 7.39 %.

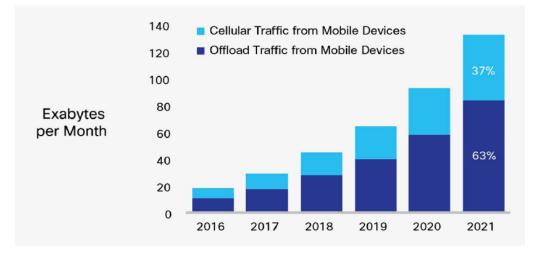


Figure 1.2: In 2021, 63 percent of total mobile data traffic will offload to Wi-Fi

One possibility is to increase the present network to the next-generation network to overcome the expansion of cellular data traffic (He et al., 2016). Another alternative is to increase the number of BTS (base transceiver stations) and construct smaller cells to boost cellular network capacity. The drawback is that this approach involves a relatively substantial capital investment (CAPEX) and operating costs (OPEX). The second option is to propose pricing restructuring based on data usage, which is extremely unprofitable for consumers. Adding the number of femtocell stations is also not an attractive solution because of the high cost and inability to provide appropriate coverage (Shayea et al., 2019).

Exploiting Wi-Fi networks has long been the ultimate solution to fulfilling the need for exploding bandwidth demand (Cisco, 2020). Predictions indicate that the advancement of Wi-Fi standards will increase the connection speed for the Wi-Fi offloading process. Globally, there will be over 628 million public Wi-Fi hotspots by 2023, up from 169 million hotspots in 2018, or a fourfold growth. In 2023, Asia Pacific will grow by 46 percent to become the most significant global public hotspot. Community hotspots, or home pots, will increase. In this concept, clients are grouped into a regional group or a residential community to share the internet through access points provided by partnerships or directly from operators. Hotspot 2.0 on a Wi-Fi gateway will automatically transition to a better speed by adopting IEEE 802.11ac or Wi-Fi 5 and the newer 802.11ax or Wi-Fi 6 standard. Globally, Wi-Fi 6 hotspots will expand 13 times from 2020 to 2023 and will be 11 % of all public Wi-Fi hotspots in 2023. Figure 1.3 Shows the historical evolution and future of wired and wireless technologies.

The prevalence of IEEE 802.11ac, the latest Wi-Fi standard, will gain momentum from 2018 to 2023. In 2023, 66.8 percent of all WLAN endpoints will be equipped with 802.11ac or Wi-Fi 5. IEEE 802.11n or Wi-Fi 4, ratified in 2007, provides various speeds that allow users to view media with high-resolution video streaming. However, IEEE 802.11ac, or Wi-fi 5, offers a much higher speed and will be updated with the latest IEEE 802.11ax or Wi-Fi,6 also called High-Efficiency Wireless (HEW), which can provide average throughput per user with a speed factor of four times a dense user environment.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

....

5.

...