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Abstract.  WiFi sensing integration enables non-intrusive and is utilized in applications like Human 
Activity Recognition (HAR) to leverage Multiple Input Multiple Output (MIMO) systems and Channel 
State Information (CSI) data for accurate signal monitoring in different fields, such as smart environments. 
The complexity of extracting relevant features from CSI data poses computational bottlenecks, hindering 
real-time recognition and limiting deployment on resource-constrained devices. The existing methods 
sacrifice accuracy for computational efficiency or vice versa, compromising the reliability of activity 
recognition within pervasive environments. The lightweight Compact Convolutional Transformer (CCT) 
algorithm proposed in this work offers a solution by streamlining the process of leveraging CSI data for 
activity recognition in such complex data. By leveraging the strengths of both CNNs and transformer 
models, the CCT algorithm achieves state-of-the-art accuracy on various benchmarks, emphasizing its 
excellence over traditional algorithms. The model matches convolutional networks’ computational efficiency 
with transformers’ modeling capabilities. The evaluation process of the proposed model utilizes self-
collected dataset for CSI WiFi signals with few daily activities. The results demonstrate the improvement 
achieved by using CCT in real-time activity recognition, as well as the ability to operate on devices and 
networks with limited computational resources. 
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1. Introduction 

 
Recent years have witnessed the widespread utilization of WiFi devices in indoor settings due 

to their cost-effectiveness and ease of deployment. This increased adoption of WiFi devices has 

prompted the exploration of Human Activity Recognition (HAR) applications across various 

domains, such as smart home environments (Guo et al. 2018), medical monitoring systems 

(Palanivelu and Srinivasan 2020), and public security initiatives, among others. Traditional  
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Fig. 1 The WiFi sensing principle 

 

 

approaches for WiFi-based activity recognition rely on handcrafted features and traditional 

machine learning algorithms (Yang et al. 2022a). However, these methods struggle to capture 

complex patterns and long-range dependencies in the CSI data (Zhou et al. 2021). By introducing 

lightweight Compact Convolutional Transformers CCT into CSI-based HAR, there is an 

opportunity to overcome these challenges. The lightweight self-attention mechanism in CCT 

captures the long-range dependencies and complex relationships present in the CSI data.  

By analyzing the patterns of WiFi signal variations, it becomes possible to detect movements 

and infer human activities within a given space (Zhang et al. 2021). Fig. 1 illustrates how changes 

in WiFi signal strength and reflections caused by movements are used to detect activities such as 

walking, gestures, or breathing (Abuhoureyah et al. 2024). The machine learning techniques 

enable the analysis of signals in the context of image processing for recognition by leveraging 

their ability to learn hierarchical representations (Yang et al. 2022b). These techniques enable the 

application of image-processing models for tasks such as object recognition, localization, 

detection, and pattern identification. 

Deep learning models can learn and extract intricate features from raw CSI data. Likewise, 

CNNs, which are known for their hierarchical feature extraction through convolutional layers, 

excel at capturing local patterns and have dominated image recognition tasks (Ma et al. 2019). In 

contrast, Vision Transformer ViTs leverage the self-attention mechanism to process image data, 

enabling them to capture global context information (Lu et al. 2022). ViTs also exhibit strong 

performance in various vision tasks, often with fewer parameters, which is beneficial for resource-

constrained applications (Dierickx et al. 2023). However, CNNs have a proven track record and a 

substantial body of pre-trained models, making them more accessible for many practical use cases. 

Nevertheless, ViTs are data-hungry and expensive, which limits their applicability in specific 

scenarios. 

The CCT represents an integration in bridging the gap between ViTs and CNNs (Dierickx et al. 

2023). CCT combines the efficiency of CNNs in capturing local visual patterns with the modeling 

capabilities of transformers for capturing global context. The hybrid approach retains the benefits 

of both architectures while mitigating their limitations. CCT incorporates compact self-attention 

mechanisms, enabling it to process images and making it more accessible than pure ViTs. The 

proposed lightweight CCT model has the potential to enhance the deployment of CSI-based 

sensing on resource-constrained devices. Therefore, this work aims to develop a lightweight CCT 

for CSI HAR applications through pruning techniques, efficient architecture design, and 

experimentation with model depth and width. The study tests how well the lightweight CCT model 

does in CSI-based HAR tasks, comparing it to other methods. 
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This work uses the CCT algorithm for CSI-based classification to perform classification tasks. 

The first section introduces the CCT algorithm, while the second section examines related works 

in image processing and CSI techniques. Section three describes the mathematical representation 

of CSI sensing, as well as the image classifiers used in WiFi-based sensing to establish the HAR 

model. Section four describes in detail the lightweight CCT algorithm, outlining its design and 

methodology. The fifth section evaluates the proposed method and discusses the results. Lastly, 

Section six concludes the work by summarizing the findings and outlining future research 

directions.  

 

 

2. Related works 

 

The utilization of CSI in HAR holds promise for enhancing activity recognition models’ 

robustness. By taking advantage of the fact that WiFi networks are available, CSI-based HAR 

systems use the unique properties of wireless signals to make activity recognition models accurate 

and durable. Recent research has improved different structures of algorithms such as CNNs, 

Recurrent Neural Network RNNs (Abuhoureyah et al. 2023). These algorithms have the 

capabilities to focuse on the intricate relationship between signal characteristics and model 

structures in the learning process (Luo et al. 2022). The integration incorporates poor-quality 

temporal and frequency information into activity recognition (Ding and Wang 2019). Moreover, 

WiFi activity detection systems scrutinize the received data using classical training models like the 

Table 1 CSI-based methods for activity classification for human activity recognition 

Ref Algorithm 
Activity 

Attributes 
Method Preprocessing Accuracy Challenges 

(Ahmed 

Ouameur  

et al. 2020) 

Multilayer 

MNN 
Localization RSS 

Fingerprints 

acquisition 

66% to 

80% 

MNN suffers from training 

Complexity and Data 

Dependency 

(Ahmed  

et al. 2020) 

