

Faculty of Mechanical Technology and Engineering

Master of Science in Mechanical Engineering

PARAMETER OPTIMIZATION OF FUSED DEPOSITION MODELING PROCESS FOR 3D PRINTED PROSTHETIC SOCKET USING PCR-TOPSIS METHOD

LIM GUO DONG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Parameter Optimization of Fused Deposition Modeling Process for 3D Printed Prosthetic Socket Using PCR-TOPSIS Method" is the result of my own research except as cited in the references. The thesis has not been accepted for any Master of Science and is not concurrently submitted in candidature of any other Master of

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

DEDICATION

I dedicate this thesis to my cherished parents and family for their never-ending love and support. This is also dedicated to my honorable supervisor for his mentorship throughout my study, as well as to the examiners, lecturers, and all my friends for their constant support over the years.

ABSTRACT

Prosthetic devices play a crucial role in the rehabilitation process of amputees while socket serves as the most critical component to ensure their success. However, the conventional fabrication process of prosthetic sockets is a labour-intensive and time-consuming process. The advancement of additive manufacturing (AM) in rapid development and its ability to create free-form geometry have posed the potential in revolutionizing traditional manufacturing industries. Fused deposition modeling (FDM) has been the most popular technique in AM technology used in socket fabrication. However, the strength of FDM products is influenced by a series of FDM printing parameters. Therefore, this study aims to investigate the optimum combination of FDM printing parameters in the development of transtibial prosthetic sockets. The study was initiated with the material selection while three FDM materials were investigated and their strength is compared to the conventional socket material, polypropylene (PP). Polylactic acid (PLA) was identified to be the most suitable material due to its highest performance index of 79.74 and has been employed for the subsequent parameter optimization study. A three-dimensional (3D) scanner was utilized to capture the digitized data of the amputee's stump and convert it into a stereolithography (STL) mesh model. The 3D model of the prosthetic socket was then constructed using the computer-aided-design (CAD) software and tested at different socket thicknesses to determine the appropriate thickness of the socket wall. Subsequently, the samples of the prosthetic sockets were prepared with an FDM printing machine and examined for their structural strength according to the ISO 10328 standard. Experimental data obtained were evaluated and the optimum printing parameter combination was determined through PCR-TOPSIS analysis. The optimum condition to fabricate the 3D printed socket was found to be the combination of 1.0 mm nozzle diameter, 0.48 mm layer thickness, and 30% infill percentage. Additionally, infill percentage is identified to be the most significant printing parameter followed by layer thickness and nozzle diameter.

PENGOPTIMUMAN PARAMETER PROSES PERMODELAN PENGENDAPAN TERLAKUR UNTUK SOKET PROSTETIK CETAKAN 3D MENGGUNAKAN KAEDAH PCR-TOPSIS

ABSTRAK

Peranti prostetik memainkan peranan penting dalam proses pemulihan orang yang diamputasi manakala soket berfungsi sebagai komponen paling kritikal untuk memastikan kejayaan mereka. Walau bagaimanapun, proses fabrikasi konvensional soket prostetik adalah proses yang intensif buruh dan memerlukan tempoh yang panjang. Kemajuan pembuatan bahan tambahan (AM) dalam pembangunan pesat dan keupayaannya untuk mencipta geometri bentuk bebas telah menunjukkan potensi dalam merevolusikan industri pembuatan tradisional. Permodelan pengendapan terlakur (FDM) telah menjadi teknik paling popular dalam teknologi AM yang digunakan dalam fabrikasi soket. Walau bagaimanapun, kekuatan produk FDM dipengaruhi oleh banyak parameter percetakan FDM. Oleh itu, kajian ini bertujuan untuk menyiasat kombinasi optimum parameter pencetakan FDM dalam penghasilan soket prostetik transtibial. Kajian ini dimulakan dengan pemilihan bahan manakala tiga bahan FDM telah dikaji dan kekuatannya dibandingkan dengan bahan soket konvensional, PP. PLA dikenal pasti sebagai bahan yang paling sesuai kerana indeks prestasi tertingginya iaitu 79.74 dan telah digunakan untuk kajian pengoptimuman parameter seterusnya. Pengimbas 3D telah digunakan untuk menangkap data digital tunggul amputasi dan menukarnya kepada model STL. Model soket prostetik seterusnya telah dibina menggunakan perisian CAD dan diuji pada ketebalan soket yang berbeza untuk menentukan ketebalan dinding soket yang sesuai. Selepas itu, soket prostetik telah dihasilkan menggunakan mesin pencetak FDM dan diperiksa kekuatan strukturnya mengikut piawaian ISO 10328. Data eksperimen yang diperolehi telah dinilai dan kombinasi parameter cetakan optimum telah ditentukan melalui analisis PCR-TOPSIS. Paratmeter optimum untuk membuat soket cetakan 3D didapati adalah gabungan diameter muncung 1.0 mm, ketebalan lapisan 0.48 mm, dan peratusan isian 30%. Selain itu, peratusan isian dikenal pasti sebagai parameter pencetakan paling pengaruhi diikuti oleh ketebalan lapisan dan diameter muncung.

