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ABSTRACT 

 

Data imbalance is a problem in machine learning. Unbalanced classes cause a common 

problem in machine classification, where there is a disproportionate ratio within each class. 

Data imbalance results in a decrease in model quality, where the model can provide high 

accuracy but only applies to the majority of data and ignores minority data. Many techniques 

are used to deal with class imbalance problems, namely the resampling technique, which 

includes oversampling and undersampling. Both of these techniques aim to change the ratio 

between the majority and minority classes. By making the training data more balanced, 

resampling allows different classes to have relatively the same effect on the results of the 

classification model. The oversampling technique is used because of the independence of 

the classifier, especially with random oversampling and synthetic minority oversampling. 

However, this technique causes overfitting problems because random oversampling only 

duplicates the minority data class. Besides that, it also increases data training time. The 

overlapping problem caused by synthetic minority oversampling is solved by using an 

approach based on local information, not on the distribution of the minority class as a whole, 

in synthesizing new data. Besides that, it also causes data noise in the samples because the 

separation between the majority and minority class groups is not clear. Aiming to address 

the problem of dataset imbalance that improves the performance of anomaly detection in 

detecting new and rare attacks, this research proposes an enhanced ANIDS model called as 

DGT-RF using a Conditional Generative Adversarial Network (CGAN) combine with 

TomekLinks and Random Forest as classifier. According to test and evaluation reports, 

DGT-RF has proven successful in increasing the performance of anomaly detection to detect 

new and rare attacks on extreme imbalance minority classes. The validation results show 

that this model outperforms previous work by an average of 7.62% accuracy. In the future, 

aiming to improve the performance in detecting new and rare attacks, the use of techniques 

like data balancing other variants of synthetic data based on deep learning will need to be 

considered. 
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MENINGKATKAN PRESTASI PENGESANAN ANOMALI DALAM SET DATA 

TIDAK SEIMBANG MENGGUNAKAN MODEL GENERATIF MENDALAM DAN 

PENDEKATAN TOMEKLINKS  

 

ABSTRAK 

 

Ketidakseimbangan data adalah masalah dalam pembelajaran mesin. Kelas yang tidak 

seimbang menyebabkan masalah biasa dalam klasifikasi mesin, di mana terdapat nisbah 

yang tidak seimbang dalam setiap kelas. Ketidakseimbangan data mengakibatkan 

penurunan kualiti model, di mana model boleh memberikan ketepatan yang tinggi tetapi 

hanya terpakai kepada majoriti data dan mengabaikan data minoriti. Banyak teknik 

digunakan untuk menangani masalah ketidakseimbangan kelas, iaitu teknik persampelan 

semula, yang merangkumi persampelan berlebihan dan persampelan kurang. Kedua-dua 

teknik ini bertujuan untuk mengubah nisbah antara kelas majoriti dan minoriti. Dengan 

menjadikan data latihan lebih seimbang, persampelan semula membolehkan kelas yang 

berbeza mempunyai kesan yang agak sama pada hasil model klasifikasi. Teknik 

persampelan berlebihan digunakan kerana kebebasan pengelas, terutamanya dengan 

persampelan berlebihan rawak dan persampelan berlebihan minoriti sintetik. Walau 

bagaimanapun, teknik ini menyebabkan masalah overfitting kerana persampelan berlebihan 

rawak hanya menduplikasi kelas data minoriti. Selain itu, ia juga meningkatkan masa 

latihan data. Masalah pertindihan yang disebabkan oleh persampelan berlebihan minoriti 

sintetik diselesaikan dengan menggunakan pendekatan berdasarkan maklumat tempatan, 

bukan pada taburan kelas minoriti secara keseluruhan, dalam mensintesis data baharu. 

Selain itu, ia juga menyebabkan gangguan data dalam sampel kerana pemisahan antara 

kumpulan kelas majoriti dan minoriti tidak jelas. Bertujuan untuk menangani masalah 

ketidakseimbangan set data yang meningkatkan prestasi pengesanan anomali dalam 

mengesan serangan baharu dan jarang berlaku, penyelidikan ini mencadangkan model 

ANIDS yang dipertingkatkan yang dipanggil sebagai DGT-RF menggunakan Conditional 

Generative Adversarial Network  (CGAN) digabungkan dengan TomekLinks dan Random 

Forest sebagai pengelasl. Menurut laporan ujian dan penilaian, DGT-RF telah terbukti 

berjaya meningkatkan prestasi pengesanan anomali untuk mengesan serangan baharu dan 

jarang berlaku terhadap kelas minoriti ketidakseimbangan yang melampau. Hasil 

pengesahan menunjukkan bahawa model ini mengatasi prestasi kerja sebelumnya dengan 

purata ketepatan 7.62%. Pada masa hadapan, bertujuan untuk meningkatkan prestasi 

dalam mengesan serangan baharu dan jarang berlaku, penggunaan teknik seperti 

mengimbangi data varian lain data sintetik berdasarkan pembelajaran mendalam perlu 

dipertimbangkan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

After land, sea, and air, cyberspace is considered an area that needs to be explored 

and understood (Karie et al., 2019). The primary cause of this phenomenon is the intermittent 

surge in cybercrime and the proliferation of cybercriminals. The increase in cybercrime has 

been driven by the expansion of technology and the internet. According to cyber-attack 

statistics from Hackmageddon in 2022, cybercrime continues to be the main motivation for 

cyber-attacks, which contributed 76.8%, although it tends to decrease from 2021, which 

contributed 84.1%, while cyber espionage is the second contributor at 10.4%, and hacktivism 

has increased from 1.3% in 2021 to 7% in 2022, as depicted in Figure 1.1.  