CNN and 

SVN/KNN

/RF/NB 

Gesture 

recognition 
CSI 

Convolutional 

filters 
Up to 98% 

Complexity variance, data 

efficiency of feature 

extraction 

(Zhang  

et al. 2021) 
CNN HAR CSI 

Quasi-static 

offsets 

Convolutional 

filters 

92.7% 

Spatial resolution 

constraints, computational 

intensity, and susceptibility 

to signal variations 

(Schäfer  

et al. 2021) 

LSTM 

 
HAR CSI 

sequential 

learning 
96.9% Computationally expensive 

(Jiang  

et al. 2020) 
GAN 

Gesture 

recognition 
CSI 

Deep 

Convolution 

Feature 

Extraction 

95.6 Computationally expensive 

(X. Ding  

et al. 2021) 

Meta-

Learning 
HAR CSI CNN-LSTM Up to 99% 

Encounters scalability 

issues and resource 

demands 

(Showmik  

et al. 2023) 
 HAR CSI CNN Avg 94% Suffers Over-fitting 
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hidden Markov model (HMM) (Tiku et al. 2020) and the KNN. 

Recent studies have investigated the application of CNNs in HAR, highlighting the advantages 

of CNN-based approaches in extracting temporal features from sensor data (Ding et al. 2021). 

Additionally, these networks excel in domains that seek local inductive bias. However, they need 

to catch up in capturing long-range interdependencies where transformers excel at using available 

data. The reliance on extensive datasets constrains utility in scientific and signal-sensing domains, 

given the formidable challenges associated with dataset acquisition. Furthermore, the often-

required large computational resources limit the ability to reproduce and access machine learning 

techniques. While CNNs have made contributions to HAR, addressing these limitations remains a 

subject of ongoing research, with newer models and techniques seeking to enhance their 

robustness and adaptability in HAR scenarios (Showmik et al. 2023). Table 1 summarizes some of 

the procedural approaches utilized in HAR through WLAN, which are delineated in Table 1. 

While utilizing similar datasets for CIS-based activity recognition, the varying algorithms in 

Table 1 exhibit differences in accuracy and computation. Although some methods achieve high 

accuracy rates, they suffer from computational intensity or scalability issues, limiting their 

practical deployment in real-time, pervasive systems. However, the lightweight CCT algorithm, 

which processes CSI data with balanced computational efficiency, holds promise for improving 

WiFi-based sensing classification accuracy. Its streamlined approach addresses the challenges of 

previous methodologies, enabling more precise and efficient activity recognition within a 

pervasive system. 

On the other side, transformers have witnessed a meteoric rise in popularity in machine 

learning research, following the introduction of the “Attention is All You Need” paper (Vaswani, 

n.d.). While these models were first used for natural language processing, they have now been 

extended to computer vision through the Vision Transformer (ViT) framework. This framework 

shows how pure transformer backbones can change things (Lu et al. 2022). Transformers’ 

development underscored both the power of such models and the supremacy of large-scale training 

over inductive biases. ViTs have harnessed the transformative potential of the Transformer 

architecture to enhance image classification tasks. In contrast to traditional CNNs, ViTs adopt a 

sequence-based approach to processing images by dividing them into non-overlapping patches, 

treating each patch as a token (Lu et al. 2022). 

Recent work by Li et al. (2023) presents a novel solution to capturing rich and long-range 

semantic concepts in artworks using CNN-based style transfer methods. The authors introduce a 

compact transformer architecture called AdaFormer, which reduces the model scale by 20% 

compared to state-of-the-art transformers for style transfer. Additionally, they explore adaptive 

style transfer by allowing the content to select the detailed style element automatically, resulting in 

an appealing and reasonable output. Lee et al. (2023) introduces a novel architectural framework 

tailored for embedded systems, exhibiting superior performance in monocular depth estimation 

compared to existing methodologies. The authors carefully divide popular approaches using the 

Transformer paradigm into two groups: those that try to mimic the attention mechanism and those 

that support structures that combine CNN and Transformer elements. 

In this work, we implement a lightweight, CCT that achieves over 96% accuracy on HAR for 

the dataset collected with minimum samples. We further enhance the system by integrating 

convolutional blocks into the tokenization process, thereby creating the CCT. These additions 

boost performance, culminating in a top-1% accuracy of 98%. The proposed model also 

outperforms most comparable CNN-based algorithms in this domain, showcasing its scalability 

and computational efficiency. 
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Fig. 2 Simplified structure of MIMO System 

 
 
3. Preliminary  

 
3.1 Channel state information 
 
Within wireless communication, CSI serves as a source of information, offering essential 

insights into the amplitude and phase characteristics of distinct subcarriers. Multiple-input and 

Multiple-Output (MIMO) technology has gained widespread utilization to enhance data 

throughput and extend signal propagation range without enlarging bandwidth or augmenting 

transmission power, often involving deploying multiple antennas, as shown in Fig. 2 (Akhtar and 

Wang 2020).  

In MIMO systems, the channel is represented by a complex coefficient for each antenna pair, 

forming a CSI matrix, as shown in Eq. (1). CSI matrix conveys amplitude and phase information 

for OFDM subcarriers in the WiFi protocol’s physical layer. WiFi standards like 802.11 a/g/b/n/ac 

are employed in virtual WiFi routers, offering higher data rates through MIMO and OFDM. These 

standards operate on 56, 114, and 232 subcarriers, facilitating various bandwidths (20MHz, 

40MHz, and 80MHz) at either 2.4GHz or 5GHz. The mathematical representation of CSI is 

denoted as y and x, where y signifies the received signal, x denotes the transmitted signal, and 

their relationship relies on the CSI matrix data formatted in the frequency domain via OFDM (Li 

et al. 2021, Yang et al. 2013).                     

𝑦 =  𝐻𝑥 +  𝑛 (1) 

Whereby, Hx is a convolution matrix formed between received and transmitted signals r∗t established 

by number of transmitting and receiving antennas represented in polar form at Eq. (2) (Muaaz et al. 

2022). 

