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ABSTRACT: All individuals are susceptible to experiencing stress in their everyday lives. 

Nevertheless, stress has a greater influence on females due to both biological and 

environmental factors. This study utilized female speeches to detect and classify stress and no 

stress in women. Using speech, composed of non-invasive and non-intrusive approaches, 

helps to identify stress better in females. A comparative analysis was conducted between Mel-

frequency Cepstral Coefficients (MFCCs) and Teager Energy Operator- MFCCs (TEO-

MFCCs) to determine the best speech feature for classifying emotions associated with stress 

and no-stress conditions for female voices. With the assistance of the Stress Speech Neural 

Network Architecture (SSNNA), an improved accuracy of 93.9% was achieved. This research 

showed that MFCCs enhanced higher-frequency components in stressed speech, 

distinguishing between stress and no-stress classes. This study shows that SSNNA achieved 

high accuracy with 14 female voices, confirming its ability to function independently of 

speaker identity. 

ABSTRAK: Semua individu terdedah kepada stres dalam kehidupan seharian mereka. Walau 

bagaimanapun, stres memberi pengaruh yang lebih besar terhadap wanita akibat faktor biologi 

dan persekitaran. Kajian ini menggunakan ucapan untuk mengesan dan mengklasifikasikan 

stres dan tiada stres dalam kalangan wanita. Penggunaan ucapan, yang merupakan pendekatan 

tidak invasif dan tidak mengganggu, membantu mengenal pasti tekanan dengan lebih baik 

dalam kalangan wanita. Analisis perbandingan telah dijalankan antara Mel-frequency 

Cepstral Coefficients (MFCCs) dan Teager Energy Operator-MFCCs (TEO-MFCCs). 

Tujuannya adalah untuk menentukan ciri ucapan terbaik bagi mengklasifikasikan emosi yang 

berkaitan dengan keadaan stres dan tiada stres bagi suara wanita. Dengan bantuan Stress 

Speech Neural Network Architecture (SSNNA), metrik prestasi yang lebih tinggi dengan 

ketepatan 93.9% telah dicapai. Penyelidikan ini menunjukkan bahawa MFCCs meningkatkan 

komponen frekuensi tinggi dalam ucapan yang stres, secara efektif membezakan antara kelas 

stres dan tiada stres. Kajian ini menunjukkan bahawa SSNNA mencapai ketepatan tinggi 

dengan 14 suara wanita, mengesahkan ia berfungsi secara bebas daripada identiti penutur. 

KEYWORDS: stress detection via speech, stress classification for females, MFCCs, CNN 
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1. INTRODUCTION 

Both females and males can experience stress in their daily lives. Stress can arise from 

various aspects of human life. However, when exposed to the same stressors, females tend to 

perceive higher stress levels than males. According to a 2023 survey report conducted by a 

human resources business in the United States, 43% of female workers rated their mental health 

as poor, compared to 15% of male workers [1]. Also, a study conducted by Costa et al. [2] on 

unemployment issues in 2021 found that 22.7% of females reported higher stress levels than 

11% of males. 

According to a report by the Sinar Harian newspaper in 2019, females experienced 

depression (a result of long-term stress) more frequently than males due to the hormonal 

transition [2]. Moreover, in 2019, Dr Elinda Tunan, a psychiatrist at a government hospital, 

concurred that there was a strong correlation between depression in females and hormonal 

fluctuations, particularly during pregnancy and childbirth [2]. These alterations facilitated a 

greater tendency for emotional expression. According to her, individuals were likelier to 

exhibit heightened moodiness, increased anger, and experience several other undesirable 

emotions [2]. 

Therefore, it is crucial to detect stress in females early to address its underlying causes and 

promote a healthy physical and mental lifestyle. Early detection of stress can help prevent 

physical and emotional disorders, which may lead to serious mental health problems if left 

unaddressed. 

