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A B S T R A C T   

The optimal conditions of applied factors to reuse Aluminium AA6061 scraps are (450, 500, and 
550) ⁰C preheating temperature, (1–15) % Boron Carbide (B4C), and Zirconium (ZrO2) hybrid 
reinforced particles at 120 min forging time via Hot Forging (HF) process. The response surface 
methodology (RSM) and machine learning (ML) were established for the optimisations and 
comparisons towards materials strength structure. The Ultimate Tensile Strength (UTS) strength 
and Microhardness (MH) were significantly increased by increasing the processed temperature 
and reinforced particles because of the material dispersion strengthening. The high melting point 
of particles caused impedance movements of aluminium ceramics dislocations which need higher 
plastic deformation force and hence increased the material’s mechanical and physical properties. 
But, beyond Al/10 % B4C + 10 % ZrO2 the strength and hardness were decreased due to more 
particle agglomeration distribution. The optimisation tools of both RSM and ML show high 
agreement between the reported results of applied parameters towards the materials’ strength 
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characterisation. The microstructure analysis of Field Emission Scanning Electron Microscopy 
(FE-SEM) and Atomic Force Microscope (AFM) provides insights mapping behavioural charac
terisation supports related to strength and hardness properties. The distribution of different 
volumes of ceramic particle proportion was highlighted. The environmental impacts were also 
analysed by employing a life cycle assessment (LCA) to identify energy savings because of its 
fewer processing steps and produce excellent hybrid materials properties.   

1. Introduction 

For years, materials researchers have been creating materials with specific properties required for industrial production. In this 
study, researchers aim to enhance manufacturing efficiency and cost savings by recycling and reusing materials, while also improving 
the related forming process by optimizing the processed parameters. Due to economic constraints, production difficulties and materials 
modification limitations, process enhancement is necessary to achieve further improvement in cost savings, efficiency enhancement, 
and hybrid material properties. Over the past two decades, composites made from recycled Al-alloys have taken the lead in light metal 
processing techniques, specifically through solid-state recycling (direct recycling) [1,2] (see Fig. 12). 

Solid-state recycling (SSR) forming techniques have gained popularity worldwide due to their ability to simplify the fabrication 
process. Unlike other forming techniques, SSR does not involve melting processes, making it a competitive and valuable method. In 
particular, the hot press process has proven to be highly effective in recycling aluminium in composite hybrid forms that display 
excellent strength and plasticity [3–5]. 

An investigation was conducted on the hot press method, which is an alternative way of recycling materials. It is similar to the 
traditional remelting technique. To develop the life cycle assessment model, Simapro 8.0.5 software was used. The Life Cycle Inventory 
(LCI) data of unprocessed and processed materials used in the background system was obtained from the databases found in the 
Simapro software. The Ecoinvent database combines information on conventional methods with information published in the liter
ature. The analysis demonstrated that the hot press technique provides significant environmental benefits compared to the standard 
remelting method. The Global Warming Potential (GWP) value in the hot press method decreased by up to 69.2 % [6]. The hot press 
revealed viable options for recycling aluminium that was left behind after machining [5,7–10]. An investigation was conducted to 
compare the hot press method with the traditional remelting technique for recycling materials. The aim was to develop a life cycle 
assessment model, and Simapro 8.0.5 software was used for this purpose. The unprocessed and processed materials’ Life Cycle In
ventory (LCI) data used in the background system was obtained from the databases found in the Simapro software. The Ecoinvent 
database combines information on conventional methods with information published in the literature. The analysis demonstrated that 
the hot press technique provides significant environmental benefits compared to the standard remelting method. The Global Warming 
Potential (GWP) value in the hot press method was found to be decreased by up to 69.2 % [11–13]. The hot press method has been 
found to significantly improve the strength and ductility of recycled aluminium. After undergoing rigorous plastic deformation, 
recycled aluminium has been shown to possess excellent mechanical and physical properties. Temperature is a crucial factor to 
consider when working with aluminium alloys, as there is a theoretical linear relationship between temperature, hybrid ceramic 
particles, and the mechanical characteristics of the alloy. Numerous studies have highlighted the importance of this relationship 
[14–17]. 

According to recent literature reviews, there is limited research on hybrid metal matrixes that use nano/micro-sized reinforced 
particles. However, processing these hybrid materials can improve the technology of forming advanced materials for many applica
tions. For instance, using glass and aluminium-reinforced epoxy can produce a fibre-metal material that serves as a thin interlayer for 
aircraft. This material consists of layers of glass/fibre epoxy and thin metal (such as aluminum) [18]. B.N.Sarada et al. [19] A study was 
conducted to investigate the hardness and wear properties of processed LM 25+ Activated Carbon + Mica using stir casting. The results 
were then compared with those of LM25+ Activated Carbon and LM25+Mica. The researchers concluded that the hybrid form of the 
material exhibited higher wear properties than those of the materials with single reinforcements. The study was conducted by Aherwar 
et al. [20] The study investigated the effects of adding waste Porcelain (P) particles (X = 0, 4, 8, 12, and 16) reinforced with B4C (4 wt 
%) and X-wt% reinforced AA7075 aluminium using a stir casting process. Adding particle phases increased the density, microhardness, 
compressive strength, and tensile strength. Therefore, the AA7075/B4C containing 12 wt% Porcelain particulates was the most 
effective optimum parameter. 