ACKNOWLEDGEMENTS

I would like to express my deep gratitude towards my supervisor, Associate Professor Dr. Mohd Juzaila bin Abd. Latif for his scientific guidance and whole-hearted advice to encourage me throughout this thesis. My special thanks to my co-supervisor, Associate Professor Ir. Ts. Dr. Mohd Rizal Bin Alkahari for her valuable comments, advice, and guidance during the research. Also, my thank you to Datuk Dr. Hafez Bin Hussain, Chief Executive Officer from PERKESO Rehabilitation Center, Malaysia for his support in relation to the project. Furthermore, I would like to acknowledge the help of Dr. Latish Rao and his teams for their technical support and professional advice. My final and most deeply felt appreciation goes to my parents, Lim Chee Ming and Chua Siew Hoon, for their love, understanding, endless patience, and encouragement when they were most required.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE CONTENTS

PAGE

DEC APP DED ABS ABS ACK TAB LIST LIST LIST	LARATION ROVAL DICATION TRACT TRAK KNOWLEDGEMENTS SLE OF CONTENTS F OF TABLES F OF FIGURES F OF FIGURES F OF ABBREVIATIONS F OF PUBLICATIONS	i iii iv vi vii xii xiii
CHA	APTER	
1.	INTRODUCTION	1
	1.1 Background	1
	1.2 Problem Statement	5
	1.5 Research Objectives	ð 0
	1.4 Contribution of Research	0
	1.6 Thesis Outline	9
		,
_		
2.	LITERATURE REVIEW	12
	2.1 Amputation	12
	2.1.2 Rehabilitation	14
	2.1.2 Kendolination 2.2 Lower Limb Prostbesis	10
	2.2 Lower Linio Prostietics	20
	2.2.2 Prosthetic Socket Fabrication	23
	2.3 Additive Manufacturing	26
	2.4 Fused Deposition Modeling	32
	2.4.1 FDM Material	35
	2.4.2 FDM Parameter	38
	2.5 Material Selection Method	48
	2.6 Parameter Optimization	51
	2.7 Structural Test of FDM Fabricated Prosthetic Socket	55
	2.8 Summary	62
2	ΜΕΤΗΟΡΟΙ ΟΩΥ	62
J.	3.1 Introduction	63
	3.2 FDM Material Selection	65
	3.2.1 Specimen Preparation	65

3.2.1Specimen Preparation653.2.2Mechanical Strength Testing of The Specimens683.2.3Weight Property Index Method Analysis70

	3.3	Prosthe	etic Socket Structural Testing
		3.3.1	Socket Design
		3.3.2	Socket Sample Preparation
		3.3.3	Preparation of ISO 10328 Test Rig
		3.3.4	Socket Structural Static Test
	3.4	Param	etric Optimization
		3.4.1	Taguchi Analysis
		3.4.2	PCR-TOPSIS Analysis
4.	RES	ULTS A	ND DISCUSSION
	4.1	Introdu	uction
	4.2	Mecha	unical Properties
	4.3	Materi	al Selection
	4.4	Optim	um Thickness of Prosthetic Socket
	4.5	Printin	g Parameter
	4.6	Param	eter Optimization Study
5.	CON	CLUSI	ON AND RECOMMENDATION
	5.1	Conclu	sion
	5.2	Recom	mendation for Future Study
REF	EREN	CES	P.F.
	TEP		
	F		
		St JA	
		1/0/-	
		NNN I	
	ک	ا ملاك	اونىۋەرسىخ ئىكنىكا ملىسى

