
 

 

 

   

 

 

 

 

 

MODELLING OF PROPORTIONAL CONTROLLERS WITH 
COUNTER-SLIPPAGE MECHANISM FOR E-PATTERN 

OMNIWHEELED CELLULAR CONVEYOR 
 

 

 

 

 

KEEK JOE SIANG 

 

 

 

 

 

DOCTOR OF PHILOSOPHY 
 

 

 

 

 

2025 



 

 

 

 

Faculty of Electrical Technology and Engineering 

 

 

MODELLING OF PROPORTIONAL CONTROLLERS WITH 

COUNTER-SLIPPAGE MECHANISM FOR E-PATTERN 

OMNIWHEELED CELLULAR CONVEYOR 

 

 

 
Keek Joe Siang  

Doctor of Philosophy 

2025  



 

 

 

MODELLING OF PROPORTIONAL CONTROLLERS WITH COUNTER-

SLIPPAGE MECHANISM FOR E-PATTERN OMNIWHEELED CELLULAR 

CONVEYOR 

 

KEEK JOE SIANG 

A thesis submitted  

in fulfillment of the requirements for the degree of 

Doctor of Philosophy 
 

Faculty of Electrical Technology and Engineering 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 

 

2025  



 

 

 

DECLARATION 
 

I declare that this thesis entitled “Modelling of Proportional Controllers with Counter-

slippage Mechanism for E-pattern Omniwheeled Cellular Conveyor” is the result of my own 

research except as cited in the references. The thesis has not been accepted for any degree 

and is not concurrently submitted in candidature of any other degree. 

 

 

 

Signature  :  

Name  : KEEK JOE SIANG 

Date      : 10 June 2025 

 

  



 

 

 

APPROVAL 

 

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms 

of scope and quality for the award of Doctor of Philosophy. 

  

 

 

 

 

    Signature   :......................................................................... 

    Supervisor Name  : DR. LOH SER LEE 

    Date    : 10 June 2025 

  



 

 

 

DEDICATION 

 

To my supervisors, beloved father, mother and wife. 

 



 

i 

 

ABSTRACT 

 

Conveyor system is essential for many industries but can also become a potential chokepoint. 

It has direct impact on the efficiency of whole process flow. Downtime due to maintenance 

or reparation is unavoidable among conveyor system. Traditional conveyor such as belt or 

roller conveyor is prone to downtime due to wear and tear. Additionally, the traditional 

conveyor system is a single-input-single-output system that conveys object unidirectionally 

without capability of sorting and arranging. Traditional conveyor system also lacks 

flexibility and adaptivity to the surrounding environment. The traditional conveyor system 

has remained almost with the same design since decades ago, even though the world of 

technologies has gone through multiple revolutions. Therefore, in these recent years, modern 

conveyor system has risen to overcome the limitation of traditional conveyor. In this 

research, a modern conveyor system known as E-pattern omniwheeled cellular conveyor 

(EOCC) has been designed and proposed. EOCC is made up of cells and therefore, faulty 

cell can be replaced through plug-and-play without interrupting the industrial process flow. 

Each cell consists of omniwheels and capable of conveying object omnidirectionally. 

Therefore, while waiting faulty cell to be replaced, conveyance can be temporarily handled 

by neighbouring cells without stopping the whole conveyor. EOCC requires zero-downtime 

and ultimately solves the chokepoint issue. Besides that, due to omnidirectional capability, 

EOCC can support unlimited inputs-outputs, allowing it to handle multiple objects for tasks 

like sorting, arranging etc., thereby achieving unprecedented efficiency beyond the 

traditional conveyor. The modularity of EOCC also allows it to be highly adaptive and 

customizable based on environment. However, the existing modern conveyor literature often 

does not adequately address uncertain and nonlinear properties of modern conveyor system. 