 

Figure 1.1 Major motivation of attacks (Source: Hackmageddon cybercrime statistics 

2022) 
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Malware attacks continue to be the most frequent cyberattacks, accounting for 34.7% 

of all attacks, with unknown attacks coming in at 22.2% and phishing attacks at 15.5%, as 

shown in Figure 1.2. 

 

Figure 1.2 Top 10 attack techniques (source: hackmageddon cybercrime statistics 

2022) 

 

According to Steve Morgan (2022), founder of Cybersecurity Ventures, losses due 

to global cybercrime will increase by 15% per year over the next five years. Losses in 2023 

are expected to reach 8 trillion dollars. In 2025, it is estimated that it will be 10.5 trillion 

dollars, up significantly from 3 trillion dollars in 2015. In the United States, the number of 

complaints received and processed by the Federal Bureau of Investigation (FBI) (2022) in 

collaboration with the Internet Crime Complaint Centre (IC3) is increasing, as depicted in 

Figure 1.3. In 2022, IC3 received a total of 800,944 complaints, with losses reaching 10.3 

billion dollars. This shows a significant increase compared to 2018, which received 351,937 

complaints, with losses reaching 2.7 billion dollars. 
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Figure 1.3 Yearly comparisons of complaints received via the IC3 website (FBI 2022) 

 

In addition, based on the Cisco Internet Annual Report 2018–2023 (Cisco and 

Internet, 2020), by 2023, it is projected that almost two-thirds of the world's population will 

have access to the Internet. The number of internet users is projected to reach 5.3 billion by 

2023, increasing from 3.9 billion in 2018. By 2023, the global population will be 

outnumbered threefold by the number of devices linked to IP networks. The predicted 

number of network devices is expected to reach 29.3 billion in 2023, an increase from 18.4 

billion in 2018. IoT devices, smart devices, and home applications are growing at a rapid 

pace of 48% in 2023. Plus, by 2023, more than 70% of the global population will have 

cellular connectivity, with the global cellular subscriber population growing from 5.1 billion 

in 2018 to 5.7 billion in 2023. Therefore, with the increasing number of users and devices 

connected to the internet, computer networks have become an infrastructure that is 

inseparable from human life. Its role has evolved beyond being solely a digital information 

exchange platform and now offers several crucial services to its users. Cybercriminals are 
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attracted to individuals and organizations that heavily rely on computer networks due to the 

potential for financial gain. Cybercriminals attempt to undermine the secrecy, accuracy, and 

accessibility of data and online services by executing diverse network intrusions. It is crucial 

to identify the origin of intrusions in order to ensure network security and minimize the 

frequency of attacks. 

As a result, an intrusion detection system (IDS) was constructed to identify the 

intrusion. IDS is an important component of network security (Li et al., 2015; Kwon et al., 

2019). The main purpose of IDS is to detect anomalous activities and attempts caused by 

attackers in computer networks and computer systems; in other words, IDS monitors and 

analyses network traffic to separate normal and malicious data (Denning. 1987; Kwon et al., 

2019; Liu and Lang, 2019; Vinayakumar et al., 2019; Ahmad et al., 2021; Kocher and 

Kumar, 2021). To achieve these goals, designing and implementing an IDS is a major 

challenge (Salama et al., 2011; Li et al., 2015; Kwon et al., 2019). Some intrusion detection 

techniques used to implement IDS include statistically based anomalies, pattern matching, 

data mining, machine learning, and deep learning (Kwon et al., 2019; Liu and Lang, 2019; 

Kocher and Kumar, 2021). 

IDS application is divided into two (Khraisat et al., 2019; Kwon et al., 2019; Singh 

and Khare, 2022). First is an application on hardware connected to a network called a host-

based detection system (HIDS). Second, an application on a network is used to detect 

intrusions, and this application is known as a network-based intrusion detection system 

(NIDS). This technology gathers and analyzes network traffic to identify and detect 

malicious assaults. Implementing NIDS provides a significant advantage in its ability to 

monitor data traffic from various devices on the network. In detecting malicious network 
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traffic, NIDS applies two models, namely signature-based (SNIDS) and anomaly-based 

(ANIDS) (Ahmed and Garcia, 2005; Salama et al., 2011; Li et al., 2015; Niyaz et al., 2015; 

Khraisat et al., 2019). SNIDS stores records of established attack patterns referred to as 

signatures. The system detects network traffic by comparing it with pre-existing signatures 

and triggers an alarm whenever there is a match. While this system may provide a small 

number of incorrect alerts, it is unable to detect novel forms of network intrusions that do 

not have predefined patterns stored in the attack database. ANIDS first establishes a standard 

network traffic profile and subsequently compares the network traffic to this established 

profile. The system is able to detect both known and novel threats by flagging any change 

from the standard profile as an intrusion. Therefore, ANIDS is more effective in detecting 

known and unknown attacks (Ning and Jajodia, 2004; Deka et al., 2015; Khraisat et al., 2019; 

Kwon et al., 2019). 

An ANIDS model has to be trained using data samples that follow real-world network 

traffic characteristics before it is implemented in the actual world. Except from rare instances 

that produce harmful data, most of this network traffic is benign—that is, regular. Developed 

from a real-world network with a mix of regular and malicious network traffic, the intrusion 

detection dataset. The intrusion detection data set has significant differences in the number 

of samples in different classes, causing the data set to be unbalanced. In an imbalanced data 

set, the class that has the majority of data from the sample is called the majority class. 

Intrusion detection data usually includes normal network traffic data and frequently 

occurring attacks. Meanwhile, the minority class consists of attack data samples that rarely 

occur. 