𝐻𝑖𝑗
𝑠 = ∥∥𝐻𝑖𝑗

𝑠
∥∥𝑒𝑗𝐿𝐻𝑖𝑗

𝑥

         𝑠 ∈ [1, 𝑁𝑠], 𝑖 ∈ [1, 𝑁𝑡], 𝑗 ∈ [1, 𝑁𝑟]                           (2) 

The generated matrix H amplitude 𝐻𝑖𝑗
𝑠  and ∠𝐻𝑖𝑗

𝑠  denote of the matrix phase. Whereas Nt and 

Nr represent the numeral of antennas at the transmitter (TX) and receiver (RX). Likewise, i, j 

stands for the index of TX and RX antennas and Ns represents the subcarriers for each pair of 

transceiver antenna. Furthermore, for an activity structure matrix H of the CSI data at boundary t is 

expressed by Eq. (3). 

𝐻𝑡 = (𝐻𝑖𝑗
𝑠 )

𝑡
= [

𝑎𝑛𝑑(𝐻11
𝑠 )𝑡    𝑎𝑛𝑑𝑎𝑛𝑑(𝐻12

𝑠 )𝑡    𝑎𝑛𝑑𝑎𝑛𝑑(𝐻13
𝑠 )𝑡

𝑎𝑛𝑑(𝐻21
𝑠 )𝑡    𝑎𝑛𝑑𝑎𝑛𝑑(𝐻22

𝑠 )𝑡    𝑎𝑛𝑑𝑎𝑛𝑑(𝐻23
𝑠 )𝑡

𝑎𝑛𝑑(𝐻31
𝑠 )𝑡    𝑎𝑛𝑑𝑎𝑛𝑑(𝐻32

𝑠 )𝑡    𝑎𝑛𝑑𝑎𝑛𝑑(𝐻33
𝑠 )𝑡

] (3) 
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Fig. 3 A schematic of the CNN framework highlights the sequential flow of operations. 

 

 

Since CSI is affected by environment, the channel impulse response has a multipath impact on the 

wireless channel (CIR) (Zhang et al. 2021). Under the premise of linear time invariance, the 

channel impulse representation of the response is represented in Eq. 4. 

H(k) = ∥H(k)∥ej∠H(k) (4) 

The matrix H(k) represents the CSI data for the k-th phase of the k-th subcarrier, and H(k) 

represents the amplitude of the k-th subcarrier (Sharma et al. 2021). The channel property of a 

communication link in wireless communication is known as CSI. 

 
3.2 Image classifier 
 

The preliminary phase of the CCT framework establishes the groundwork for subsequent 

stages, thereby enabling precise and efficient HAR through WiFi sensing. In the context of CSI-

based HAR utilizing WiFi sensing, the initial step in the CCT involves the integration of a CNN. 

As depicted in Fig. 3, the process commences with the convolutional layers of the CNN, extracting 

hierarchical spatial features from CSI data. The Fig. visualizes CNN processing CSI data through 

convolutional filters, discerning essential patterns associated with human activities. CNNs, as a 

class of deep learning models, operate by learning spatial hierarchies of features from input images 

(Saw and Wong 2023). They identify basic features in initial layers and recognize more complex 

patterns in subsequent layers, employing pooling layers to reduce spatial dimensions. Fully 

connected layers at the network’s end use learned features for classification or predictions. CNNs, 

with their hierarchical and localized learning approach, prove effective tasks such as image 

recognition, object detection, and image classification (Pan et al. 2019). 

The framework underscores the ViT’s efficacy in capturing global contextual information, 

complementing the local features acquired by CNNs, thus enhancing the overall capability of the 

CCT framework for HAR in WiFi sensing applications. Fig. 4 shows the process of the ViT 

transforming images by breaking them into patches. Initially, an image is divided into fixed 

patches, and each patch is embedded to form a linearly sequence. These patches, along with 

positional information, undergo self-attention processes in transformer encoder layers, enabling 

the network to capture global contextual information. CCT enhances CNNs by focusing on both 

local and global features. The ViT- framework is integrated into CCT, where CNNs and ViT 

collaborate to capture local and global features from CSI data.  
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Fig. 4 Schematic representation of the Vision Transformer (ViT) 

 

 

The Swin Transformer architecture demonstrates high developments performance across 

various vision tasks, surpassing preceding models in accuracy. Comparative assessments with 

transformer-based predecessors, such as DeiT, reveal that the Swin transformer achieves better 

accuracy while maintaining a comparable computational cost. Moreover, unlike ConvNet-based 

models like RegNet and EfficientNet, the Swin Transformer exhibits speed-accuracy trade-off, 

further solidifying its standing as a choice schematic in the landscape of computer vision tasks. An 

attribute contributing to Swin Transformer’s efficacy is its hierarchical architecture, enabling 

nuanced design at different scales capturing local and global features. Additionally, the shifted 

windowing scheme within the Swin Transformer mitigates the computational complexity of self-

attention computations, establishing linear computational scaling concerning image size.  

 

 

4. Lightweight compact convolutional transformers 
 

CCTs are a class of neural network architectures that blend the strengths of both CNNs and 

ViTs. They are designed to handle both spatial and token-based information within images 

(Dierickx et al. 2023). In a traditional CNN, convolutional layers are used to capture local spatial 

patterns in the input data. Let’s denote the input feature map as 𝑋 ∈ ℝ𝐻×W ×C, H and W are the 

height and width of the feature map, and C is the number of channels. A convolution operation is 

represented as Y=X∗K where Y is the output feature map, K is the convolutional kernel, and ′∗′ 

denotes the convolution operation. The size and stride of the kernel, as well as the padding, 

determine the spatial dimensions of the output feature map. 

To describe CCT, consider a hybrid architecture that combines these components (Li et al. 

2023). The initial point starts by input image I∈ ℝ𝐶×𝐻×W in the Convolutional Layers CCT which 

begins with a series of process to classify the input image Convi that represents the i-th 

convolutional layer. These layers extract local features from the images shown in Eq. (5). 

𝑋1 = Conv1 (𝐼) 

𝑋2 = Conv2(𝑋1) 
(5) 
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⋮ 

𝑋𝑛 = Conv𝑛(𝑋𝑛−1) 

The CCT introduces transformer blocks to capture global and long-range dependencies after the 

initial convolutional layers using transformer blocks (Dierickx et al. 2023). Each transformer 

block consists of a self-attention mechanism and feedforward layers represented in Eq. (6). 