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

PAGE

TITLE

TABLE

2.1	Strength of FDM part at different print orientations (Ashtankar et al.,	40
	2014)	
2.2	Tensile testing results of the varying raster angle	43
3.1	3D printing parameters for material selection	67
3.2	Printing temperature for different materials	68
3.3	3D printing parameter	77
3.4	List of printing parameters and their levels	79
3.5	Taguchi L9 orthogonal array	79
3.6	Offset value for load condition IL MALAYSIA MELAKA	81
3.7	Total length and segmental lengths of different types of test samples	82
4.1	Experimental result of mechanical testing of material	90
4.2	Digital logical method analysis for candidate material	95
4.3	Weight property index chart for selection of material	96
4.4	Experimental result of printing parametric study.	98
4.5	Result of SNR and PCR-SNR	102
4.6	Result of PCR-TOPSIS	103
4.7	Optimum condition	104

LIST OF FIGURES

FIGURE

TITLE

PAGE

1.1	Components of a lower limb prosthesis (Nurhanisah et al., 2019)	2
1.2	Parameters that influence on strength of FDM fabricated product	4
	(Pandzic et al., 2019)	
2.1	Types of major amputation (a) Upper limb amputation (b) Lower limb amputation (Ezigbo et al., 2020)	13
2.2	Lower limb amputation (a) Above-knee amputation (transfemoral	15
	amputation) (b) Below-knee amputation (transtibial amputation) (O'keeffe and Rout, 2019)	
2.3	Lower limb prosthesis (a) Transtibial prosthesis (a) Transfemoral	19
	prosthesis	
2.4	The percentage of coverage for every prosthesis type in lower limb	19
	prosthetics (Eshraghi et al., 2013)	
2.5	Socket weight-bearing characteristics (a) PTB (b) TSB (c) HST	22
	(Jweeg et al., 2018)	
2.6	3D scanning of amputee stump (van der Stelt et al., 2021)	25
2.7	3D printing of prosthetic socket (van der Stelt et al., 2021)	25
2.8	Comparison of prosthetic socket fabrication method	26

2.9	The seven standardized categories of AM technology (Adugna et al.,	28
	2021)	
2.10	Methods of material processing in the standardized AM technology	29
	(Adugna et al., 2021)	
2.11	Schematic diagram of SLA set-up (Subramaniyan et al., 2021)	30
2.12	Schematic diagram of SLS technology (Ganeriwala and Zohdi, 2014)	31
2.13	Number of publications related to FDM from 2009 to 2019	32
	(Wickramasinghe et al., 2020)	
2.14	Schematic diagram of the FDM process (Alafaghani et al., 2017)	34
2.15	Chemical structure of ABS (Turku et al., 2018)	36
2.16	Conversion of lactic acid to polylactic acid (McKeen, 2016)	37
2.17	Graphical representation of build orientation (Feng et al., 2019)	40
2.18	Diagrammatic representation of the layer thickness (Barrios and	41
	Romero, 2019)	
2.19	Graphical illustration of the raster angle (Wu et al., 2015)	43
2.20	Diagrammatic representation of different types of the air gap	44
2.21	Schematic view of the various types of the shape of the infill patterns	45
	(Alafaghani et al., 2017)	
2.22	Schematic illustration of the raster width and air gap (Dey et al.,	47
	2019)	
2.23	Influence of process parameter on FDM printed parts (Sheoran and	52
	Kumar, 2020)	
2.24	Load condition specified in ISO 10328 standard (Lindberg et al.,	56
	2018)	

2.25	Assembled compliant prosthetic socket 5		
2.26	Prototype of RSMM machine (Ng et al., 2002)		
2.27	Set-up of static structural test for load condition II following ISO	60	
	10328 standard (Owen and Desjardins, 2020)		
2.28	Socket failure mechanism (a) Socket material compressive failure (b)	61	
	Socket material tensile failure (c) Socket component connection		
	failure (d) Component failure (Owen and Desjardins, 2020)		
3.1	Flow chart of research methodology	64	
3.2	Specimen dimension. (a) Tensile specimen (b) Flexural specimen	66	
3.3	Set-up for tensile test experiment	69	
3.4	Set-up for flexural test experiment	70	
3.5	Labelling of the critical region on amputee stump	73	
3.6	3D scanning of amputee stump	73	
3.7	Alignment of stump mesh in Fusion 360 CAD software workspace	74	
3.8	Rectification of stump surface (a) creation of form surface (b)	75	
	UNattachment of point of form onto stump mesh IA MELAKA		
3.9	Pressure area distribution on the transtibial stump	76	
3.10	Final shape of the socket	76	
3.11	3D printing of socket sample	78	
3.12	ISO 10328 test configuration	80	
3.13	The assembly drawing of the jig for ISO 10328 structural testing	83	
3.14	Vacuum casting process using MTT 5/01 vacuum casting machine	84	
3.15	Final product of mock stump model	85	
3.16	Experimental set-up of socket structural static test.	86	