Speech for stress prediction presents an advantage to females by reducing unnecessary 

stress arising from equipment setup, particularly in healthcare settings where biological 

markers are used to measure stress levels [3]. Two examples of invasive and intrusive stress 

detection approaches include the utilization of an electroencephalogram (EEG) to measure 

brain electrical activity and collect blood samples [3]. These techniques have several 

drawbacks, including time-consuming procedures, the need for specialized skills, significant 

financial expenses, and the limitation of being exclusively conducted within healthcare 

facilities [3]. Therefore, to avoid unnecessary stress caused by these methods, our study uses 

speech to detect stress from female voices. This approach reduces the potential discomfort 

linked to invasive methods, as it solely requires participants to provide vocal samples without 

involving any invasive physical activities. 

This study incorporated speech features such as Mel-frequency Cepstral Coefficients 

(MFCCs) and the fusion of MFCCs with the Teager Energy Operator (TEO)—the comparison 

aimed to identify the most suitable features that demonstrated significant performance metrics. 

Our study was motivated by a previous study that compared MFCCs and TEO-MFCCs in 

distinguishing emotions, which found that MFCCs performed better for female voices [3]. In 

our study, a binary classification task (e.g., stress and no stress) was performed with the 

assistance of deep learning technologies developed, known as Stress Speech Neural Network 

Architecture (SSNNA). This study utilized SSNNA to classify a combined dataset sourced 

from the Toronto Emotional Speech Set (TESS) [4] and the Ryerson Audio-Visual Database 

of Emotional Speech and Song (RAVDESS) [5]. Our study aimed to contribute by developing 

a stress detection model capable of classifying scripted datasets, specifically focusing on 

identifying stress and non-stress in female voices. 

The subsequent sections of this work were structured in the following manner: Section 2 

provided an assessment of prior research studies that had focused on detecting speech stress, 

specifically targeting females, and reviewed the speech features and the classifiers used. The 
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methodology employed in this study, elaborated in Section 3, encompassed the processes of 

data acquisition, data preprocessing, feature extraction, data organization into stress and no-

stress classes, as well as the classification architecture (SSNNA). The findings and 

interpretation presented in Section 4 were examined and discussed. The paper's final section 

presented the conclusion and potential avenues for future research. 

2. RELATED WORKS 

The trend in this research work could be divided into several key areas, including stress 

classification using speech features on females, MFCCs and TEO-MFCCs speech features, and 

the current study utilizing neural network architecture in stress speech classification. The 

following sub-sections elaborate on each area. 

2.1. Stress Classification Using Speech Features on Female 

Stress detection is crucial for maintaining good mental health. Prolonged, untreated stress 

can lead to significant breakdowns in well-being and severe mental health issues. Detecting 

and classifying stress through speech offers an alternative to traditional methods. While 

traditional methods can effectively detect and classify stress, they have several drawbacks, such 

as being invasive and intrusive. For example, inserting a medical instrument into the body to 

perform a cortisol test is not a favorable technique for some patients, as it is considered 

invasive. Moreover, it likely increased the patient’s stress due to unfamiliar procedures. 

Speech-based stress detection and classification have brought significant changes in the 

medical field. It helped detect and classify stress more favorably, as it was considered a non-

invasive and contactless approach. The differences in the speech signals produced during stress 

and non-stress became an important tool for differentiating between these two conditions. For 

instance, a stressed person exhibited several symptoms while speaking, including a shaky voice 

and slurred speech, whereas a stress-free person did not [6]. The similarity of speech produced 

during stress and the differences between these two conditions helped create a better stress 

classification tool for healthcare providers. This innovation undoubtedly contributed to society. 

Speech signals and vocal characteristics produced from one’s utterances offered insights 

into one's emotional state, facilitating stress identification. In this research context, using 

speech to classify stress in females provided advantages, as it avoided the discomfort associated 

with invasive and intrusive clinical procedures. Females typically expressed themselves 

verbally, which enhanced the comfort and engagement of this method [7]. This approach 

reduced the unnecessary stress that traditional measurements might have induced. Moreover, 

it was cost-effective and could be conducted at home, promoting broader participation and 

accessibility. 