𝑌1 = Transformer1 (𝑋𝑛) 

𝑌2 = Transformer2 (𝑌1) 

⋮ 

𝑌𝑚 = Transformer𝑚  (𝑌𝑚−1) 

(6) 

CCTs present a paradigm shift in computer vision feilid and offers advantages with 

conventional CNNs and other established methodologies for image classification (Dierickx et al. 

2023). Furthermore, transformer represents the i-th blocks allow the model to capture relationships 

between features across the spatial hierarchy. The choice of hyperparameters, such as the number 

of convolutional layers, transformer blocks, kernel sizes, and attention mechanisms, depends on 

the specific architecture and task requirements.  

The attribute of CCTs resides in their ability to long-range dependencies within input data, a 

characteristic by integrating the transformer’s self-attention mechanism. While CNNs are 

architected for the localized extraction of features, CCTs transcend these confines by forging 

connections between distant pixels or regions within an image, manifesting an enhanced capacity 

to discern global contextual cues. This trait assumes paramount in tasks characterized by object 

relationships that traverse spatial extents, such as the intricate domains of semantic segmentation. 

The ViT enhances CNNs by reformulating image inputs into sequences of embedded patches. 

The mathematical expression demonstrated as 𝑋 ∈ ℝ𝑁×𝐶, where N is the number of patches, and 

C is the dimension of each patch (Dosovitskiy et al. 2021). To preserve spatial information, 

positional embeddings 𝑋𝑝𝑜𝑠 ∈ ℝ𝑁×𝐶 are added. The self-attention mechanism in the transformer 

encoder layers is expressed as Attention (𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉, where 𝑄, 𝐾 , and 𝑉 

query, key, and value matrices, and 𝑑𝑘 is the dimension of the key vectors. Utilizing multiple 

self-attention heads in parallel, the multi-head attention is given by MultiHead (𝑄, 𝐾, 𝑉) =

Concat (head1, … , headℎ)𝑊𝑂, with head𝑖 = Attention (𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉), and 𝑊𝑖

𝑄 , 𝑊𝑖
𝐾 ,

𝑊𝑖
𝑉 , 𝑊𝑂  being learnable weight matrices. The feedforward layer operation is expressed as 

FFN (𝑥) = ReLU (𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2, where 𝑊1, 𝑏1, 𝑊2, 𝑏2 are learnable parameters. 

 

4.1 System overview 
 
The CCT architecture represents the system capability to various computer vision tasks. It 

achieves this by convolutional and transformer-based neural network components. At the inception 

of the CCT architecture lies a set of convolutional layers. These convolutional layers serve as the 

initial processing step to extract local features from the input data. Convolution operations, a 

fundamental component of these layers, involve the application of small kernels across the input 

data to capture intricate spatial hierarchies. Convolution is defined as defined in Eq. (7). 

𝑌(𝑖, 𝑗) = (𝑋 ∗ 𝐾)(𝑖, 𝑗) = ∑𝑢,𝑣  𝑋(𝑖 − 𝑢, 𝑗 − 𝑣) ⋅ 𝐾(𝑢, 𝑣) (7) 
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Fig. 5 An overview of the proposed CCT architecture 

 

 

Y(i,j) represents the output feature at position (i, j) and X denotes the input data, and K is the 

convolutional kernel. Following the convolution layers, the architecture proceeds to a stage of 

reshaping. This step transforms the output from the convolutional layers into a suitable format for 

further processing by a encoder. Reshaping plays an important role between the convolutional and 

transformer components, facilitating the smooth flow of information. 

Similarly, in the context of computer vision, this translates to capturing global context 

information within the image. The mathematical foundation of the self-attention mechanism in 

transformers involves computing weighted sums of query, key, and value matrices. The 

mechanism enables assigning varying degrees of importance to different elements in the input 

sequence, facilitating the capture of global relationships. After the Transformer encoder, the CCT 

architecture employs a sequence pooling layer. Sequence pooling serves the role of aggregating 

information from the transformed data to create a compact representation. Various pooling 

techniques are applied, such as max-pooling or mean-pooling, to capture essential features and 

reduce the spatial dimensionality of the data. 

Eventually, the architecture concludes the process with an MLP (Multi-Layer Perceptron) head, 

which is often followed by a classification layer. MLP stage enables to achieve the fine-tuning and 

adapting of the learned features to specific downstream tasks, such as image classification. The 

MLP head comprises several fully connected layers to enable the model to learn complex patterns 

and representations from the pooled data. 

 

4.2 Preprocessing 
 
The denoising process of CSI datasets commenced with the initial step of eliminating null and 

pilot subcarriers. The data-denoising approach was employed to enhance the quality of the input 

dataset. The process consisted of multiple sequential steps, each with a distinct mathematical 

operation tailored to reduce noise and outliers. A two-dimensional median filter was applied to the 

data using the function with a specified neighborhood. In its local neighborhood, the operation 

replaced each value with the median value. Subsequently, the filling out function was employed to 

replace outliers with central tendency values by the median function. Furthermore, a moving 

median filter was implemented with a move median function for the data with a non-overlapping 

window size of one. Eq. (8) shows the representation, which involves calculating the median of 

data within a sliding window. 
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(a) CSI raw data 
(b) Removing Null and Pillot 

subcarriers 

CSI after filtering 

Fig. 6 Filtering preprocess workflow for wireless signal data, commencing with removing null and 

pilot subcarriers. 

 

 

output (𝑥, 𝑦) = median (neighborhood (𝑥, 𝑦)) 

output (𝑡) = median (window (𝑡)) 

output(𝑡) = median(window(𝑡)) 

(8) 

Fig. 6 illustrates the denoising process applied to the signal, involving the removal of null and 

pilot subcarriers, mitigating noise interference, and enhancing signal clarity. 
 

4.3 Network architecture 
 

The initial stage of the CCT architecture involves convolution layers. Using convolutional 

operations to find local patterns and characteristics in the image data, convolution layers are 

important for extracting features from the input data. In the CCT, the tokenizer stage forms an all-

convolutional mini-network with a variable number of layers. The purpose is to generate adaptable 

depth image patches. The next step is customization based on the model’s configuration, ensuring 

flexibility across different tasks and datasets. The CCT Tokenizer is part of the process of 

preparing the input data for subsequent stages and laying the groundwork for feature extraction. 