4.1	Comparison of tensile strength between conventional and FDM		
	material		
4.2	Comparison of flexural strength between conventional and FDM	91	
	material		
4.3	Comparison of Young's modulus between conventional and FDM	91	
	material		
4.4	Comparison of elongation at break between conventional and FDM	92	
	material		
4.5	Ultimate force of 3D printed socket at different thicknesses	97	
4.6	Internal structure for socket printed with different nozzle diameters	100	
4.7	Main effect plot	104	
	اونيۆمرسيني نيڪنيڪل مليسيا ملاك		
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA		

LIST OF ABBREVIATIONS

3D	-	Three Dimensional
ABS	-	Acrylonitrile Butadiene Styrene
AHP	-	Analytic Hierarchy Process
AM	-	Additive Manufacturing
ANN	MAL	Artificial Neural Networks
CAD	- KWIN	Computer-Aided Design
CAM	- TEI	Computer-Aided Manufacturing
CF	TISTIN	Carbon Fiber
CNC		Computer Numerical Control
ELECTR	با ما <u>ل</u> اك _e	Elimination and Choice Expressing the Reality
FDM	UNIVER	Fused Deposition Modeling LAYSIA MELAKA
HST	-	Hydrostatic Design
ISO	-	International Organization for Standardization
LLA	-	Lower Limb Amputation
LMICs	-	Low and Middle-Income Countries
MCDM	-	Multiple Criteria Decision Making
PA	-	Polyamide
PE	-	Polyethylene
PCR	-	Process Capability Ratio

PETG	-	Polyethylene Terephthalate Glycol
PLA	-	Polylactic Acid
POP	-	Plaster of Paris
РТВ	-	Patellar Tendon Bearing
PVA	-	Polyvinyl Alcohol
PVC	-	Polyvinyl Chloride
RSM	-	Response Surface Method
RSMM	-	Rapid Socket Manufacturing Machine
SMART	-	Simple Multi-Attribute Rating Technique
SNR	AL MAL	Signal Noise Ratio
STL	KNIK.	Stereolithography
TOPSIS		Technique for Order Preference by Similarity to Ideal Solution
TSB	E-SS-HAL	Total Surface Weight Bearing
VIKOR	6 DI	Multicriteria Optimization and Compromise Solution
WHO		World Health Organization
WPIM	UNIVER	Weighted Property Index Method YSIA MELAKA

LIST OF PUBLICATIONS

- Lim, G. D., Abd Latif, M. J., Alkahari, M. R., Yob, M. S., Thapliyal, S., and Threemurty, L. R., 2020. Optimization of Tensile Strength and Processing Time Using PCR-Topsis Method for FDM Process. *Journal of Advanced Manufacturing Technology* (JAMT), 14(3), pp. 67-80.
- Lim, G. D., Abd Latif, M. J., Alkahari, M. R., Yob, M. S., Musa, M., Rahman, M. N., and Theemurty, L. R., 2022. Parameter Optimization of Fused Deposition Modeling Process for 3D Printed Prosthetic Socket using PCR-TOPSIS Method. *International Journal of Nanoelectronics & Materials*, 15, pp. 247-258.
- **3.** Lim, G.D., Abd Latif, M.J., and Alkahari, M.R., 2020. Potential Application of 3D Printing Technology in Physiotherapy Rehabilitation. In *Engineering as a tool for technology solution 2021*, pp. 63-80. Penerbit UTeM.
- 4. Lim, G.D., Abd Latif, M.J., and Alkahari, M.R., Jenal, R., Yob, M.S., Musa, M., Abdul Rahman, M.N., Threemurty, L.R., Hussain, H., 2019. Potential Application of 3D Printing Technology in Rehabilitation Physiotherapy Program. *Symposium on Knowledge Transfer 2019*, pp. 102-111.
- Lim, G.D., Abd Latif, M.J., Alkahari, M.R., Jenal, R., Yob, M.S., Musa, M., Abdul Rahman, M.N., and Threemurty, L.R, 2020. Experimental Study of Fused Deposition Modeling Printing Materials for Lower Limb Prosthetic Socket. *Proceedings of Mechanical Engineering Research Day 2020*, pp. 49-50.