To enhance the strength properties of materials, reinforcing B4C and ZrO2 particles were added to a hybrid recycling process. This 
process involved solid-state direct recycling and hot press forging to improve the structural properties of the materials. The functional 
performance of the resulting Metal Matrix Composites (MMCs) was then analysed. To compare this alternative recycling route with the 
conventional recycling route of Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) using SimaPro 9.2 software. Therefore, the 
approach for resource efficiency and closed loop circular economy by recycling of manufacturing AA6061 aluminium waste streams to 
minimize the need for primary material flows and to reduce the related environmental impact. It is believed that this study is 
considered as one of the economical alternatives that meet the needs of modern societies, by protecting our planet from the adverse 
consequences of global warming to ensure sustainable consumption and production patterns [21]. 

Machine learning (ML), as a data-driven scientific research tool, has recently found use in materials science research. Materials such 
as piezoelectric materials [22], thermoelectric materials [23], stainless steels [24], inorganic materials [25], and high-entropy alloys 
[26], fall under this category. ML demonstrates its use in creating links between target attributes and experimental variables. While 
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machine learning and artificial intelligence are increasingly being employed in waste modeling [27], additional research into the 
impact of ML algorithms on the recycling of AA6061 aluminum production waste data is needed. 

Machine learning is crucial in materials informatics. ML builds models for specific material properties using material databases, 
allowing quick prediction of these features. This can speed up the design of new materials and shorten the timescale for material 
development [28]. Machine learning has played an important role in materials research due to its ability to learn from available data 
without knowing the underlying physical mechanisms. It has recently emerged as a leading field in materials research [29–33]. Juan 
et al. [34] have offered a comprehensive analysis of the advances in materials science research that incorporates ML, focusing on its 
practical applications in metals, batteries, solar materials, and metallic aluminum. 

The novel work of forming hybrid material based AA6061 chips reinforced with B4C using RSM and ML models to create enhanced 
mechanical, physical, and microstructural properties. Both optimisation methods have a great agreement towards the compositions of 
processing parameters for superior hybrid materials performance properties. Therefore, tailoring results for the industrial applications 
of aircraft implants and automotive resulting high recommendations for sustainability and reusing the materials for the world ma
terials secondary secured materials resources [35]. The limitations of forming hybrid materials include difficulties of achieving 
dispersion of reinforcements beyond 10 % yield to scaling up the process for investigations on the reinforcements type or size. Further 
research ought to centre on improving dispersion techniques, taking up manufacturing, employing machine learning for real-time 
optimisation, developing novel reinforcement exploration approaches, and assessing durability and long-term performance. 

2. Materials and methods 

2.1. Experimental material and processing 

The Aluminium AA6061 was milled by a Sodick-MC430L machine with a speed cut of v = 110 m/min, feed rate f = 0.05mm/tooth, 
and cutting depth = 1 mm. To remove impurities a cleaning process with acetone (C3H6O) is to be conducted following the ASTM 
G131-96 standards. The next step, the drying process was performed at 90 ◦C oven temperature for 30 min accordingly. The aluminium 
AA6061 chips were mixed with B4C and ZrO2 particles following the mixing theory of hybrid materials and mixed for 2 h by a 3D mixer 
machine at 35 rpm speed. 

The theory of mixing MMC materials relationship is presented to determine the amount of AA6061 chips, and B4C and ZrO2 
contents required for the composite-producing materials as given in Eq (1). 

1
ρC

=
wf

ρf
+

wm

ρm
(1) 

Where ρ is density, w is volume fraction, while m, f, and c are related to the composites and reinforcement [10,36]. 

2.2. Experimental hot press process 

The forging machine could be operated as auto/manual controllers in high pressure up to 47 MPa (35-ton) capacity, four pre- 
compaction cycles, and 120 min holding time. The process is carried out with (450-500-550) ⁰C temperature above the crystal
lisation temperature of the recycled samples to form new grains and avoid materials strain hardening by applying constant heat during 
deformation process. After considering the optimum response by the RSM optimisation software [12,13]. Before testing using a 
Universal Testing Machine (Shimadzu EHF-EM0100K1-020-0A), the shaping process resulted in the preparation of standard 
compression specimens (ASTM E9), polishing all the specimens using a Cr2O3 polishing medium, and etching them in a Keller’s and 
Weck’s reagent. Finally, the surface hardness at depth below the surface layer was examined using a Vickers Hardness Tester. While the 
SU1510 scanning electron microscope (SEM) and an XE-100 from Park Systems, Suwon (AFM) will be used to characterise the mi
crostructures, subsurface layer changes, particle distributions, surface roughness, and grain assessment of the specimens. It is possible 
to accurately estimate the grain’s size and area, which is connected to the features of the nano/micrometric structure. A watershed 
with a three-level filter works as an auto-statistic count was used to determine the hybrid materials properties [9]. 

