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ABSTRACT 

 

 

The early diagnosis of diabetes complications using risk factors remains underexplored, 

particularly with the application of Multi-Label Classification (MLC). This study addresses 

this gap by leveraging data from the Behavioral Risk Factor Surveillance System (BRFSS) 

from 2016 to 2021 to categorize seven diabetes complications simultaneously. By employing 

Artificial Intelligence (AI), this study examines the interconnected nature of these 

complications. A total of 33 variables from each year of the BRFSS dataset were analyzed, 

incorporating statistical techniques to understand the data and preprocessing methods to 

prepare it for machine learning. Seven machine learning models—Artificial Neural Network 

(ANN), Random Forest (RF), Decision Tree (DTT), k-Nearest Neighbors (k-NN), Naïve 

Bayes (NB), Support Vector Machine (SVM), and Deep Neural Network (DNN)—were 

used for multi-label classification of the complications. The study employed two MLC 

frameworks: Problem Transformation methods (Binary Relevance, Classifier Chains, Label 

Power Set, and Calibrated Label Ranking) and Algorithm Adaptation. Performance was 

evaluated using 20 metrics, including AUROC and other advanced indicators. The first 

experiment revealed that the Algorithm Adaptation framework outperformed Problem 

Transformation methods across most metrics. Among the models, the DNN achieved 

superior performance in key metrics such as Subset Accuracy (0.4156), Hamming Loss 

(0.1272), F1-Score (macro) (0.9113), and AUROC (macro) (0.7935). Feature importance 

analysis identified the top 10 variables influencing different complications. The second 

experiment introduced a novel dropout regularization technique called multi-channel 

weighted dropout, designed to enhance model generalization. Comparative evaluations with 

existing dropout methods demonstrated the superior performance of the proposed technique, 

particularly when applied within the Algorithm Adaptation framework using DNNs. The 

proposed method managed data and model complexity effectively while maintaining high 

computational efficiency. This study contributes to the field by proposing a new 

regularization technique, demonstrating the effectiveness of the Algorithm Adaptation 

framework, and providing insights into the associations between diabetes complications. 

These findings highlight the potential of AI-driven MLC approaches in advancing diabetes 

complication.  



 

ii 

MODEL RAMALAN KOMPLIKASI  DIABETES RISIKO MULTILABEL 

MENGGUNAKAN RANGKAIAN NEURAL DALAM DENGAN KECICIRAN 

PEMBERAT MULTISALURAN 

 

ABSTRAK 

 

Diagnosis awal komplikasi diabetes berdasarkan faktor risiko masih kurang diterokai, 

terutamanya dengan penggunaan Multi-Label Classification (MLC). Kajian ini menangani 

jurang tersebut dengan memanfaatkan data daripada Behavioral Risk Factor Surveillance 

System (BRFSS) bagi tahun 2016 hingga 2021 untuk mengkategorikan tujuh komplikasi 

diabetes secara serentak. Dengan menggunakan kuasa pengkomputeran Artificial 

Intelligence (AI), kajian ini mengkaji hubungan antara komplikasi tersebut. Sebanyak 33 

pemboleh ubah dari setiap tahun data BRFSS dianalisis, menggunakan teknik statistik untuk 

memahami data dan kaedah prapemprosesan untuk menyediakan data bagi pembelajaran 

mesin. Tujuh model pembelajaran mesin—Artificial Neural Network (ANN), Random Forest 

(RF), Decision Tree (DTT), k-Nearest Neighbors (k-NN), Naïve Bayes (NB), Support Vector 

Machine (SVM), dan Deep Neural Network (DNN)—digunakan untuk klasifikasi pelbagai 

label komplikasi. Kajian ini menggunakan dua kerangka MLC: kaedah Transformasi 

Masalah (Binary Relevance, Classifier Chains, Label Power Set, dan Calibrated Label 

Ranking) dan Adaptasi Algoritma. Prestasi dinilai menggunakan 20 metrik, termasuk 

AUROC dan indikator lanjutan lain. Eksperimen pertama menunjukkan bahawa kerangka 

Adaptasi Algoritma mengatasi kaedah Transformasi Masalah dalam kebanyakan metrik. 

Dalam kalangan model, DNN mencatatkan prestasi terbaik dalam metrik utama seperti 

Subset Accuracy (0.4156), Hamming Loss (0.1272), F1-Score (macro) (0.9113), dan 

AUROC (macro) (0.7935). Analisis kepentingan ciri mengenal pasti 10 pemboleh ubah 

utama yang mempengaruhi pelbagai komplikasi. Eksperimen kedua memperkenalkan teknik 

regularisasi dropout baharu yang dinamakan multi-channel weighted dropout, yang direka 

untuk meningkatkan generalisasi model. Penilaian perbandingan dengan kaedah dropout 

sedia ada menunjukkan prestasi unggul teknik yang dicadangkan, terutamanya apabila 

digunakan dalam kerangka Adaptasi Algoritma dengan DNN. Kaedah yang dicadangkan 

berjaya menguruskan kerumitan data dan model dengan berkesan sambil mengekalkan 

kecekapan pengiraan yang tinggi. Kajian ini menyumbang kepada bidang ini dengan 

mencadangkan teknik regularisasi baharu, membuktikan keberkesanan kerangka Adaptasi 

Algoritma, dan memberikan wawasan tentang hubungan antara komplikasi diabetes. 