The variability in depth caters to the complexities present in various tasks. Table 2 provides a 

summary of the convolution module’s network architecture and the output shape that aligns with 

its specific task, such as image classification. 
 

4.4 Convolutional model 
 

The convolutional module breaks down the two-dimensional operator into separate one-

dimensional temporal and spatial convolutional (Dierickx et al. 2023, Dosovitskiy et al. 2021). 

The proposed design employs ‘k’ kernels in the initial layer of the module, characterized by 

dimensions of (1, 25), while implementing a stride of (1, 1). The configuration enables 

convolution operations to be executed along the temporal dimension, capturing temporal nuances 

inherent to CSI data (Li et al. 2023). The second layer ‘k’ kernels employed with dimensions of 

(ch, 1), where ‘ch’ represents the number of channels relevant to CSI signals. Furthermore, the 

design incorporates batch normalization techniques to scale the training process and counteract 

overfitting. 
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Table 2 Network architecture of the convolution module 

Component Number of Layers Description 

Convolution Layers 2 Initial layers for local feature extraction from the input data. 

CCT Tokenizer Variable All-convolution mini network to produce image patches. 

Positional Embedding - Optional positional embeddings for sequences. 

Stochastic Depth Variable Regularization technique applied to transformer blocks. 

MLP for Transformers 

Encoder 
Variable Multi-layer perceptron for the Transformers encoder. 

Data Augmentation - 
Geometric data augmentations, including random cropping and 

flipping. 

Attention Pooling - 
Weighted pooling of Transformer encoder outputs for 

classification. 

CCT Model - Combines the above components to create the final CCT model. 

 

 

Additionally, the proposed architecture adopted a rectified linear unit (ReLU) to introduce 

nonlinearity into the convolutional module. This part contributes to improving the model’s ability 

to capture intricate patterns within CSI signals. The third layer of this convolutional module then 

applies an average pooling operation along the temporal dimension. The pooling operation is 

executed with a kernel size of (1, 75) and a stride of 1. Its function is to smooth out temporal 

features present in the data, thereby rendering a dual benefit. Initially, it mitigates the risk of 

overfitting, ensuring the robustness of the system during training. The reorganization entails 

compression of the channel dimension and the transposition of the convolution channel dimension 

for the temporal dimension. The transformative approach serves the purpose of furnishing all 

feature channels at each distinct temporal point as independent tokens, thus enabling their 

subsequent processing in the ensuing module with utmost precision. 

 

4.5 Self-attention 
 
It is postulated that incorporating context-dependent representations within low-level temporal-

spatial features would confer important advantages to the task of signals, given the inherent 

coherence of neural activities (Abuhoureyah et al. 2024). Within the proposed module, we 

leverage the self-attention mechanism to discern and capture global temporal dependencies 

inherent to CSI features. It is valuable because it complements the previous convolutional 

module’s limited receptive field. The organized tokens from the preceding module undergo a 

linear transformation, resulting in triads known as query (Q), key (K), and value (V), each of 

which shares the same shape. The token correlations are evaluated through a dot product operation 

applied to Q and K. Additionally, the scaling factor is introduced to mitigate the risk of vanishing 

gradients, thereby ensuring stable model training. Subsequently, the computed results traverse 

through a Softmax function, yielding a weighting matrix called the attention score. 

The proposed schematic introduces two fully connected feed-forward layers downstream to 

enhance the model’s capacity for feature representation. Notably, this operation preserves the input 

and output dimensions. The entire attention computation process is performed ‘N’ times within the 

self-attention module. Additionally, a multi-head strategy is adopted to augment representation 

diversity. The tokens are evenly segmented into ‘h’ segments and processed through the self-
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attention module. The outcomes from these separate heads are then concatenated to form the final 

module output (Dosovitskiy et al. 2021). Eq. (9) illustrates the multi-head attention process. 

MHA(𝑄, 𝐾, 𝑉) = [ head 0; ⋯ ;  head ℎ−1],

 head 𝑙 =  Attention (𝑄𝑙 , 𝐾𝑙 , 𝑉𝑙)
 (9) 

where ‘MHA’ signifies multi-head attention, and ‘Ql,’ ‘Kl,’ and ‘Vl’ in ‘l-th’ head denote the 

query, key, and value vectors obtained via linear transformation of the divided tokens, 

respectively. In essence, MHA mechanism enables to capture and weigh the importance of various 

temporal dependencies within CSI features, contributing to its ability to learn and represent 

complex patterns. 

 
4.6 Classification 
 
In the final stage of the model, the weighted representation, denoted as R, is propagated 

through a dense layer to produce the logits, symbolized as L, which form the foundation for 

subsequent classification decisions. Mathematically, it is expressed in Eq. (10). 

𝐿 = 𝑊 ⋅ 𝑅 + 𝑏 (10) 

Here, W represents the weights of the dense layer, and b is the bias term. The logits L are the 

raw scores associated with each class, capturing the model’s confidence in assigning an input 

image to a particular category. These logits are utilized in the classification process. The dense 

layer is employed at the final stage of the model to perform classification based on the extracted 

features. This layer is pivotal in transforming the learned representations from the transformer 

blocks into class predictions. Specifically, after applying sequence pooling to aggregate 

information across the encoded patches, a dense layer with a Softmax activation function is used to 

compute the final logits. This layer takes the weighted representation of the encoded patches and 

output logits corresponding to the number of classes. 

CCT components are crafted to enhance the the framework amalgamates by using the 

principles of CNNs with self-attention mechanisms, drawing inspiration from transformers. The 

initial stage of the CCT unfolds with data augmentation procedures to input images aimed at 

enhancing the model’s generalization capabilities. Subsequently, image tokenization is carried out 

employing the CCT Tokenizer, which comprises a series of convolutional layers followed by max-

pooling operations. The tokenization process partitions the image into discrete patches and 

meticulously extracts spatial characteristics. Optionally, positional embeddings, denoted as PE, are 

added to the tokenized features. These embeddings furnish valuable spatial positional information 

within the sequence. Mathematically, Eq (11) represents the addition of positional embeddings. 

