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Abstract

This paper reports on the fluid flow characteristics as well as the heat
transfer attribute of a Reiner-Philippoff (RP) fluid past a permeable
shrinking wedge with a particular focus on the incorporation of the
AAT075-AAT7072/methanol hybrid nanofluid. Through the application
of suitable transformations, the original model in partial differential
equations (PDEs) is converted into ordinary differential equations
(ODEs) of a specific form. The ODEs are then solved using the bvpdc
solver in MATLAB software. The findings showed that when the
magnitude of the magnetic parameter is increased, skin friction and
heat transfer rate both are increased. Moreover, the inclusion of hybrid
nanoparticles has a positive impact on the system, leading to a
6.16% increment in magnitude of skin friction while boosted about
24% improvement in thermal performance. The confirmation of dual
solutions leads to a study of stability analysis to examine the reliability
of the first solution. It is important to note that the current findings are
novel and original for the study of RP hybrid nanofluid past a

permeable shrinking wedge.
1. Introduction

Non-Newtonian fluids have drawn considerable interest for their
valuable industrial applications, primarily because Newtonian fluids fall
short in representing the behavior of real liquids in many manufacturing

processes. Various models for non-Newtonian fluids have been proposed [1].
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Among them, the Reiner-Philippoff (RP) model is notable for its ability to

simulate three behaviors — dilatant, shear-thinning, and shear-thickening —
within a single model. Kapur and Gupta [2] applied the Karman-Pohlhausen
technique to solve boundary layer (BL) equations for RP fluids in channels
with varying shear stresses. Later, Cavatorta and Tonini [3] compared RP
fluid behavior with other fluid types. Na [4] analyzed RP fluid behavior
under Blasius boundary conditions using non-similar equations, while Yam
et al. [5] studied its flow over a stretching wedge, and Ahmad et al. [6]
examined flow over a stretching sheet of varying thickness. Reddy et al. [7]
observed that increasing the RP fluid parameter raised temperature levels
and thickened the thermal boundary layer. Further research on RP fluids

across different surfaces and effects is detailed in other studies [8-12].

The study of fluid flow becomes particularly important when thermal
performance is factored. Choi and Eastman [13] pioneered the use of
nanosized particles to enhance fluid thermal properties. Building on this,
Khanafer et al. [14] and Oztop and Abu-Nada [15] explored nanofluid flow
within rectangular enclosures. To boost thermal properties even further,
researchers developed hybrid nanofluids — advanced fluids created by
suspending multiple types of nanoparticles uniformly within a fluid. Jana et
al. [16] conducted early research on these hybrid nanocomposite particles,
which exhibit superior thermal characteristics compared to standard fluids,
making them highly suitable for technical and industrial applications
[17, 18]. Suresh et al. [19] and Takabi and Salehi [20] highlighted how these
fluids can achieve desired heat transfer rates, with additional extensive

research on nanofluids detailed in references [21-25].

Recent studies document various nanomaterials, with aluminum alloy
nanoparticles AA7075 and AA7072 receiving attention for their outstanding
thermal, chemical, and physical properties. These characteristics make them
ideal for a range of industrial applications, particularly in aerospace, where

they are used in glider aircraft and rocket frames [26]. Inspired by such
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studies, this research examines how hybrid nanoparticles affect RP fluid
flow over a shrinking wedge. Methanol is chosen as the base fluid, with
AA7T075 and AA7072 as the hybrid nanoparticles. By applying a similarity
transformation, the governing equations are simplified into a set of ordinary
differential equations (ODEs). This study primarily identifies critical values
of the physical parameters, offering insights into laminar flow separation.
Stability of the solutions is analyzed, and findings for the physical

parameters are presented graphically and also in tables.
2. Mathematical Formulation

The flow configuration of RP fluid over a shrinking wedge is indicated
in Figure 1. The free stream and the wedge velocities are defined as

u,(x) = ax’? and u,(x)= bx/3, respectively, with the constants a and b.
Additionally, the wedge permeability is depicted by the mass flow velocity
vp(x) taken as v, (x)= —(2/3)ﬁx_1/3S, where S is the suction
parameter. Meanwhile, the magnetic field is taking transversely along the y-

axis as B(x) = Box'1/3

. The term By, is defined for constant magnetic, see
reference [27]. The terms T,, and 7. represent constants for surface and

ambient temperatures, respectively.