Penemuan ini menonjolkan potensi pendekatan MLC yang didorong oleh AI dalam 

meningkatkan pengurusan diabetes. 
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CHAPTER 1 

 INTRODUCTION 

1.1 Background 

Artificial Intelligence (AI) possesses a robust capability to address complex 

challenges and facilitate intricate decision-making in several academic disciplines, resulting 

in significant advancements in innovation. The success of AI is associated with advanced 

technology, which has proven to impact our daily life activities significantly (Jena et al., 

2021). AI has become more advanced due to the enhancement of many machine learning 

algorithms, particularly Deep Learning (DL), a novel form of Artificial Neural Network 

(ANN). The DL, a subfield of machine learning and artificial intelligence, draws inspiration 

from the human brain's ability to learn and extract meaningful information from data. 

The role of DL has influenced many domains, such as industry and manufacturing, 

economics, healthcare and medical diagnosis, face recognition, robotics, internet 

applications and so on since it has excellent real-world applications (Górriz et al., 2020; 

Dang et al., 2021; Dong, Wang and Abbas, 2021; Nazir, Shakil and Khurshid, 2021). This 

phenomenon occurs because an enormous amount of data is produced every day using all 

kinds of devices with systems that store, accumulate and analyze in a structure that has been 

designed (Anagnostopoulos, Zeadally and Exposito, 2016). Through DL, AI has become 

more intelligent in extracting information from the data, with high-performance 

computational capabilities that can help design advanced decision-support systems. DL can 

efficiently handle massive volumes of high-dimensional data. Prediction classification is 

commonly applied in the medical and healthcare fields for early detection, diagnosis, 
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prognosis, and treatment tasks. Early detection, diagnosis, and prognosis in diabetes research 

are significant areas of study. Moreover, Vu et al. (2020) have observed a substantial rise in 

publications focusing on the application of AI in diabetes, with several topics emerging as 

top areas of interest. They asserted that there are five prominent emerging research domains: 

(1) AI's applications in diagnosing diabetes; (2) Assessing the risk of diabetes and its 

complications; (3) The role of AI in developing new treatments and monitoring diabetes; (4) 

Utilizing telehealth and wearable technology for managing diabetes daily; (5) Analyzing the 

surgical outcomes of robotic procedures in patients with diabetes as a comorbidity. The 

following sub-section will discuss the motivation for risk prediction diabetes and 

complications with the prediction classification that is conducted in this study. 

 

1.1.1 Motivation on Risk Diabetes Complication Prediction 

Diabetes Mellitus (DM) or Diabetes is a group of metabolic disorders classified as 

chronic Non-Communicable Diseases (NCDs) that impact over 200 million individuals 

globally in the healthcare sector. Unhealthy food, obesity, lifestyle, genetics, lack of physical 

activity, and many other factors can cause this disease (Wing et al., 2001; Olokoba, Obateru 

and Olokoba, 2012). Diabetes is an intricate and highly significant illness, if not managed 

promptly and effectively, it can lead to severe complications, potentially resulting in death. 

There are several types of diabetes, including Type 1 Diabetes Mellitus (T1DM), Type 2 

Diabetes Mellitus (T2DM), Gestational Diabetes Mellitus (GDM), Other Specific Diabetes 

and Diabetic Complications affecting organs like the heart, eyes, and kidneys (American 

Diabetes Association, 2018). However, T2DM commonly causes significant morbidity and 

mortality (Wang et al., 2013; Erkaymaz, Ozer and Perc, 2017). This is due to an increase in 

people with diabetes, which leads to complications mainly because of chronic 
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hyperglycemia. There are two main objectives of current medication: saving lives and 

alleviating disease symptoms, preventing complications of long-term diabetes and 

eliminating various risk factors to enhance longevity (Kavakiotis et al., 2017). The high 

prevalence of diabetes is mainly caused by T2DM, which has increased by approximately 

87% to 91% based on the estimation of the International Diabetes Federation (IDF) diabetes 

atlas 2015 (Kagawa et al., 2017). Every day, someone will be diagnosed with diabetes for 3 

seconds and then a patient will die of complications due to diabetes for 7 seconds (Chen and 

Pan, 2018). T2DM sufferers are very dangerous if not handled properly and managed 

effectively. The estimated worldwide expenses for treating diabetes and its complications 

were 673 billion US dollars in 2015 and are projected to increase to 802 billion US dollars 

by 2040 (Ogurtsova et al., 2017). 

However, the study indicates that diabetic patients commonly experience 

complications, with the most frequent being an increase in both microvascular and 

macrovascular issues. Besides, the total cost of management is up to 130% compared to 

those without complications. Diabetes with complications is a major health issue due to its 

significant impact on mortality, quality of life, and financial costs. Generally, the 

complications of diabetes mellitus are categorized into two types: microvascular and 

macrovascular, primarily resulting from hyperglycemia (Cade, 2008). Macrovascular 

complications include coronary artery disease, peripheral arterial disease, and stroke, while 

microvascular complications consist of diabetic nephropathy, neuropathy, and retinopathy 

(Fowler, 2008). Diabetes with complications can be categorized into acute complications 

such as diabetic ketoacidosis, hypoglycemia, diabetic coma, erectile dysfunction, respiratory 

infections, and periodontal disease. Chronic complications include heart failure, diabetic 

neuropathy, nephropathy, retinopathy, and diabetic foot, based on severity and time of onset 