2.3. Design of experiment 

The optimisation of the hot forming forging processing parameters of the PT, and ceramic volume fraction according to box 
behnkan design method (BDD), RSM using Minitab 18 software. The three investigated parameters were the volume fraction of added 

Table 1 
Experimental design parameters [37].  

Factor Variation Levels 

Low (− 1) Medium (0) High (+1) 

Boron Carbide B4C (ᵒ%) 5 10 15 
Zirconia ZrO2 (%) 5 10 15 
Processing Temperature (⁰C) 450 500 550  
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B4C, ZrO2 particles, and processing temperature that presented in Table 1. Eq (3) presents the RSM general model in a total of eight 
factorial design points, three replicated centre design points, and four axial design points. 

Y = b0 +
∑3

i=1
bixi +

∑3

i=1
bii xi2 +

∑2

i=1

∑3

i>1
bijbibj (2)  

Where, Y presents the response variable of UTS strength, b0 constant value, ε presents the residual error, bi presents the linear value 
coefficient, bj presents the interaction coefficient and xi presents the coded dimensionless independent variables [9,37]. The R2 is near 
100 % so, the model would produce good observations and the direct calculations of R2 in Eq (3). 

R2 =1-
=

∑n

m=1

(
ypre,m,m − tmea,m

)
2

∑n

m=1

(
tmea,m

)
2

(3)  

Where n is the number of data ypre,m,m, tmea,m, the predicted and measured values and m data points. The mean absolute error (MAE) is 
used to calculate the lowest error from the predicted model and expressed in Eq (4) [38]. 

MAE=
ypre,m,m − tmea,m

n
(4) 

By creating an empirical mathematical relationship using RSM to relate tensile properties with forming variables (operating 
temperatures and B4C and ZrO2 hybrid ceramic composite contents, the Desirability Function (DF) will be applied in the optimisation 
process to generate the contour plot of the feasible region with respect to the responses and parameter constraints. ZrO2 contents will 
be determined by determining the significant factors and the proportion of contribution for each component on the examined re
sponses, and then by forming parameters in touch with formability criteria of recycling hybrid materials recycling. 

The benefits of employing factorials, central and axial designs were to determine the optimum parameters of the investigated 
composites materials and obtain the best tensile strength properties [39]. However, the RSM is obtaining the optimisation and 
mathematical model directly needed for the problem modelling and analysis that a response of case interests is influenced by several 
factors [40]. Thus, the aim of optimisation in these findings, the CCD was subjected to the mathematical modelling of tensile strength 
at a two-factor second-ordered model. 

2.4. Machine learning algorithms 

This study produced waste models that include B4C and ZrO2 particles to increase the strength properties of materials using a solid- 
state direct recycling approach and a hot press forging process for AA6061 scrap. The major purpose of these models is to anticipate 
tensile strength responses resulting from various experiments including factors such as preheating temperature, ZrO2, and B4C volume 
fractions. Machine learning was chosen as the modelling technique due to its superior prediction abilities and interpretability of model 
coefficients, allowing for a better understanding of target parameters and describing the behaviour of real datasets. To this end, the 
contribution of this paper is the execution of the machine learning model by using Python coding to make the code predictor model. It 
trains the model to predict the validation data and stores the results. It also prints the best validation error score and displays the 
predictor. The aim is to discover valuable relationships between attributes within a dataset, which can be harnessed for prediction 
tasks [26,41]. 

The steps of the method are as follows.  

1 Initialize the data sources by using the following equation: 

D={x1, x2, x3, y} (5)  

where D is the set of all data sources, X1 is the Hot Forging (HF), X2 is the Boron Carbide (B4C), X3 is the Zirconium (ZrO2), and y is the 
Actual value for Ultimate Tensile Strength (UTS).  

2 Set the respective machine learning model in the following: 

M={Machine Learning byNN (x1, x2, x3, y)} (6)  

Where M is the set of machine learning model, (x1, x2, x3, y) creates a neural network model with input features x1, x2, and x3, and 
output feature y [30].  

3 Configure hyperparameters for the model: 

Θ={θ1, θ2,…, θn} (7)  

where Θ represent the set of hyperparameters for the ML model, and θ1,θ2, …,θn are the individual hyperparameters that form the set 
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Θ for the ML model.  

4 Hyperparameter Optimization [25,27,30]: 

Θ∗ = argmax = P(M(X : θ),Y) (8)  

where M is the model that takes input features X and predicts output values. Θ represents the hyperparameters that guide the learning 
process of the model with dataset input X (HF, B4C, ZrO2) and output y (UTS), and P is a performance metric.  

5 Train machine learning model on each dataset using the selected hyperparameters and make predictions for material properties 
based on the trained models: 

Z1 =X W1 + b1 (9)  

A1 = activation
(
Z1) (10)  

Z2 =A1 W2 + b2 (11)  

A2 = activation
(
Z2) (12)  

ŷ =A2 (13)  

whereX is the input matrix with each row representing a data sample (HF, B4C, ZrO2), W represents the weight matrices, b represents 
the bias terms and ŷ is the predicted UTS for the given input samples.  