Figure 1. Physical model.
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Besides, the shear stress T associated to velocity gradient is given as:

== : (1)

Loy +

where T, signifies the reference shear stress; «. denotes the limiting
dynamic; and o« represents the zero-shear dynamic viscosity. Thus, the

governing equations are, see references [4, 3]:

du oOv
a,by @

du  Ou ou, 1 01 Opny

_ : ot 20, -
ug+va—y—ue Ew +phnf 6y+phnf B (u, — u), 3)

k 2
ua_Tija_T:hi”fa_T (4)
e T T

subject to
u=u,(x),v=v,x),T=T,at y=0;
u— u,(x), T — To as N — =. (5)

The appropriate similarity transformations (6) are adopted from references
[4.5]:

Y= Jav x73rm), 1= pyadv,gn),

T-T, y a
W=7 -7 "= Jp ’W' (6)
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Upon applied (6), equations (1), (3) and (4) are reduced to a set of ODEs as:

o o )N 2
- f'[( hf 1= £) ;+g ] -
Y+8

l ] = M_l 02 l chnf/of M2 l_ F :0 8
phnf/pf SIf 3f 3+ p}mf/pf ( j) | ©
l khnf/kf L 2 r
— B"+=f0'=0 9
Pr (Pcp )pr/(Pep) ¢ *37 ®

subject to
f0)=5, f(0) =€ 6(0) =L
f(n)—1,6(n) —>0asn— = (10)

with the Prandtl number (Pr), the Reiner-Philippoff fluid number
(A). the Bingham number (y), the magnetic parameter (M) and the

stretching/shrinking parameter (€) defined as

2
(Icp)f

o T O'f b
Pr = A=y —= | M=_|—LB) e==.(1
k¢ Lo o/ [a3vf pra a

The skin friction C and the local Nusselt number Nu, are given as:

__Tw __ Mw
Cf_ 2 Nux—kf(Tw_Tw), (12)

where

ar
Ty = Pf\jﬂ3Vf (g(ﬂ))yzo, Gy = _khnf(a_y]yzo (13)

at which the T, expresses the rate of T at y = 0 and g,, as heat flux on

surface. Then, the following expressions are obtained:
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k
hnf g'(0), (14)
kg

Re/2C; = 2(0), Re;? Nuy = -

where Re, = uf(x)x/vf is known as the local Reynolds number.

Furthermore, Table 1 provides the properties of methanol, AA7075, and
AA7072. Note that, ¢; and @, denote AA7075 and AA7072 nanoparticles,

respectively, where @, = @; + ¢,. Meanwhile, the correlations of hybrid

nanofluid are presented in Table 2.

Table 1. The thermophysical properties [26]

Properties p(kg/m?)  Cp(/kegK)  k(W/mK) o (S/m) Pr
Methanol 792 2545 0.2035 05-107° 7.38
AAT0T5 2810 960 173 26.77 - 10°
AAT072 2720 893 222 34.83 - 10°

Table 2. Hybrid nanofluid correlations [24]

Dynamic viscosity:

o
[+ =

(1= Qpy)*°

Density:
p,‘mf = (l - q’hﬂf ]pf +@1Pp + P2Pn2

Heat viscosity:

(PCp )y = (1= @hns )(PCp) p + 01(PCp )y + 92(PC ) p

Thermal conductivity:
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Electrical conductivity:
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+20 7 + 291001 +920n2) = 2040
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3. Stability Analysis

As the dual solutions are obtained from computation, their stability has
to be checked. The instability of results is checked by using stability analysis
[28, 29].

The semi-similar variables are introduced, see Yam et al. [5]:

Y= avfx2/3f(n, r), 7= P\jaszg(n, r).

_T-T, Yy a _a
G(H,F)—ﬁ, H_F”W, r—xﬁt (15)

where [ is the dimensionless time variable. Then

_ 39
u=ax arl (r|= r),

v=~Jav (T n-gndan-3rfan)  ae

The unsteady forms of equations (3) and (4) can be written as:

du ou Ou  du, 1 01 O 2,
o "ax T Vay T Meax +phnf 6y+|9hnf Blue =) 4
k 2

U AV = ——— ——,
o " ox vay (pcp)hnf dy>

while equations (1) and (2) do not change. Applying equations (15) and (16),

one gets:
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I kwylky 0% 2 ae_ae_zr[af@_af@
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Next, the perturbation function is deliberated, see Weidman et al. [29]:

F(. 1) = fon)+ ™ F(n, T).

g(n. 1) = go(n) + ™' G(n. T,

8(n. 1) = Bg(n) + ™" H(n, 1), (23)
where F(n, ), G(n,T) and H(n,T) are arbitrary functions and
smaller than f;(n), go(n) and B8y(n), and a indicates the eigenvalue. Let

=0. Then F(n,T)=Fy(n), Gn.T)=Gy(n) and H(n, )= Hy(n).

The linearization of the eigenvalue problems is as follows:

(Spmg /= £ INY + g&]

Gy=F "
Y - 2fo20 + 388

(24)

1
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Phnf P £
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Go + 5 (oo + foFo) = 5 foFo = M2Fj + aFj = 0, (25)

1 knar/ky
Pr (pcp )hnf/(pcp )f

H{ + 2 (foH + 8yFy) + aHy = 0, (26)

subject to
Fy(0) = 0. Fy(0) =0, H(0) =0

Fj(n) — 0. Ho(n) — 0 as n — . @27)
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In order to acquire 0 from equations (24)-(26), Fy(n) — 0 as N — « in

equation (27) is replaced with F"(0) = 1, see Harris et al. [30].

4. Results and Discussion

The results of the numerical computation are discussed in this segment.
The bvpdc solver embedded in Matlab software is used in computing
equations (8)-(10), see reference [31].