Robustness and precision in tracking performance are also lacking. In this research, slippage 

(uncertainty) and nonlinear properties of the EOCC are first analyzed. It was found that 

omniwheels on both the X-axis and Y-axis are prone to slippage and nonlinear actuation, 

with the Y-axis omniwheel being more critical. It is impractical to mathematically model 

these properties and therefore, slippage detection (SD) and counter-slippage (CS) method 

are proposed. The final result shows that the proposed 4P-SDCS controller (four proportional 

gains with slippage detection and counter slippage) outperforms the benchmark controllers. 

In terms of X-axis and Y-axis trajectory tracking relative value distributions, the 4P-SDCS 

controller surpasses the benchmark controllers up to 70 % and 72.5 %, respectively. In term 

of Z-axis error mean and standard deviation, the 4P-SDCS controller outperforms the 

benchmark controllers up to 74.1 % and 14.4 %, respectively. Besides that, the 4P-SDCS 

controller scores zero catastrophic slippage throughout all trajectory tracking conducted. The 

EOCC and its control system are comprehensively validated across different trajectories, 

different box sizes and masses. Overall, the proposed EOCC and its control system have 

successfully achieved precision and robustness in trajectory tracking.  
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PEMODELAN PENGAWAL KADARAN DENGAN MEKANISMA ANTI-

GELINCIRAN BAGI PENGHANTAR BERCORAK-E  BERSEL DAN BERODA-

OMNI 

 

ABSTRAK 

 

Sistem penghantar penting untuk banyak industri dan boleh menjadi jalur penyumbatan 

yang kritikal. Ia mempunyai impak terhadap kecekapan aliran proses keseluruhan. Masa 

hentian disebabkan oleh penyelenggaraan atau pembaikan tidak dapat dielakkan. 

Penghantar tradisional seperti penghantar tali sawat atau roller terdedah kepada masa 

hentian akibat kehausan dan kerosakan. Selain itu, sistem penghantar tradisional adalah 

sistem satu-masukkan-satu-keluaran yang mengangkut objek secara sehala tanpa 

keupayaan untuk menyusun, mengatur dan sebagainya. Sistem penghantar tradisional juga 

kekurangan fleksibiliti dan adaptasi terhadap persekitaran. Sistem penghantar tradisional 

kekal hampir dengan reka bentuk yang sama sejak beberapa dekad yang lalu, walaupun 

dunia teknologi telah melalui pelbagai revolusi. Oleh itu, dalam beberapa tahun 

kebelakangan ini, sistem penghantar moden telah muncul untuk mengatasi keterbatasan 

sistem penghantar tradisional. Dalam kajian ini, satu sistem penghantar moden yang 

dikenali sebagai penghantar bercorak E bersel dan beroda omni (EOCC) telah direka dan 

dicadangkan. EOCC terdiri daripada sel-sel dan oleh itu, sel yang rosak boleh diganti 

melalui sistem pasang-dan-pakai tanpa mengganggu aliran proses industri. Setiap sel 

terdiri daripada roda omni dan mampu mengangkut objek dalam semua arah. Oleh itu, 

semasa menunggu sel yang rosak diganti, penghantaran boleh dikendalikan sementara oleh 

sel-sel bersebelahan tanpa masa hentian. EOCC tidak memerlukan masa hentian justeru 

menyelesaikan isu jalur penyumbatan. Disebabkan berroda omni, EOCC boleh menyokong 

bilangan masukkan-keluaran tanpa had, membolehkannya mengendalikan pelbagai objek 

untuk tugas seperti menyusun, mengatur dan sebagainya, sekali gus mencapai kecekapan 

yang luar biasa berbanding penghantar tradisional. EOCC yang bersel juga 

membolehkannya menjadi adaptif dan diubahsuai berdasarkan persekitaran. Literatur 

mengenai penghantar moden yang sedia ada selalunya tidak menangani ketidakpastian dan 

sifat tidak linear dengan secukupnya. Keteguhan dan ketepatan juga berkurangan. Dalam 

kajian ini, gelinciran (ketidakpastian) dan sifat tidak linear di EOCC telah dianalis. Roda 

omni di paksi X dan Y bersifat gelincir and tidak linear, terutamanya di paksi Y. Permodelan 

secara matematik adalah kurang berpraktikal, justeru, kaedah pengesanan gelinciran (SD) 

dan kaedah menentang gelinciran dicadangkan. Hasil menunjukkan bahawa pengawal 4P-