6 Evaluate ML output by comparing their outcomes with the original data: 

accuracy= compare outputs(D,ML outputs) (14)  

In the following flowchart in Fig. 2 to show the general workflow of the proposed ML model based on the data. 

2.5. Life cycle assessment methodology and scope definition 

The life cycle assessment model was developed using Simapro 8.0.5 software. The Simapro software provides Life Cycle Inventory 
(LCI) data for the unprocessed and processed materials used in the background system. The Ecoinvent database is used to compile 
information on conventional methods. The analysis is used to gather data for the solid-state recycling hot press forging process. The 
production waste and useful output of the processes, which compress the waste and byproduct streams resulting from manufacturing, 
form the system boundary of the proposed strategy. The project includes a comparative examination of an alternative material 
recycling route that starts with the same waste materials as the traditional recycling route. This analysis investigates the technical 
feasibility of the concept. LCA is a widely used and globally acknowledged process for evaluating a product’s impact on the envi
ronment. It is a systematic approach to measuring environmental effects and analyzing the interactions that occur with the envi
ronment regarding the product or activity under consideration. This part focuses on determining the carbon footprint using global 
warming potential values for various parameter combinations. The amount of B4C and ZrO2 in the hot press forging process is being 
investigated concerning AA6061 chip recycling. The evaluation methodology and procedural techniques adhere to the ISO14040 and 

Fig. 1. Hot-pressed processing machine and parameters.  
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ISO 14044 standards [42,43]. 
the databases contained inside the SimaPro program provide LCI data for both raw and processed commodities. The data for the 

conventional technique is collected by utilizing the eco-invent database, which is supplemented with pertinent material derived from 
scientific publications. As illustrated in Fig. 3, the suggested approach’s system boundaries include production waste, useable output 
from operations, waste compression, and by-product streams that develop during production (see Figs. 1 and 4). 

Table 2 provides detailed information on the specific methods, including their key inventory sources and data. The average energy 
consumption per unit mass of the hot-pressed profile ranges between 25.10 and 53.92 kWh/kg. The ReCiPe approach was used for the 
life cycle impact assessment (LCIA). The selected strategy. The midpoint indicator for global warming potential (GWP) assessment is a 
commonly accepted approach for quantifying long-term carbon dioxide equivalent emissions. All emissions are converted into their 
corresponding 100-year carbon dioxide equivalents using this process [44,45]. The European Aluminium Association’s 2008 inves
tigation into gaseous byproducts corresponding to aluminium manufacturing process was condensed into a standard unit of mea
surement known as carbon dioxide equivalents. Carbon dioxide (CO2), methane (CH4), sulfur dioxide (SO2), nitrous oxide (N2O), and 
perflurocarbon (PFC-14) are five gases that are closely related. CO2 gas emissions were prevalent in both routes, however N2O and 
PFC-14 were not found to be important in this process. GWP measurements were used to construct a model to optimize the influence of 
hot press forging settings on both mechanical property responses through RSM statistical method [46,47]. 

Fig. 2. Show the methodology of proposed ML model beside materials recycling technique.  

Fig. 3. System boundary of AA6061 recycling using hot press forging process.  
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2.6. Materials and characterisations 

The mechanical properties investigated samples in terms of UTS, yield strength, elongation, and hardness. However, UTS tests were 
conducted with initial strain-rate 2.5 × 10− 3 s− 1 at room temperature for all samples that were produced by HF technique following 
ASTM-E8M standard. Also, hardness tests were conducted with 0.98N–2.94 N with hold time of 10s using Vichers Hardness according 
to DIN EN ISO 6507–1:2005 standard where, measurements were repeated in several locations for five time of each sample before 
reading the mean hardness values. 

The density is identified as a physical properties test which using Archimedes principle. The density samples were cut into a small 
pieces of forged hybrid materials following the (Eq) 1. Microstructure of all hybrid’s recycled samples were prepared using SiC paper of 
grits sizes 240, 600 and 1200 each for more than 200 s in each time. Polishing processes were performed with. Finally, the polished 
samples were electrolytically etched with Barker’s reactant method where the voltage = 12V, time = 60s. So, the process permitted the 
materials structure to be smooth and illuminate the unwanted interferences colours contaminations. Hybrid samples were analysed by 
Field Emission Scanning Electron Microscopy (FE-SEM), Atomic Force Microscope (AFM) [48]. 

Fig. 4. Pareto chart of the standardised effects for the RSM model (B4C), (ZrO2) and preheated temperature towards UTS strength.  

Table 2 
Main inventories data and sources for each material.  

Material Details Source 

Aluminium chips AA6061 Aluminium chips from machining milling process Ecoinvent database v3.1.2022 
Boron Carbide (B4C) in fine particles form Ecoinvent database v3.1.2022 
Zirconium (ZrO2) in fine particles form Ecoinvent database v3.1.2022  

Table 3 
Analysis of variances.  