2.2. MFCCs and TEO-MFCCs Speech Features 

MFCCs were widely used in the image and audio signal processing fields due to their 

ability to represent the power spectrum of audio signals compactly [8]. Based on findings from 

previous researchers, MFCCs effectively highlighted the energies of higher-frequency 

components in speech signals produced by female speakers [3], [8]. Their studies accurately 

classified several emotions associated with stress, especially female voices. However, their 

study focused on classifying individual emotions (emotion classification). It did not combine 

stress and no-stress emotions into the same classes, despite the title referencing speech stress 

detection. This approach differed from the objective of speech stress classification, which 

aimed to identify stress and no-stress classes. 
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Another speech feature often compared with MFCCs was the fusion of TEO-MFCCs. 

Under stress, muscle tension in the speaker's vocal tract influences the airflow that generates 

sound. Consequently, non-linear speech characteristics were crucial for accurately detecting 

stress in speech, which was the essence of the TEO feature [8]. Previous studies found that 

combining these two features further improved accuracy for both male and female speakers 

[3], [8]. The studies agreed that TEO enhanced the energies of the emotional contents of 

speech—nevertheless, the classification focused on individual emotions rather than combining 

stress and no-stress emotions. 

2.3. Current Study Utilizing Neural Network Architecture in Stress Speech Classification 

Based on previous works, the usage of neural network architecture in research increased 

due to the rapid development of the artificial intelligence field [9], [10]. A previous study 

utilizing an unscripted dataset of 363 recorded call center service interactions [9] employed the 

Long Short-Term Memory (LSTM) model with an attention layer for the classification task. 

Their study achieved an accuracy rate of 80% in generating binary classifications for stress and 

no-stress classes. The authors concluded that the unsatisfactory accuracy was due to the type 

of dataset used. Further work needed to be done to determine whether the classifier was robust 

and adaptable to any type of dataset related to the study field. 

Another prior study conducted a subsequent investigation utilizing the SUSAS dataset 

[10]. The study employed deep neural networks (DNNs) operating within an ensemble one-vs-

one classification framework. The binary classification achieved the highest level of accuracy, 

with a single DNN classifier having an accuracy rate of 78%. According to this result, 

combining many neural networks did not inherently yield favorable performance outcomes. 

This observation demonstrated that as an algorithm's complexity increased, its accuracy level 

decreased. 

Several key distinctions existed between our work and prior studies. First, our study 

analysis was limited to the stress prediction of the female class exclusively, with no inclusion 

of male remarks. To our knowledge, there was a lack of literature on developing classification 

models for identifying stress in females. Furthermore, our study adhered to the research cycle 

by replicating a previous study that compared two speech features: MFCCs and the fusion of 

TEO-MFCCs. This decision was based on the observation that these features could yield good 

performance metrics, especially for female voices. Finally, our study merged two speech 

datasets that contained identical emotion classes but with different female speakers to examine 

the robustness of our model. The subsequent methodology section provides a more detailed 

explanation of this matter. 

3. METHODOLOGY 

This section provided an overview of every step undertaken to accomplish the main goal. 

The following subsections give a detailed description of each step. The TESS and RAVDESS 

datasets were used for this study, and these two datasets were combined. Subsequently, the 

acquired data underwent preprocessing procedures. Speech features were extracted from the 

preprocessed data, and the extracted features were organized with stress and no-stress labels. 

Finally, the workflow of the deep learning algorithm was established. The schematic 

representation of our research methodology is depicted in Figure 1. 
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Figure 1. Study flow. 

3.1. Data Acquisition 

This section details each dataset used in the present investigation. Sections 3.1.1 and 3.1.2 

detail the TEST and RAVDESS datasets, respectively. 