SDCS yang dicadangkan mengatasi pengawal asas. Dari segi pengedaran nilai relatif 

penjejakan trajektori pada paksi X dan Y, pengawal 4P-SDCS mengatasi pengawal aras 

sebanyak 70% dan 72.5% masing-masing. Dari segi purata ralat paksi Z dan sisihan piawai, 

pengawal 4P-SDCS mengatasi pengawal aras sebanyak 74.1% dan 14.4% masing-masing. 

Selain itu, pengawal 4P-SDCS tidak mengalami gelinciran bencana di semua penjejakan 

trajektori. EOCC dan sistem kawalannya telah disah secara menyeluruh dengan trajektori, 

saiz kotak dan jisim yang berbeza. Secara keseluruhannya, EOCC dan sistem kawalannya 

telah berjaya mencapai ketepatan dan keteguhan dalam penjejakan trajektori. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The origin of conveyor system can be traced back all the way to the first industrial 

revolution in the late 18th century. Conveyor system was primarily used to convey or 

transport raw materials such as coal, grain and rock. Back then, when motorized rotor is still 

in bud stage, people are willing to develop a hand-operated conveyor system to assist their 

operations. As one can expect, once advanced actuator such as coal-powered and electric-

powered actuators were invented, conveyor system became the limelight of automation. 

Conveyor technology achieved a significant breakthrough when Henry Ford introduced 

conveyor-based assembly line into automobile industry in early 19th century, successfully 

boosting the productivity. It then became a stepping stone or a launching pad that 

popularized the conveyor system. Conveyor technology then became a de facto for many 

industries. 

It is remarkable that conveyor technology has persisted since the first industrial 

revolution, which has been almost two centuries ago. Unlike other machinery from the same 

era, such as the telegraph and steam engine, which have become obsolete due to rapid 

technological advancement, the importance of conveyor technology has continued to remain 

relevant and without any sign of obsolescence in near future. In many industrials nowadays, 

one of the bottlenecks of a process flow is located at the logistics section and conveyor 
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system is a part of it. In other words, improving the efficiency of conveyor system can 

directly improve the productivity, which will impact the revenue of the company.  

The demand for conveyor system has been growing exponentially and without any 

sign of slowing down. It is fascinating to see conveyor system from conveying raw material 

in 18th century to now 20th century in new industries such as e-commerce, airports and many 

more. Despite growing demand, conveyor technology has not been through significant 

changes or advancement. Belt and roller conveyors have remained the primary conveyor for 

centuries. Without advancement, reliance on belt and roller conveyor means stagnant in 

efficiency improvement. Moreover, traditional conveyor such as belt and roller conveyor are 

highly prone to physical wear and tear, which require never-ending hectic maintenance and 

sustaining. Therefore, it is crucial for researchers and engineers from the field of conveyor 

technology to innovate beyond the traditional conveyor systems, pursuing greater efficiency 

to quickly catch-up with the fast-growing demand.  

1.2 Problem Statement 

Traditional conveyor system is simple and straightforward, but it has several critical 

limitations that create bottlenecks in productivity and efficiency. Traditional conveyor 

system can only convey objects in one direction, with only one inbound and one outbound 

available. No sorting, no orientation control and no precise positioning available by default. 

It is common to add linear actuator to the traditional conveyor to enable a few additional 

degrees of freedom. However, this requires additional design and development but yet after 

all these efforts, the traditional conveyor only achieves a slight improvement in efficiency. 