Tokenized with Positional Embeddings = Tokenized Features + PE (11) 

To infuse regularization into the model and deter overfitting, the technique of stochastic depth 

is incorporated. The mechanism deactivates a proportion of layers during the training process. 

Stochastic depth is employed to improve the robustness and generalization capability of the CCT 

model. It involves omitting entire transformer blocks during training, which creates a form of 

ensemble learning. By dropping layers, the model learns to adapt better across different datasets 

and variations in input data. Several stages are undertaken in the sequential operations within a 

transformer block to enhance the model’s understanding of input features. The process begins with 

Layer Normalization (LN1), where input features undergo normalization for improved stability.  
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(a) Layout of residential apartment hall (b) Real image of the capture location 

 
(c) Simulated 3D representation 

Fig. 7 The environmental location for data collection 

 

 

Multi-Head Self-Attention is employed to compute self-attention scores between tokens, capturing 

contextual information. The output of self-attention operation is then combined with the original 

tokenized features through the first Skip Connection. Subsequently, Layer Normalization (LN2) is 

applied to normalize the output further. The introduction of a Multi-Layer Perceptron (MLP) 

follows, utilizing feed-forward neural networks to capture intricate patterns. The MLP’s output is 

integrated with the previous skip connection through Skip Connection 2. The structured sequence 

of operations empowers the model to capture localized and global image features. Similarly, the 

output of the culminating transformer block is utilized for sequence pooling. The attention weights 

denoted as α are computed across tokens. These attention weights are then employed to construct a 

weighted representation of the tokens. They are expressed in Eq. (12). 

Weighted Representation = α. Tokenzied Features  (12) 

where the weighted representation is fed into a classification layer to derive predictions, marking 

the conclusion of the CCT’s role in the image classification pipeline. 
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5. Experimental evaluation 
 
The evaluation involved a comprehensive assessment using data procured through the Nexmon 

CSI extraction tool. The tool facilitated gathering CSI data from a Raspberry Pi 4B conFig.d for 

very high-throughput mode, operating with a total bandwidth of 80 MHz. The CSI samples 

acquired provided intricate channel information, encompassing 242 samples using 80 MHz 

bandwidth and 56 samples with 20 MHz data subchannels for each transmit-receive antenna pair. 

The setup included a Broadcom BCM43455c0 NIC with a Raspberry Pi 4B unit as the receiver 

and a TP-Link AC1350 router as the transmitter. The Raspberry Pi devices operated on Linux 

version 5.10.92 firmware and employed the Nexmon tool for CSI extraction. The receiver and 

transmitter adhered to IEEE 802.11n/ac standards and supported multi-user MIMO functionality. 

The setup ensured compatibility and adherence to industry standards, enhancing the reliability and 

validity of the experimental evaluation. CSI datasets were acquired within three distinct indoor 

settings, specifically within the confines of a residential apartment hall, as delineated by the 

distance spacing parameters illustrated in Fig. 7. 

Two clustered Raspberry Pi units, each measuring 1.5 m in height and separated by 2 m, 

collected data, with the Rx positioned 3 m away from the router Tx device in Fig. 7’s simulated 

location. During data collection, one individual engaged in one of five specific activities within 

each location. These activities included empty rooms (E), walking (W), swiping (S), continuous 

hand cycles (c), and standing in place (ST). The CSI samples were collected in three distinct 

indoor environments: a home at Hall, a classroom at FTKEK University at University Technical 

Melaka Malaysia, and a university laboratory. These environments were chosen to investigate the 

effects of varying room geometries and the presence of static obstacles on CSI data. 

 
5.1 Data augmentation 
 

Enhancing the diversity of the training dataset through data augmentation fosters robustness 

and generalization capabilities in the model. This specific illustration employs geometric 

augmentations like random cropping and horizontal flipping. The initial step involves a “rescaling” 

layer that normalizes pixel values to a scale between 0 and 1. Subsequently, a “RandomCrop” 

layer randomly extracts portions of the input images, introducing variability in object positioning. 

The final augmentation layer, “RandomFlip,” imparts horizontal flipping to the images with a 

specified probability, addressing variations in object orientation. A Keras sequential model named 

“data_augmentation” encapsulates the sequence of augmentations, facilitating a structured and 

sequential application of the augmentation procedures. 

 

5.2 Training process 
 

The presented model segment encapsulates the training and evaluation processes of a CCT. The 

experimental workflow is orchestrated through a function where the system is compiled with a 

specialized AdamW optimizer conFig.d with a learning rate of 0.001 and weight decay of 0.0001. 

The loss function is defined as categorical cross-entropy, with label smoothing set to 0.1 to foster 

generalization. Evaluation metrics encompass categorical and top-5 categorical assessments of the 

model’s performance. During training, a checkpoint callback is employed to monitor the validation 

accuracy and save the best-performing weights. The training data is subjected to a specified 

number of epochs with a designated batch size. A 20% validation split assesses the model’s 
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Fig. 8 Training and validation loss curves over successive epochs, illustrating the model’s learning 

dynamics 

 

 

generalization on a subset of the training data. Notably, the weights yielding the highest validation 

accuracy are loaded for the final evaluation. The training and evaluation process is executed 

systematically, ensuring a rigorous examination of the model’s efficacy in learning from the 

training data and generalizing to unseen test data, providing valuable insights into its overall 

performance. Fig. 8 describes validation and training losses and represents the model’s learning 

progression over epochs. The distinct curves, training loss, and validation loss showcase how the 

model refines its parameters and generalizes to new data. 

 

5.3 Visualization of distribution changes 
 

The results of the CCT, which leverages WiFi-based CSI sensing, were evaluated to recognize 

five distinct activities. The innovative algorithm sought to harness the unique characteristics of 

WiFi signals to discern activities in a transportation context. The confusion matrix shown in Fig. 9 

provides a breakdown of the model’s classification performance. 