3.1.1. TESS Dataset 

The dataset consisted of female subjects. A total of 200 targeted English phrases were 

uttered by two actresses, aged 26 and 64, respectively. Recordings were captured for each of 

the seven emotions: anger, disgust, fear, happiness, neutrality, pleasant surprise, and sadness. 

In total, a collection of 2800 data points with a duration of 1-2 seconds in each snippet was 

created. 

In the context of deep learning, achieving optimal outcomes necessitated using a balanced 

dataset across all classes. Consequently, our study decided to use a subset of six emotions 

instead of incorporating all seven to ensure balanced classes, omitting the disgust emotion. The 

emotional responses employed to measure stress encompassed anger, fear, and sadness, 

yielding a cumulative dataset of 1,200 data points. Furthermore, three other emotions were 

employed to represent the no-stress class: happiness, neutrality, and pleasant surprise. The 

dataset comprised 600 snippets representing the vocal expressions of young females, along 

with another 600 snippets representing the vocal expressions of elderly females. 

3.1.2. RAVDESS Dataset 

An additional dataset was introduced into the system to assess the reliability of our deep 

learning algorithm in distinguishing between stress and no-stress classes [11]. It was crucial to 

ensure that both datasets included identical types of emotion classes to achieve dependable and 

accurate results [11]. In the second dataset, a total of 24 actors and actresses were included, 

evenly distributed between 12 females and 12 males. These individuals were recorded 

vocalizing two English phrases. The speech encompassed a range of emotional expressions, 

including calmness, happiness, sadness, anger, fear, surprise, and disgust. 

To achieve the desired outcome, twelve female speeches were selected, encompassing a 

variety of emotional states. The emotional states associated with stress included sadness, anger, 

fear, and disgust, totaling 384 instances. Conversely, emotions characterized by no-stress 

included neutral, calmness, happiness, and surprise, amounting to 336 instances. In total, there 

were 720 snippets, each lasting 3 seconds. 

3.1.3. Summary of the Combined Datasets 

Based on the elaboration in Sections 3.1.1 and 3.1.2, Table 1 presents a summary of the 

combined dataset used in this study. The total number of data points used in this study was 

3120 snippets consisting of stress and no-stress speeches spoken by female speakers. 
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Table 1. Summary of the combined datasets 

Classes TESS dataset RAVDESS dataset Total 

Stress 1200 384 1584 

No-stress 1200 336 1536 

  Total 3120 

3.2. Data Preprocessing 

The data was imported into the IDE with the Torchaudio library, with a sample rate 48k 

and a total of 140k samples. Subsequently, the signals underwent a normalization process using 

the mean and standard deviation. Finally, the feature vectors were adjusted to have the same 

length to ensure that the deep learning process could be applied uniformly. This was achieved 

by padding the shorter signals with zeros. From our observations, RAVDESS had a longer 

duration of 2 seconds than the TESS dataset. Thus, all the speech signals from the TESS dataset 

were zero-padded to ensure the same length. The data was not subjected to filtration, as it was 

collected in a calm environment without external interference. 

3.3. Feature Extraction 

It was crucial to comprehend that speech involved the filtration of sounds generated by 

humans through the configuration of the vocal tract, encompassing the tongue, teeth, and other 

anatomical components. According to previous research [12], when the shape was accurately 

defined, it accurately represented the phoneme. The selection of the following speech features 

for this study was based on the promising findings demonstrated in earlier studies [3], [8], [13]. 

As previously indicated, this research focused on comparing the spectral and TEO speech 

properties. The first set of speech features employed MFCCs, consisting of 13 coefficients. The 

second set of speech features combined TEO and MFCCs, consisting of 13 

coefficients. Sections 3.3.1 and 3.3.2 provide further details regarding the speech elements 

employed. 