Source DF Adj SS Adj MS F-Value P-Value 

Model 6 38393.5 6398.9 48.48 0.000 
Linear 3 16504.1 5501.4 41.68 0.000 
B4C 1 12.5 12.5 0.09 0.765 
ZrO2 1 8.0 8.0 0.06 0.811 
Temperature 1 16483.6 16483.6 124.87 0.000 
Square 1 7961.4 7961.4 60.31 0.000 
Temperature*Temperature 1 7961.4 7961.4 60.31 0.000 
2-Way Interaction 2 2376.4 1188.2 9.00 0.006 
B4C*Temperature 1 1166.4 1166.4 8.84 0.014 
ZrO2*Temperature 1 1210.0 1210.0 9.17 0.013 
Error 10 1320.0 132.0   
Lack-of-Fit 4 186.0 46.5 0.25 0.902 
Pure Error 6 1134.0 189.0   
Total 16 39713.5     
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3. Results and discussions 

3.1. Response surface methodology 

Table 3 demonstrates the experimental design and predicted model UTS strength, RSM findings of tensile strength responses were 
generated after multiple number of experiments which investigated the parameters of preheating temperature, ZrO2 and B4C volume 
fraction proportions. The presented pareto chart determines the factors magnitude which are crossing the line reference where, the 
reference lines confirm that the investigated parameters are significant absolute values cause interactions between parameter towards 
to the UTS materials strength [2,49,50]. 

Fig. 5 depicts UTS’s residual plot. In the normal probability plot, the residual for UTS has nearly curvature. The proximity of the 
graph indicates the errors are negligible since they are still within the acceptable margin. The plot of residuals versus fits response 
demonstrates the uniformity of variance in an equal distribution, which confirms the approximation of UTS after it is correlated with 
the RSM [9,51]. 

The Main effects plots and interactions plots are to identify the most optimised B4C, ZrO2, and Temperature towards hybrid ma
terials strength MMCs composites, resulting in the most effective and optimal parameters to the composites’ strength characteristics. 
Also, the preheating temperature influences rising UTS according to the major effects plot, the maximum UTS is reached at the highest 
peak of 550 ◦C and 5 %. B4C– ZrO2 reinforced ceramics particles [38,52]. The interplay of temperature and volume fraction impacts the 
UTS of the materials as shown in the Contour 2D Plot of UTS. The improved UTS ratio includes ideal 5 % B4C and ZrO2 volume fraction 
with a 550 ◦C preheating temperature. But, less than 500 ◦C and more than 10 % volume proportion of B4C and ZrO2 had the least 
influence on the UTS results, as indicated above. The 2D and 3D response surfaces plot shows how preheating temperature and added 
volume fraction impacts the UTS strength. Fig. 6 shows that UTS grows to its maximum at 5 % volume fraction and 550 ◦C processing 
temperature. The typical changes of the investigated experimental factors on the UTS strength response identify the interactions as 
variations in the design of the reinforced volume percentage of both B4C, ZrO2 particles and the preheating temperature Increasing the 
volume fraction and processing temperature in the experimental setup resulted in a more substantial impact on UTS strength up to 5 % 
vol.B4C, ZrO2 and 550 ◦C While the minimum values of 15 % vol. B4C, ZrO2 and 450 ◦C temperature are resulting in continuous 
declines. 

The optimised response parameters settings were reported at 5 % B4C, 5 % ZrO2 and 550 ◦C for processing temperatures presented 
in Table 3. 

The data was analysed to determine the optimal level of the investigated factors towards UTS strength qualities, and the regression 
equation. According to the regression coefficients and analysis of variances of the UTS strength shown in Table 3, the P-value of the 
preheating temperature is (P-value = 0.000) Also, for B4C particles, (P-value = 0.765), ZrO2 particles (P-value = 0.811). 

Quadratic mathematical modeling is offered to explain the impacts of processing PT temperature B4C, and ZrO2 volume percent on 

Fig. 5. Residual plot for the RSM model (B4C), (ZrO2) and preheated temperature towards UTS strength.  
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examined materials’ UTS strength response employing the regression model as well as the evaluation of RSM variances. Furthermore, 
ANOVA shows that the terms A, B, AB, and AA were significant, and the overall model quality may be evaluated using the R-Square, R- 
Square Adj, prediction R-Square, and Adequate precision values. The quadratic achieved mathematical modeling with a high iden
tification of R-Square = 96 %, which results in an acceptable regression model matched to the research results. Furthermore, the Adj R2 

and the pred R2 are 94 % and 89 %, respectively [10]. The (Eq)14 describes the model equation for the added B4C, ZrO2 ceramic 
contents, and processing temperature towards UTS materials strength. The obtained models present the designing parameters ex
periments to UTS response with the identification of conditions yields to propose the best selected parameters of 5 % B4C, 5 % ZrO2 and 
550 ◦C and make particular relationship between the applied theories of models and industrials applications. The necessity of strong 

Fig. 6. Counters 2D, 3D, and main effects and Interactions plot for the RSM model (B4C), (ZrO2) and preheated temperature towards UTS strength 
(a) Contour 2D Plot of UTS, (b) 3D Contour 3D Plot of UTS, (c)Main effects plots of UTS, (d) Main interactions plot of UTS. 

Table 4 
Parametric effects towards materials strength properties.  