 

5.4 Comparative analysis 
 

Direct comparisons between CNN, ViT, Swin Transformer, and CCT are intricate due to their 

disparate architectural paradigms and design principles; however, CCT Transformer has 

demonstrated its merit as a competitive alternative. CNNs, having long stood as the de facto 

standard in computer vision, have delivered impressive results across various tasks. However, It 

and Swin transformers’ empirical success in outperforming established state-of-the-art models in 

accuracy across varied vision tasks underscores its potential as a formidable contender. Leveraging 

their hierarchical architecture and innovative shifted windowing scheme, ViT and Swin 

Transformer prove adept at feature extraction, offering a promising alternative to CNNs as a  
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Fig. 9 Confusion matrix of CCT model employs WiFi-based CSI sensing 

 

  
(a) CNN Model Accuracy (b) ViT Model Accuracy 

  
(c) SWIN Model Accuracy (d) CCT Model Accuracy 

Fig. 10 Analysis of Validation Accuracy for CSI vs. CNN, ViT, SWIN, and CCT 
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Fig. 11 Analysis of Execution Time for CNN, ViT, SWIN, and CCT 

 

 

versatile and efficient backbone for addressing a spectrum of challenges in computer vision. Fig. 

10 examines the classification across four distinct deep learning architectures: CNN, ViT, Swin 

Transformer, and CCT.  

CNN, a longstanding and conventional architecture, has demonstrated commendable accuracy 

in image classification applications. Meanwhile, ViT, representing a novel paradigm with its 

attention-based mechanism, is anticipated to excel in capturing long-range dependencies within 

images. SWIN, another transformer-based architecture, brings a hierarchical structure to image 

understanding. Conclusively, CCT is a fusion of convolutional and transformer components to 

leverage the strengths of both paradigms by assessing the classification of these models to discern 

the strengths and limitations of each architecture in handling intricate image categorization tasks. 

The perceptions are instrumental in finding the optimal choice of deep learning architecture 

contingent on the specific characteristics and requirements of the classification task at hand.  

The algorithm incorporates positional embeddings and employs two convolutional layers with a 

projection dimension of 128. To enhance model robustness, a stochastic depth rate of 0.1 is 

applied. Training parameters include a learning rate of 0.001, weight decay of 0.0001, and a batch 

size of 128 over 30 epochs. The input images are resized to 32x32 pixels, and the dataset consists 

of labeled images categorized into classes represented as vectors. The model is trained on a dataset 

split into training and testing sets using the split function from scikit-learn, ensuring high accuracy 

classification on unseen data. 

 

5.5 Computational efficiency 
 

The computational efficiency shown in Fig. 11 serves as a quantitative metric for each model’s 

temporal performance in undertaking a given computational task. The comparison shows that CCT 

exhibits the lowest execution time, indicating superior performance compared to the other 

algorithms. ViT, on the other hand, is associated with the highest execution time among the 

examined algorithms. 
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Fig. 12 Parameter sensitivity analysis for the CCT model 

 
 
5.6 Parameter sensitivity analysis 
 

The model’s parameter sensitivity analysis extends beyond the learning rate to encompass 

additional hyperparameters, delving into their intricate interplay and collective influence on 

performance. The findings unfold across defined hyperparameter space, varying parameters such 

as batch size, the number of transformer layers, and the attention mechanism’s configuration. The 

analysis aims to clarify the model’s alterations in each hyperparameter, offering understanding of 

their individual impacts on the model’s accuracy. The x-axis of the plotted Fig. delineates discrete 

values of the explored hyperparameters, presenting a spectrum of configurations ranging from 

conservative to aggressive parameter choices. Fig. 12 unveils nuanced patterns and trends by 

traversing this parameter space, providing invaluable insights into the model’s sensitivity to 

alterations in various hyperparameters. The findings analysis extends beyond the learning rate, 

offering an aggregation on the intricate relationship between hyperparameters and the 

consequential impact on the model’s performance. 

 

5.7 Ablation study 
 

An ablation analysis to explore and delineate the performance characteristics offered by the 

CCT architecture compared to traditional models. The approach facilitated a nuanced analysis of 

the impact of each component on the overall model performance. The ANOVA results shown in 

Fig. 14 visualized through a boxplot provide insights into potential statistical differences between 

the groups. The initial cohort of analyses pertains to the impact of sample rates, revealing a 

positive correlation wherein heightened sample rates during training result in superior 

performance. An inverse relationship emerges within the second set focusing on activity classes, 

indicating that elevated class numbers correspond to diminished accuracy. Furthermore, the 

investigations demonstrate that the model’s performance exhibits enhancement with a reduction in 

the number of patches employed. 
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Fig. 13 Comparison of performance metrics across different experimental conditions 

 

 

The ablation findings revealed that the hybrid architecture of CCT, amalgamating convolutional 

and transformer features, enhanced design performance. The convolutional components facilitated 

local feature extraction, while the transformer components enabled practical global context 

understanding, thereby combining the strengths of both architectural paradigms. Furthermore, the 

analysis explored a lightweight variant of CCT tailored for resource-constrained environments. 

The findings demonstrate promising results performance while reducing computational 

requirements. The attribute positions the lightweight CCT variant as a viable option for 

deployment in scenarios where computational resources are limited. 

 

5.8 Comparison between CCT and current studies in CSI HAR 
 

To evaluate the accuracy of the various listed algorithms, the self-collected dataset, which 

includes recordings of five activities, was evaluated. Compared to CNN-based models, CCT 

exhibits a distinct advantage in capturing local and global contextual information, surpassing the 

limitations of traditional CNN architectures. Additionally, it outperforms other state-of-the-art 

algorithms such as LSTM, GRU, and attention-based schematic in modelling both short-term and 

long-term dependencies in the input data. Furthermore, CCT demonstrates superior performance in 

comparison to ensemble methods, transfer learning approaches, and reinforcement learning 

algorithms used in similar domains. While CNNs (Showmik et al. 2023) excel at extracting local 

features through convolutional layers, they often struggle to capture long-range dependencies in 

sequential data. In contrast, CCT integrates transformer components which enables it to handle the 

global context of CSI sequences and capture dependencies feature between distant samples and 

improve the recognition performance. Additionally, CCT achieves a balanced fusion of local and 

global information by combining the best parts of both architectures.  