CHAPTER 1

INTRODUCTION

1.1 Background

Amputation may result in negative impacts on the general health, vitality, social function, and physical role performance of amputees compared to the general population (Mahdi et al., 2016). World Health Organization (WHO) estimates that 0.5% of the population of a developing country is suffering from a certain form of disability which may require a prosthetic or orthotic device and related rehabilitation services. Recently, there is only five to fifteen percent of people with amputations have access to rehabilitation technology, especially in low and middle-income countries (LMICs) (Arifin et al., 2017). Amputation can be categorized into two main divisions which are upper limb and lower limb amputation (LLA). However, LLA occupied the highest prevalence which accounts for 84% (Rahman, 2017).

Following amputations, rehabilitation is carried out to recover the daily life activities of amputees by regaining their functional mobility and reducing their dependency on others (Ülger et al., 2018). An individual with LLA is prescribed a prosthesis during the rehabilitation process to regain mobility. It is acknowledged that a successful rehabilitation outcome requires the provision of high-quality and efficient prosthetics services. A wellworking prosthesis may increase a user's quality of life, satisfaction, chances for education and employment, and social acceptance (Arifin et al., 2017). The prosthetic is part of the bio-mechatronics field which is the science of using mechanical devices with human muscle, skeleton, and nervous systems to assist or enhance motor control. Technically, a lower limb prosthetic device consists of but is not limited to a socket, pylon, and artificial foot as shown in Figure 1.1 (Jawaid et al., 2017; Nurhanisah et al., 2019). The socket is considered the most important component of the lower limb prosthetic device, which constitutes the critical interface between the amputee's stump and prosthesis (Laing et al., 2011, 2017). Nevertheless, the prosthetic socket fabrication process is customized to fit the individual shape of the amputee's residual limb (Yusof et al., 2019).

Figure 1.1: Components of a lower limb prosthesis (Nurhanisah et al., 2019)

Prosthetics have been used for at least 3500 years, but prosthetic technology remained relatively stagnant until the nineteenth century (Keszler et al., 2019). The conventional procedure for creating a prosthetic socket involves either placing layers of woven materials combined with acrylic resins over the positive mold or draping a heated thermoplastic sheet over the positive mold. It typically requires two to three days to complete this labor-intensive process for one socket (Ng et al., 2002). Advancement in the area of

prosthetics has greatly accelerated during the past few decades due to the introduction of new technology such as additive manufacturing (AM) (Keszler et al., 2019).

AM is a technique where objects are made by fusing or depositing materials in layers. The AM process has a wide range of applications such as 3D printed prostheses, developing medical devices, transplantation of tissues and organs, surgical planning models, and surgical guides for dental implants (Fadhil et al., 2017; Kate et al., 2017; Tunchel et al., 2016; Werz et al., 2018; Zuniga et al., 2015). Among all AM techniques available, fused deposition modeling (FDM) is the most widely applied AM technique in prosthetic socket fabrication due to its simplicity of the process, low cost, and customization ability (Neethan et al., 2019). FDM provides a great opportunity to improve efficiency and simplify the conventional prosthetic manufacturing process. The labor and costs involved may be greatly reduced, while amputees may acquire their prosthetic devices in a shorter period. This can especially be a significant benefit for amputees who need to change their prostheses quite often due to their growth (Kate et al., 2017).

Much research has investigated the application of FDM in the fabrication of lower limb prosthetic sockets to focus on the strength and safety of the socket. Nevertheless, the strength of the FDM product is not only influenced by the material but also the parameter setting of the FDM process (Górski et al., 2021; Nickel et al., 2020; Owen and Desjardins, 2020; Stewart, 2020). There is a lot of FDM parameter setting which may affect the FDM product strength which included nozzle diameter, infill percentage, layer thickness, and other as shown in Figure 1.2 (Dey et al., 2019; Pandzic et al., 2019). These parameters not only affect the strength of the FDM product but also the processing time. Thus, optimization of the FDM parameters is crucial to achieving maximum efficiency.