Samples B4C ZRO2 T (◦C) Actual UTS Predicted UTS BY (RSM) Predicted UTS BY (ML) 

1 5 5 550 178 171 157 
2 15 5 450 42 30 32 
3 5 15 450 44 32 31 
4 15 15 550 66 53 64 
5 5 5 550 159 171 158 
6 15 5 450 21 30 32 
7 5 15 450 23 32 35 
8 15 15 550 35 53 34 
9 10 10 500 23 27 26 
10 10 10 500 27 27 29 
11 10 10 500 31 29 28 
12 5 10 500 31 29 54 
13 15 10 500 26 24 25 
14 10 5 500 29 29 52 
15 10 15 500 25 25 28 
16 10 10 450 24 31 35 
17 10 10 550 122 112 67  
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agreement between the R2 Adj and R2 pred would avoid overfitting of the mathematical model. 

UTS=2938 + 53.5 B4C + 54.6 ZrO2 - 14.60 Temperature + 0.01759 Temperature ∗ Temperature - 0.1080 B4C

∗ Temperature - 0.1100 ZrO2 ∗ Temperature (15) 

To confirm the investigations, the comparisons of RSM, ML predicted UTS strength to the actual strength reveal a close match. This 
indication of both RSM and ML models predict effectively the UTS materials strength and showcase its relationship to the actual 
estimations and ability of designing, performance accurate predictions precisely, lead to enhance materials processing structural 
overall usage and efficiencies of applications. Both Table 4 and Fig. 7 show the comparison between the processed experimental 
parameters of experiments towards UTS response materials structure properties. 

3.2. Machine learning 

The ML model was implemented with a Python program in Microsoft Windows 10, core i7,8th Gen. The proposed model will be 
evaluated by using four performance metrics Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), Root relative 
squared error (RRSE), Accuracy, and coefficient of determination (R2). This study chose all these metrics to ensure the prediction task 
would produce credible results. The equation for each performance metrics are as follows [25,53]: 

MAPE=100 ∗ Σ|y − ŷ| / Σy (16)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ(y − ŷ)2
/

n
√

(17)  

RRSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ(y − ŷ)2
/

Σ(y)2
√

(18)  

Accuracy=
Number of correct predictions
Total number of predictions

× 100 (19)  

R2 =1 − Σ(y − ŷ)2
/

Σ(y − y)2 (20) 

The MAPE findings for proposed machine learning predictions show how accurate the model is at estimating target values. The 
MAPE is a metric that calculates the average percentage difference between actual and anticipated values. According to Fig. 8, the 
optimal MAPE value is 0.05 %. A low MAPE, such as 0.05 %, indicates that the model’s predictions match the actual values closely, 
indicating a high level of accuracy. Overall, the MAPE findings of the proposed machine learning model in Fig. 8 illustrate its capacity 
to make highly correct predictions for most data points. These findings highlight the efficacy of our machine learning approach, as 
MAPE values near zero suggest that our model successfully captured the fundamental patterns and relationships in the data, making it 
an excellent candidate for predicting tasks. 

Fig. 7. Comparison between actual UTS and predicted UTS.  
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Fig. 9 shows the RMSE value, which achieved outstanding accuracy in the suggested machine learning experiment, with a RMSE as 
low as 0.02, demonstrating the model’s exceptional precision in predicting most data points. Furthermore, the model regularly 
generated accurate predictions with the lowest RMSE values, showing its excellent ability to match accurate data closely. 

In Fig. 10, the Relative Residual Absolute Error (RRAE) metric serves to assess the disparity between predicted values and their 
corresponding actual values, particularly within the context of HF, B4C, ZrO2, and the Actual UTS. The insights gleaned from the figure 
indicate that the model excels in its predictive accuracy when estimating the value of the given data. The model performed admirably, 
exceeding competing methods in a variety of evaluation metrics. It had the lowest MAPE, RMSE, and RRAE values while achieving a 
high accuracy of 90.41 %. This exceptional accuracy was observed in estimating that UTS using input data from HF, B4C, and ZrO2. The 
model’s high correlation coefficient (R2) of 0.8699 demonstrates its good predicting abilities for the supplied data. The findings suggest 
that the created model might be successfully applied in the industrial industry. Using this model, particularly in industries such as 
reinforcing aluminum AA6061scraps, provides considerable time, cost, and labor efficiency benefits to designers when creating parts 
with enhanced surface qualities. These proposed models could be helpful decision-making tools for design engineers besides materials 
recycling techniques (see Fig. 11). 

Fig. 8. Illustrates the performance evaluation of the ML model using MAPE.  