3.3.1. MFCCs 

The compact representation known as MFCCs was obtained by expressing a waveform as 

the summation of a nearly limitless number of sinusoids. Fluctuations in the MFCC coefficients 

were detected across different spectrum bands. The predominant portion of the spectrum 

energy was primarily localized within the low-frequency regions, characterized by positive 

cepstral coefficients. Conversely, a significant portion of the spectrum energy was concentrated 

at higher frequencies, corresponding to negative values of the cepstral coefficient. A concise 

explanation of each sequential process involved in the computation of MFCCs was provided, 

as stated by previous research [8]. 

i. Pre-emphasis: The utilization of pre-emphasis facilitated the amplification of the 

higher frequencies within the signal. 

ii. Framing: Using the Fast Fourier Transform (FFT) resulted in errors due to the non-

stationary nature of audio processing. To address this, it was assumed that the audio 

could be considered a transient stationary process. Consequently, the signal was 

partitioned into tiny frames. To establish connections between frames, each frame 

overlapped with one another. 

iii. Windowing: The conversion from the time domain to the frequency domain was 

achieved by utilizing the FFT technology. To preserve the quality of the audio resumes, 
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a window function was employed for each frame. Consequently, high-frequency 

distortions, known as spectral leakage, were mitigated. 

iv. Discrete Fourier Transform for acquiring the Power Spectrum: The power 

spectrum, which is a representation of the frequency spectrum, was obtained by 

calculating the Short-Time Fourier Transform (STFT) using N iterations (N= 512) of 

the FFT on each frame. 

v. Filter banks: The ultimate step in computing filter banks involved extracting frequency 

bands from the power spectrum by utilizing triangle filters on a Mel scale. 

vi. Discrete Cosine Transform: The interdependence of the filter bank coefficients 

computed in the preceding step posed challenges in certain deep learning approaches. 

To achieve decorrelation to the filter bank coefficients and provide a compressed 

representation of the filter banks, the Discrete Cosine Transform (DCT) was employed. 

3.3.2. TEO-MFCCs 

The subsequent technique employed in this study involved the integration of TEO with 

MFCCs. The signal derived from the pre-processing stage was incorporated into the TEO 

feature. The process of speech production included both linear and nonlinear components. 

Previous research has revealed that emotional speech, particularly under stress, exhibited 

significant alterations in its nonlinear components compared to regular speech [14]. An energy 

measurement was designed to accurately represent the instantaneous energy of nonlinear 

components as a direct outcome of the speech inquiry founded by Teager, with the initial form 

of the energy operator being defined by Kaiser [15]. To obtain the TEO-MFCC features, the 

signals were first retrieved from the pre-processing stage, then TEO features were applied to 

the signal, and finally, MFCC features were applied. 

3.4. Data Organization 

The Pandas library was used to differentiate the processed signals generated into stress and 

no-stress classes, as shown in Figure 2. 

 

Figure 2. Features of MFCCs (left side) and TEO-MFCCs (right side) that have been 

put into classes. 0 means "no stress," and 1 means "stress". 
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3.5. Model Prediction – Stress Speech Neural Network Architecture (SSNNA) 

The PyTorch library performed a binary classification problem: stress and no-stress. This 

study employed the SSNNA, a CNN architecture developed by this study. Table 2 provides the 

best possible hyperparameter settings for the SSNNA architecture. 

Table 2. Hyperparameter settings for SSNNA 

Settings Total 

Batch size 12 

Epoch no. 450 

Loss Function Cross-Entropy Loss 

Optimizer Stochastic Gradient Descent 

Learning Rate 0.00001 

Momentum 0.7 

 

The SSNNA comprised successive convolutional layers implemented using the PyTorch 

toolkit, as shown in Figure 3. It consisted of six 2-dimensional convolutional layers (Conv2d) 

connected with Rectified Linear Unit (ReLU) layers, each followed by a 2-dimensional Max-

pooling (MaxPoold2d) layer. After these Conv2d layers, flattened layers were appended, 

leading to three additional linear layers. The first linear layer begins with a ReLU activation 

and connects to the output layer, which is categorized into two classes: stress and no stress. 