Figure 1.2: Parameters that influence on strength of FDM fabricated product (Pandzic et al., 2019)

AM technology has been recently explored by researchers in the fabrication of prosthetic devices, especially prosthetic sockets (Górski et al., 2021; Owen and Desjardins, 2020; Stewart, 2020; van der Stelt et al., 2022). The conventional prosthetic socket fabrication method involves several independent steps and the total process is time-consuming and labor-intensive. Moreover, all processes have to be repeated if socket fit is inappropriate and a lot of material required for fitting and production process is eventually discarded. Even with the utilization of computer aided design (CAD) and computer-aided manufacturing (CAM) techniques, the positive mold of the amputee stump is either thrown away or may require additional space to be stored at a central fabrication facility (Owen and Desjardins, 2020). The application of AM technology may greatly reduce these problems as little waste is generated since positive mold does not have to be created and the amputee stump information was stored in digital data. Nevertheless, the reliability and sustainability of 3D printed prostheses are the main concern prior to their application on amputees.

1.2 Problem Statement

The prevalence of LLA is high across the globe and continues to be a major threat to morbidity and mortality. According to scientific research, diabetes mellitus is a major risk factor for LLA (Hoffstad et al., 2015; Hussain et al., 2019; Yusof et al., 2019). In fact, in 2005, it was estimated that a lower limb was amputated due to diabetes every 30 seconds somewhere in the globe (Arifin et al., 2017). The rehabilitation of amputees following LLA poses a growing socioeconomic challenge and the provision of affordable and high-quality prosthetic service is critical for their rehabilitation process (Arifin et al., 2017; Dickinson et al., 2017). However, facilities to fabricate prostheses are generally far from the recipients' places and the selling price of a prosthesis is too expensive, especially for those from lower-income families (van der Stelt et al., 2021). According to the International Society for Prosthetics and Orthotics, the clinical community intended to improve evidence-based practice, and there is a need for new technology in prosthetic limb componentry and its provision (Dickinson et al., 2017).

From the vantage point of lower limb amputees, the socket is the most important UNIVERSITI TEKNIKAL MALAYSIA MELAKA component of the prosthesis, and its primary mechanical function is to support the load bearing from the residual limb (Stewart, 2020). Generally, the prosthetic socket is fabricated manually from a positive plaster cast of the amputee's residual limb. This process has some disadvantages such as being labor-intensive, time-consuming, and highly dependent on the skills and experience of the prosthetist involved (van der Stelt et al., 2021, 2022; Wang et al., 2020). Besides, both the wrap cast and mold are destroyed during the process which makes the process unrepeatable and results in material wastage (van der Stelt et al., 2022; Wang et al., 2020). AM technology showed great potential to provide substantial benefits over the conventional prosthetic socket fabrication process. AM technology requires minimum human intervention and operator skills, which is curial in the medical profession. Also, the AM product is precisely consistent and the overall process generally takes less processing time. AM is a perfect technique for automated socket fabrication due to its ability to produce free-form surfaces and hidden features (Ng et al., 2002).

AM has the potential to provide substantial benefits compared to conventional socket production. AM inherently reduces the overall processing time and ensures precise consistency. It requires minimal operator skill and human intervention, making it particularly crucial in the medical field. The ability to create free-form surfaces and hidden features makes AM an ideal technology for automated socket fabrication (Ng et al., 2002). FDM is an effective AM method to produce 3D printed prosthetic sockets because it provides promising possibilities to produce complex geometries and personalized designs combined with the ease of manufacturing. However, FDM is a time-consuming production process and the strength of FDM-printed prosthetic sockets is still in doubt (Kate et al., 2017). Hence, the strength of 3D printed prosthetic sockets using FDM must be improved, and the manufacturing time must be significantly reduced (Ng et al., 2002).

Several factors including filament properties, extruder path planning, STL file resolution, and process parameters are responsible for FDM part quality degradation (Dey et al., 2019). The FDM process is manipulated by a series of process parameters such as infill percentage, layer thickness, and nozzle diameter, while each parameter influence on the strength and fabrication time of FDM products. As such, achieving an optimal combination of process parameters is very challenging due to the nature of the FDM process and the interplay among various parameters (Dey et al., 2019). Furthermore, FDM involves