Fig. 9. Illustrates the performance evaluation of the ML model using RMSE.  
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3.3. Ultimate tensile strength 

The results show that the UTS of the recycled hybrid materials is increased by increasing the amount of added reinforced particles 
to Al chips. Al/5 % B4C + 5 % ZrO2 show higher UTS strength compared to other amounts mixing quantities and this value increases to 
178 MPa for Al/5 % B4C + 5 % ZrO2 hybrid materials. Adding reinforced particles causes elastic modulus strength which is attributed 
to a strong bonding interface between the matrix and the reinforcements [54,55]. Further improvements are because of the interfacial 
strength dispersion that is achieved under preheating during the forming process. Also, the presence of the hard phase could transfer 
the load between matrix and reinforcements and increase the total recycled hybrid materials resistance during plastic deformation. The 
higher thermal mismatch of the aluminium has higher coefficient thermal expansion with the lower reinforced particles during so
lidification that results in thermal stress generation in the formation of dislocation at the materials interface [56,57]. Furthermore, the 
increased density dislocations yield to enhance the total strength of recycled hybrid materials. Beyond 5 % B4C + 5 % ZrO2 the 

Fig. 10. Illustrates the performance evaluation of the ML model using RRSE.  

Fig. 11. UTS of different processed temperature and B4C, ZrO2 contents.  
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investigated samples were agglomerates; pores are present in the phases the material which is stronger and has more intense stress. and 
inhomogeneous distributed cause decreases in UTS strength [58]. 

3.4. Micro hardness 

The hardness of the hybrid recycled materials is evaluated by applying Vicker hardness tester and the dwell time and applied load 
are 3 kg and 15s respectively. An average of five reading is reported from each hardness value. Where according to Eqs. (20), and (21) 
[55]. 

λ= 4(1 − f)r/ 3f (21)  

Where, λ is the distance of reinforced particles, r is the radius of ceramic particles, and f is the volume fraction of ceramic particles. The 
findings show that, low ratio of reinforcements was significant when the microhardness is in concern. Increasing the volume fraction of 
the hybrid particles cause increases in the total materials hardness due to the incorporation of particles with the matrix and the 
presence of relative hard particles. It is noted that Al/5 % B4C + 5 % ZrO2 is 42 % greater than Al/15 % B4C + 5 % ZrO2 and 40 % 
higher than Al/10 % B4C + 10 % ZrO2. By increasing the reinforced volume fraction will cause decreases in the distance between added 
particles due to the materials agglomeration and pores presence with materials discontinuity phase of the material which is greater and 
higher stress. So, the relationship Eq. (k) illustrates effects of continuous added reinforcements [59]: 

τ⁰ =(Gb / λ) (22)  

Where, τ⁰ shearing stress, shearing module, b is the Burger’s crystal vector and λ is the distance of reinforced particles [59]. The 
reinforcements volume fraction with low ratio are more significant to improve hardness quality. More than 5 %, the hardness-strength 
would be declined and the materials will be favourable for composites machinability [57]. 

3.5. Density 

Generally, ceramics particles have significant effects on total composites densities. The additions of lightweight’s reinforcements 
such as B4C cause densities reductions of the hybrid composites materials unlike ZrO2 reinforcements which cause addition of the 
hybrid composites. Figure show that the hybrid composites densities of Al/15 % B4C + 15 % ZrO2 is 2.78 kg/m3 which higher of all 
investigated mixed samples Al - 5 % B4C + 5 % ZrO2 and 10 % B4C + 10 % ZrO2. The increases in the hybrid materials’ densities 
indicate the breakage may not influence the hybrid materials’ interfacial bonds between the particles and the matrix [60,61]. The 
density of the examined samples drops, which may be attributed to the lower overall densities of B4C particles compared to their 
densities of pure AA6061 chips and ZrO2. The density of composites made of metal matrix is contingent upon the mixed percentage of 
materials with respect to the AA6061 chips. The study utilised the mixing rule theory to determine the densities of composite samples. 
According to the principles of the mixing rule, it is seen that when the proportion of reinforced ceramic added contents exceeds 10 %, 
certain effects are observed [39]. 

3.6. Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM) 

The recycled hybrid materials based AA6061 chips reinforced with B4C and ZrO2 contents of different proportions were investi
gated by means FE-SEM/AFM (see Fig. 13). 

Atomic Force Microscope (AFM) is widely recognised as the prevailing technique for investigating and quantifying surface 
roughness, as well as examining the morphology of hybrid composites samples surfaces with micron to nanoparticle dimensions. 
Nevertheless, hybrid composites samples possess a polycrystalline structure and grain size, rendering them suitable for research en
deavours in hybrid composites samples technology. Additionally, the form of an object is a determining factor that impacts the di
mensions of its grain, such as radius length and areas. Consequently, it has been found that the utilisation of a sharp tip leads to 
increased accuracy in accordance with the research conducted by Rifai et al. [62]. The findings indicate the potential for mitigating 
particle agglomeration along the samples. However, the outcomes were modified with the reduced grain sizes are documented in 
Table 5, illustrating a decrease in size from the lowest mixing proportions of reinforced contents as indicated. According to Attila bony 
et al [63]. There is a reduction in reliance on the surface roughness of pictures for conducting testing in Fig. 14. The impacts of process 
on the form, features, surface structure, and descriptive responses of materials thermal forming process leads to surfaces that are softer 
and more malleable. 