 

Figure 3. SSNNA architecture. 

To ensure the reliability of the results, the data was partitioned into three sets: training, 

validation, and testing. The training set comprised 80% shuffled data, the validation set 

comprised 10% non-shuffled data, and the test set comprised 10% non-shuffled data. The 

model's training was halted once the testing accuracy stabilized, ensuring the prevention of 

overfitting across all three datasets. 

4. RESULT AND DISCUSSION 

This section presents the results and outcomes of this study. The dataset used for testing 

purposes encompassed 312 data points. The subsequent discussion relied on the findings 
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derived from the testing set. The study employed a set of performance metrics: F1 score, 

accuracy, the area under the receiver operating characteristic curve (ROC-AUC curve), and 

confusion matrix. The confusion matrix comprised four components: True Negative (TN), 

False Positive (FP), False Negative (FN), and True Positive (TP). The confusion matrix results 

were based on the labeling shown in Table 3. Sections 4.1 and 4.2 provide the results for 

MFCCs and TEO-MFCCs. 

Table 3. Relationship between the confusion matrix and classes 

Classes No-stress Stress 

No-stress TN FP 

Stress FN TP 

 

4.1. Performance Metrics Based on the MFCC’s Speech Feature 

This subsection presents the performance metrics for MFCCs. A confusion matrix is 

constructed based on the categorization of stress and no-stress to visually represent and 

summarize the overall performance of the model's predictive outputs, as shown in. Figure 4. 

The presented confusion matrix shows that the model achieves good accuracy for both stress 

and no-stress female speeches, with fewer than 10 misclassified data points in each class. The 

achieved outcomes for the F1 score and accuracy are deemed satisfactory, with values of 0.94 

and 93.9%, respectively. Additionally, based on the classes, the stress and no-stress classes 

achieved 94.2% and 93.7% scores, respectively. The accuracy surpassed the average outcomes 

for the scripted dataset and approached 100%. 

The accuracy scores for the training, validation, and testing sets were 94.9%, 91.7%, and 

94.2%, respectively. The score difference between these sets was rather small, indicating that 

the algorithm was not affected by underfitting or overfitting problems. Furthermore, the ROC 

curve achieved an AUC value of 0.94, indicating a good outcome [18]. The model 

demonstrated better accuracy, indicates that the use of MFCCs as a speech feature is an 

effective approach for identifying stress emotions in female speakers. 

 

Figure 4. Confusion matrix (left side) and AUC curve (right side) of MFCCs. 

4.2. Performance Metrics Based on the TEO-MFCC's Speech Feature 

Based on the confusion matrix depicted in Figure 5, the model has achieved good accuracy 

for both stressful and no-stress classes, with less than 19 instances of misclassification in each 

class. The obtained results for the F1 score and accuracy were satisfactory, with respective 
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values of 0.90 and 90.7%. Furthermore, the classes categorized as stress and no stress 

demonstrated accuracy rates of 93.6% and 87.7%, respectively. The no-stress class achieved 

good accuracy, while the stress class achieved almost a fair level of accuracy. 

Furthermore, the accuracy scores for the training, validation, and testing sets were 93.7%, 

89.4%, and 90.7%, respectively. The observed disparity in scores between the sets was also 

rather small, suggesting that the algorithm remained unaffected by issues related to underfitting 

or overfitting. In addition, the ROC curve depicted in Figure 5 acquired an AUC value of 0.91. 

The model has shown satisfactory performance, suggesting that utilizing TEO-MFCC features 

is another effective technique for recognizing stressed emotions in female speakers. 