In addition to LSTM CNN (Ding et al. 2021), meta, and LSTM models, CCT offers unique  
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Fig. 14 Validation comparison when applying attention mechanisms 

 

 

features and advantages for temporal modelling. Likewise, LSTM CNN models incorporate both 

convolutional and recurrent layers. Although they capture temporal dependencies, they suffer from 

the vanishing gradient problem and struggle with longer sequences. On the other hand, meta-

learning approaches aim to learn the architecture for a given task. While these methods adapt to 

new tasks quickly, they require extensive labeling data and computational resources during the 

training phase. In contrast, CCT combines convolutional and transformer components addressing 

the limitations of LSTM CNN models and meta-learning approaches. CCT captures long-range 

dependencies while benefiting from the efficient local feature extraction of CNNs by leveraging 

the self-attention mechanism of transformers resulting in improving scalability for CSI-based 

HAR tasks. 

 

5.9 Evaluating CCT model 
 

To evaluate the impact of the multi-head attention mechanism within the proposed CCT model, 

we constructed two versions of the model: one incorporating the multi-head attention mechanism 

and another excluding it. Both models were trained and evaluated on the same dataset, with 

consistent hyperparameters and training procedures to ensure a fair comparison. The results were 

recorded and analyzed. The analysis revealed that the model with multi-head attention exhibited 

performance in both training and validation phases, as evidenced by higher accuracy and lower 

loss values. This indicates that the multi-head attention mechanism enhances the model’s ability to 

capture and utilize complex patterns within the data, thereby improving its predictive capability. 

These findings validate the efficacy of incorporating multi-head attention in transformer models 

for image classification tasks, demonstrating its pivotal role in enhancing model performance as 

shown in Fig. 15. 

The evaluation of stochastic depth in the CCT model was conducted by training two versions: 

one with stochastic depth enabled and one without. The validation accuracies and losses were 

plotted over 30 epochs to compare their performance. The results showed improved inference with 

reduced overfitting, as evidenced by the lower validation loss and higher validation accuracy than  
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Fig. 15 Validation Performance of CCT Models with and without Stochastic Depth 

 

 

the model without stochastic depth, as shown in Fig. 16. The results support the hypothesis that 

stochastic depth enhances the robustness and performance of deep learning models by introducing 

random regularization during training. 

 

5.10 Constraints and future works 
 

Deploying a lightweight CCT for CSI WiFi-based sensing introduces certain constraints that 

require careful consideration. For example, the technique still inherent trade-off between model 

complexity and classification capability. As the CCT is struggles to operate in resource-

constrained environments, its lightweight design may limit the depth and intricacy of its 

architecture impacting the model’s ability to discern delicate variations in the complex and 

dynamic channel state information. This condition requires further exacerbated in scenarios with 

extensive signal interference or changing wireless environments. Moreover, WiFi signals traverse 

multiple paths and exhibit disparities in signal strengths, rendering the accurate estimation of an 

individual’s location based solely on WiFi measurements a formidable task. The environment 

impacts the wireless signals used to capture the CSI measurements and the accuracy of HAR is 

also influenced by the positioning and orientation of the person being monitored as indicated in 

Fig. 16. 

Eq. (13) represents the power propagated in space with varied gains between transmitter and 

receiver. By determining the environmental aspect, it is possible to analyze the environmental 

effects of the signal to eliminate the dependency on the environment.  

𝑃𝑟 =
𝑃𝑡 ∗ 𝐺𝑡∗𝐺𝑟∗𝜆2 ∗ 𝐹

(4𝜋 ∗ 𝑅)2
 (13) 

Transmitted power 𝑃𝑡 and transmitted and receiver gains 𝐺𝑡,𝐺𝑟 directly affect the received 

power 𝑃𝑟. In addition to the signal wavelength λ and F is the propagation factor coming from the 

environment. Moreover, the distances between Tx and Rx, such as propagation range R and other  
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Fig. 16 Comparison Variability in CSI amplitude across distinct locations during identical activities 

 

 

limitations, might be analyzed further in future developments for lightweight CCT, especially in 

using CSI WiFi-based sensing. The first pertains to the need for continuous optimization to strike 

an optimal balance between performance and computational efficiency. Future work is required to 

enhance the method with neural architecture quantization, refine the lightweight CCT architecture, 

and enhance its flexibility to different sensing conditions. Another avenue for exploration involves 

robustness assessments in scenarios with non-ideal signal conditions or limited training data.  

CCT architecture demonstrates versatility across a range of applications. The algorithms can be 

applied to several tasks to highlight their adaptability. For image classification, CCT achieved in 

standard benchmarks such as CIFAR-10 and CIFAR-100. In object detection, it performed well on 

the dataset, identifying and localizing objects accurately. The model can also be used in semantic 

segmentation, defect detection, and labeling while excelling in segmenting urban scenes.  

In future endeavors, attention must be directed toward expanding the exploration of multi-

modal sensing approaches, integrating with other sensor types, and incorporating transfer learning 

techniques could fortify the model’s generalization capacity across different sensing scenarios. 

Additionally, efforts to enhance the interpretability and ability of the model’s decisions will be 

pivotal, fostering trust in its outcomes for real-world applications. The evolution of lightweight 

CCT in CSI WiFi-based sensing holds promising solutions, with ongoing research poised to 

address existing constraints and pave the way for broader deployment in practical sensing 

applications. 

 
 

6. Conclusions 
 

In conclusion, using CCT in CSI WiFi sensing presents a promising avenue for the state-of-the-

art in image classification and wireless sensing application. The amalgamation of convolutional 

and transformer architectures within CCT exhibits advantages in capturing both spatial and 

temporal dependencies inherent in CSI datasets. The hierarchical feature extraction facilitated by 

the initial convolutional layers of CCT proves instrumental in discerning patterns within the 
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wireless channel. Furthermore, the proposed model is underscored by its ability to mitigate the 

associated challenges, such as the requirement of using large-scale datasets and offering solutions 

in scenarios where dataset acquisition is complex. CCT’s contributions are in the precision metrics 

achieved by classifying activities within the CSI wireless sensing refinement holds promising 

applications ranging from human complex signals in the wireless domain, reinforcing its potential 

technology for indoor environment sensing applications. Furthermore, as activity recognition to 

environmental monitoring, future research needs to involve in the optimization of self-learning and 

labeling techniques with the use of techniques such as reinforcement learning.  
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