3.7. Life cycle assessment 

Fig. 15 depicts the results of the global warming potential of various B4C and ZrO2 concentrations. The results show that the varied 
compositions result in somewhat different GWP levels. The composition of 80 % Aluminium +15 % B4C + 5 % ZrO2 has the greatest 
GWP of 252.66 CO2-eq, whereas the composition of 80 % Aluminium +5 % B4C + 15 % ZrO2 has the lowest GWP of 250.5 CO2-eq. 
These discrepancies might be attributable to varying B4C and ZrO2 proportions, demonstrating that modest changes in alloy 
composition can influence its environmental effect in terms of GWP (see Fig. 16). 

The inclusion of boron carbide raises the GWP value for a variety of reasons, most notably its raw material manufacturing 
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procedure. Boron carbide is commonly synthesised from boron oxide and carbon by a high-temperature reduction method that is 
energy-intensive [64]. Furthermore, the manufacturing of boron carbide necessitates energy-intensive methods such as 
high-temperature carbothermal reduction of boron oxide. Its manufacturing involves high temperatures and complicated chemical 

Table 5 
Mean roughness parameters of AA6061 chips reinforced hybrid materials.  

no Samples Area (μm2) Length (μm3) Peri (μm3) Rpv (nm) Rq (nm) Ra (nm) 

1 Al/5 % B4C + 5 % ZrO2 0.040 0.27 0.85 33.06 6.99 5.53 
2 Al/15 % B4C + 5 % ZrO2 0.020 0.21 0.67 61.37 13.66 10.85 
3 Al/5 % B4C + 15 % ZrO2 0.027 0.237 0.72 69.35 14.91 11.73 
4 Al/10 % B4C + 10 % ZrO2 0.028 0.239 0.73 52.56 11.26 8.86 
5 Al/15 % B4C + 15 % ZrO2 0.047 0.305 0.93 40.56 8.93 6.59  

Fig. 12. Microhardness of different processed temperature and B4C, ZrO2 contents.  

Fig. 13. Density of different processed temperature and B4C, ZrO2 contents.  
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processes, which might lead to a larger carbon footprint. whereas carbon the carbon footprint of boron carbide raw materials is 
influenced by their intensity. Boron carbide has a relatively high carbon content, therefore the mining and processing of carbon can 
have a considerable carbon impact [65]. 

While the inclusion of ZrO2 increases the GWP value of the recycling process, this is mostly since ZrO2 manufacture frequently 
includes energy-intensive procedures, notably the reduction of ZrO2 tetrachloride using magnesium in the Kroll process [66]. This 
high-temperature reduction process consumes a lot of energy, which contributes to a bigger carbon footprint. Furthermore, ZrO2 is a 

Fig. 14. FE-SEM/AFM AA6061 chips reinforced B4C/ZRO2 hybrid materials Al/(a) 5 % B4C + 5 % ZrO2, (b) Al/15 % B4C + 5 % ZrO2, (c) Al/5 % 
B4C + 15 % ZrO2, (d) Al/10 % B4C + 10 % ZrO2, and (e) Al/15 % B4C + 15 % ZrO2. 
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more chemically complicated element, and its extraction and purification can need many stages, each of which requires energy and 
resources. The intricacy of the relevant chemical processes might lead to a larger carbon footprint. Furthermore, the extraction of ZrO2 
raw materials, such as zircon sand, may include energy-intensive mining operations and extraction procedures, adding to the total 
carbon footprint [67]. It was stated that the regression model significance of the test for significance on the particularised coefficients 
model and the test for lack-of-fit should be carried out. The results of the tests were typically summarised using an ANOVA. After 
pooling, the final quadratic model equation in terms of coded elements for GWP is as follows in the case of coded factors [68]. 

Fig. 15. Global warming potential of the different content of B4C and ZrO2.  

Fig. 16. 3D surface graphs for GWP with the relationship to B4C and ZrO2 ceramics contents.  
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GWP= 205.54 + 50.05A + 48.43B (23)  

Where, A is the percentage of B4C while B is the percentage of ZrO2 contents. The 3D surface graphs for GWP are shown in Fig. 15 the 
GWP tends to increase considerably with increases of the B4C and ZrO2 contents. Hence, maximum GWP is obtained. 

4. Conclusion 

Hybrid MMCs recycling composites up to 15 % for B4C and ZrO2 particles reinforced aluminium AA6061 scraps were fabricated by 
using HF technique. The UTS results of the investigated materials were optimised and compared by employing RSM and ML methods. 
From the microstructure findings, uniform distribution of B4C and ZrO2 particles in the matrix for samples up to 10 % reinforced 
particles contents and beyond the optimised value the agglomerations of particles would be observed. Due to that, the effects of adding 
reinforcing particles cause UTS strength increase because of increase in the dislocation density beyond 5 % reinforced particles 
concentration, the UTS and MH would be decreased. While the density is relative to the total added reinforced particles. The LCA 
outcomes are given in utilitarian units, which evaluate the environmental effect per kilogram of aluminium compound and reinforced 
particles. The established approach to determine the midpoint indicator that GWP was used to quantify CO2 equivalent emissions 
towards time. Within 100 years. The study presents the materials characterisations investigations of the hybrid recycled materials and 
optimisation by employing RSM and ML to propose the materials for the automotives manufacturing applications. 
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