Nevertheless, it could not surpass the superior performance of the MFCCs’ speech feature 

alone. Based on our observation, this was mainly due to the disruption of the signal when it 

was padded with zeros, which likely led to inaccurate TEO value results. Those values might 

not have produced useful information distinguishing between stress and no-stress speeches. 

 

Figure 5. Confusion matrix (left side) and AUC curve (right side) of TEO-MFCCs. 

Moreover, based on the analysis of the performance metrics presented in Table 4, it was 

observed that the speech characteristics derived from MFCCs exhibited favorable performance 

in stress and no-stress classifications in the female’s voice. This was attributed to the 

characteristics of MFCCs, which were designed to enhance the amplitudes of higher-frequency 

components in speech signals. The frequencies produced by female vocalizations tend to be 

naturally higher in intensity compared to males. Besides, this assertion aligned with the results 

of a prior study [3], wherein the researchers observed that MFCCs yielded highly satisfactory 

outcomes in female subjects. On another note, the study discovered that the TEO-MFCCs also 

produced remarkable outcomes in discerning stress in female speakers based on their speech 

patterns. 

Table 4. Relationship between the confusion matrix and classes 

Features MFCCs TEO-MFCCs 

Training Accuracy (%) 93.9 90.7 

Accuracy based on classes (%) Stress: 94.2; No-stress: 93.7 Stress: 87.7; No-stress: 93.6 

F1-score (0 – 1) 0.94 0.90 

AUC (0 – 1) 0.94 0.91 

 

Additional components that contributed to the overall better outcomes were increased 

training data and a considerable balance of data between the classes (achieved by omitting 
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disgust emotion from the TESS dataset). This enhanced the model's learning capabilities and 

produced unbiased stress classification outcomes. In addition, based on our research, no study 

had been conducted that integrates several datasets while utilizing only females’ speeches. 

Therefore, in this paper, we opted to exclude a comparative analysis with other studies due to 

their lack of direct comparability. 

5. CONCLUSION AND FUTURE WORKS 

The impact of stress on females was a prevalent concern that warranted attention since 

females were more stressed than males. This was attributed to differences in stress perception, 

hormonal transitions, and other factors. Efforts were made to mitigate the long-term persistence 

of this issue, as it could potentially lead to adverse consequences for affected individuals. 

Speech stress detection and classification provided several advantages, especially for females, 

as they were non-invasive and non-intrusive approaches. This method also comforted females 

as they were naturally verbally expressing their thoughts and feelings, adding another positive 

aspect to this approach. MFCCs demonstrated their effectiveness as speech features by 

providing valuable information in both stress and no-stress female speech datasets. MFCCs 

improved the energies of the higher-frequency components of the female speech signals, which 

could distinguish between these two classes. MFCCs achieved 93.9% accuracy, accompanied 

by an F1-score of 0.94 and an ROC-AUC of 0.94. Meanwhile, TEO-MFCCs also produced 

satisfactory results, but they could not surpass the results of MFCCs due to the disruptions of 

the speech signals during the feature extraction stage. Hence, care needs to be taken if the 

researchers intend to use TEO-MFCCs as the speech feature where manipulation of speech 

signals is involved. 

The combination of SSNNA and MFCCs could distinguish between the two classes using 

14 different female speeches expressing eight emotions. This demonstrated that the classifier 

was speaker-independent, indicating that the system was more scalable and user-friendly. 

Additionally, this made it easier for real-world applications since it did not require speaker-

specific data collection for adaptation. It improved data efficiency by enabling diverse training 

datasets, which enhanced the algorithm’s generalization and robustness and reduced bias. In 

conclusion, the combination of MFCCs and SSNNA helped accurately classify stress and no-

stress classes, especially in female speeches. For future works, increasing the number of 

speakers in the dataset was suggested to enhance generalizability, reduce bias, and improve 

model performance. Additionally, expanding the classification from two to three categories—

low, medium, and high stress—would allow a more effective assessment of an individual's 

stress levels. 
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