Table 3. Values of Rel‘{:2 Cjy for regular fluid case (9; = ¢, = 0) when
S=M=0and y=1

\ e=-095 € = -0.995
Present result Yam et al. [5] Present result Yam et al. [5]
0.1 0.174047 0.1740 0.113773 0.1138
0.6 0.426436 0.4264 0.282519 0.2825
1 0.546695 0.5470 0.367218 0.3672
1.8 0.717538 0.7175 0.495286 0.4953
2.6 0.841255 0.8412 0.594055 0.5940

The output of ReE{2 Cy for regular fluid case (¢ = 95 = 0) without the

effect of S and M at y =1 is presented in Table 3. The quantity of REL/Q Cy

is amplified in aggregate of A and €, respectively. Additionally, the output

established by Yam et al. [5] is being compared, and excellent agreement is
attained. This evident supports the soundness, accuracy, and precision of the

current model and its numerical outcomes.

Tables 4 and 5 provide the values of Rel{:2 C; and Re;]/2 Nu, for

various types of fluids with distinct values of M when A =S = 0.5, y =1,

Pr=738 and € =-1.25 (shrinking wedge), respectively. From these
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tables, the values of Rel{2 C; and Re;l/2 Nu, are increased in growing

values of M. Comparable behavior is detected for the effect of added

nanoparticle on these physical quantities. For fixed value of M = 0, there
are 2.97% and 3.13% increments in Rel.‘{:2 Cy for AA7072/methanol

(9; =0, ¢, =0.01) and AA7075/methanol (¢; = 0.01, ¢, = 0), respectively,
if compared to methanol (@; =@, =0). These increments are more
pronounced for AA7075-AA7072/methanol (@; = ¢, = 0.01) with 6.16%.
Besides, the heat transfer of the base fluid is improved by considering the
nanoparticle with 11.25% and 12.06% increments for AA7072/methanol and
AA7075/methanol, respectively. Meanwhile, 24% increment of Re;]/ 2 Nu x
is observed for AA7075-AA7072/methanol.

Figures 2 and 3 demonstrate how the parameter M affects the quantity of
Rel{2 Cy and Re;l/:2 Nu,. Both of physical quantities are heightened in

growing of magnetic rate. As demonstrated in Figure 2, the intensifying
of Lorentz force induced from magnetic field retarded the flow field
whilst delaying the BL separation. It can be seen that the critical

values are expanded, which are given by €, = -1.2716(M =0), €., =
-1.2896(M =0.1) and €.3 =-1.3441(M =0.2). In addition, Figure 3

reveals the enlargement in the value of magnetic parameter which advanced

heat transfer in the fluid.

According to the first solution in Figure 4, the free stream flow helps to
stabilise the free vorticity within the opposing flow induced by shrinking
which led to increase the fluid velocity. In particular, the availability of
magnetic strength progresses the fluid movement which then pushes the hot
particles in the direction of the plate. As seen in Figure 5, this activity

increases heat transport while lowering the temperature distribution.
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The deviations on the smallest eigenvalues are shown in Figure 6,

where the positive eigenvalue provided the first solution and the negative

eigenvalue provided the second. The first solution is therefore stable and

significantly realisable, whereas the second solution behaves in the opposite

way.

Table 4. Values of Rel{2 Cy for various types of fluids with distinct values

of Mwhen A =S5 =0.5,y =1, Pr=7.38 and € = —1.25 (shrinking wedge)

M Methanol ~ AA7072/methanol AA7075/methanol AA7075-AA7072/methanol
0 0.620163 0.638563 0.639572 0.658338
0.05 0.636388 0.655216 0.656176 0.675386
0.1 0.678986 0.698970 0.699840 0.720242
0.2 0.808132 0.831666 0.832405 0.856410

Table 5. Values of Re;l/ 2 Nu, for various types of fluids with distinct

values of M when A =S =0.5, y=1, Pr =738 and € = —1.25 (shrinking

wedge)
AATOT5-AAT072/

M Methanol AA7072/methanol AA7075/methanol
methanol
0 0.101182 0.112561 0.113387 0.125467
0.05 0.115357 0.127673 0.128503 0.141534
0.1 0.155643 0.170318 0.171166 0.186574
0.2 0.293529 0.313953 0.314885 0.335998
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5. Conclusions

This research is centered on examining the steady flow of RP fluid on
shrinking wedge contained hybrid nanoparticles. To solve the proposed
model, a similarity transformation is employed to change the governing
equations, and subsequently, the numerical solution is obtained using the
bvpdc solver. According to the findings, hybrid nanofluids demonstrate
remarkable thermal conductivity and significantly enhance the heat
transport. Specifically, the heat transfer rate is increased by 11.25%
and 12.06% for AA7072/methanol and AA7075/methanol, respectively.
Meanwhile, 24% increment is for AA7075-AA7072/methanol if compared to
the base fluid (methanol). These findings show how hybrid nanofluids aid in
effective heat transport. Larger magnetic parameters are also seen to increase
skin friction and heat transfer rate. The first solution is verified stable and

practical, while the second solution displays the opposite decision.
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