

A SIMULATION-BASED APPROACH FOR RECONFIGURATION OF FACILITIES LAYOUT DESIGN UNDER STOCHASTIC

MASTER OF SCIENCE IN MANUFACTURING ENGINEERING

Faculty of Manufacturing Engineering

A SIMULATION-BASED APPROACH FOR RECONFIGURATION OF FACILITIES LAYOUT DESIGN UNDER STOCHASTIC PRODUCT DEMANDS

UNIVERSITI TRobert Ng Hock LeongSIA MELAKA

Master of Science in Manufacturing Engineering

A SIMULATION-BASED APPROACH FOR RECONFIGURATION OF FACILITIES LAYOUT DESIGN UNDER STOCHASTIC PRODUCT DEMANDS

ROBERT NG HOCK LEONG

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "A Simulation-based Approach for Reconfiguration of Facilities Layout Design under Sthocastic Product Demands" is the result of my own research except as cited in the references. The Choose an item. has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

	MALAYSIA ARE	
Signature	E UIGI	
Name	اونیور سینیROBERT NG HOCK LEONG	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	
Date	: 9th January 2023	

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of the degree of Master of Science in Manufacturing Engineering.

Signature :

Supervisor Name : Ir. Dr.-Ing. Azrul Azwan Bin Abdul Rahman

Date : 9th January 2023

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

This is dedicated to my beloved parents:

Ng Seng Eok and Chai Kearn Lan(demise) for their great support, pray, love and care.

Secondly, for my wife, Tan Ah Wat for her suport, love, care and pray.

Thirdly, my beloved sons:

Leonard Ng Chong Yew and Lewis Ng Chong Xiang

Fourthly, for my family:

Winston Ng, Jenny Ng and Corrina Ng

Fifthly, for my supervisor Ir. Dr.-Ing Azrul Azwan Bin Abdul Rahman for the great advice and support.

The last for my friends and all prople who shared their words of advice, encouragement, ideas, support and care from the beginning until the last during my thesis writing

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Increased demand for customer-specific products, high cost and time pressure, as well as increasingly shorter product life cycles, has introduced new challenges to the manufacturing systems of the future. A factory layout is designed to obtain a physical arrangement of different entities of a facility that most economically meets the required output, in terms of both quantity and quality. An optimum and good arrangement can make the flow of the material free from any interruption and will increase the productivity. Manufacturing companies that undergo production expansion to their current facilities without careful facilities planning, would in most situations encounter many issues which could retard their overall operations. The constant changes and randomness of product demand under the stochastic demand continue to challenge production facilities to expand and consolidate their production facilities. When a transfer of production facilities to an existing plant is done without any expansion of current facilities, the reduced space at this plant will place a tremendous pressure on its current facilities, causing several production bottlenecks and impacting productivity. The aim of this study was to developed a systematic integrated approach to re-configure its current layout to an optimum layout under this stochastic product demand. The development of this integrated approach takes into consideration combining three key methodologies of the production optimization into a process flowchart, which are the Systematic Layout Planning (SLP), Theory of Constraint (TOC), and Discrete Event Simulation (DES). These 3 methodologies were selected based on their individual strength for the specific task required in developing this integrated approach. SLP for its sytematic layout planning, TOC to identify and eliminate constraint along the production flow and simulation to identify the optimun productive alternative layout virtually, before any physical implementation. The steps of developing the alternative layouts are an integration of SLP with the TOC. The translated layouts were then validated by comparing the AS-IS layout with the alternative layouts and analyzed with the DES for the optimum layout in terms of productivity. The results from the case study reveal which of the alternative layout in the case, option 2 that developed through this integrated approach was the optimum layout. The throughput per hour of option 2 is improved by 15% over the existing layout and by 23% over the option 1 layout. Total distance covered for the forklift movement, with option 2 shows a much lower distance traveled than the other 2 layouts. This study reveals, the effectiveness of the developed integrated approach in developing the optimized layout with better material flow strategy.

PENDEKATAN BERASASKAN SIMULASI UNTUK KONFIGURASI SEMULA TERHADAP REKA BENTUK SUSUN ATUR KEMUDAHAN DI BAWAH PERMINTAAN PRODUK STOKASTIK

ABSTRAK

Peningkatan permintaan untuk produk khusus pelanggan, tekanan kos dan waktu yang tinggi, serta kitaran hayat produk yang semakin pendek, telah memperkenalkan cabaran baru kepada sistem pembuatan di masa depan. Susun atur kilang dirancang untuk mendapatkan susunan fizikal dari pelbagai entiti fasiliti yang paling ekonomik dan memenuhi output yang diperlukan, dari segi kuantiti dan kualiti. Susun atur yang optimum dan baik dapat menjadikan aliran bahan bebas dari sebarang gangguan dan akan meningkatkan produktiviti. Syarikat pembuatan yang mengalami pengembangan pengeluaran tanpa perancangan fasiliti yang teliti, dalam kebanyakan situasi akan menghadapi banyak masalah yang akan melambat operasi mereka secara keseluruhan. Perubahan berterusan dan rawak permintaan produk di bawah permintaan stokastik terus mencabar kemudahan pengeluaran untuk mengembangkan dan menyatukan kemudahan pengeluaran mereka. Apabila pemindahan kemudahan pengeluaran ke loji sedia ada dilakukan tanpa sebarang pembesaran kemudahan semasa, ruang yang berkurangan di loji ini akan memberi tekanan yang besar pada kemudahan semasanya, menyebabkan beberapa kesesakan pengeluaran dan menjejaskan produktiviti. Tujuan kajian ini adalah untuk mengembangkan pendekatan sistematik bersepadu untuk mengkonfigurasi semula susun atur kilang kepada susun atur optimum di bawah permintaan produk stokastik ini. Pembangunan pendekatan bersepadu ini mempertimbangkan untuk menggabungkan tiga metodologi utama pengoptimuman produksi, iaitu Perancangan Susun Atur Sistematik (SLP), Teori Kekangan (TOC), dan Diskrit Simulasi (DES). Langkah-langkah mengembangkan susun atur alternatif adalah melalui penyatuan SLP dengan TOC. Susun atur yang diterjemahkan kemudian disahkan dengan membandingkan susun atur semasa dengan susun atur alternatif dan dianalisis dengan DES untuk susun atur yang optimum dari segi produktiviti. Hasil kajian kes menunjukkan susun atur alternatif, pilihan 2 yang dikembangkan melalui pendekatan bersepadu ini adalah susun atur yang optimum. Pengeluaran per jam pilihan 2 meningkat sebanyak 15% berbanding susun atur semasa, dan sebanyak 23% berbanding susun atur pilihan 1. Jumlah jarak yang diliputi untuk pergerakan kenderaan pengangkut bagi pilihan 2 juga menunjukkan jarak perjalanan jauh lebih rendah berbanding dua susun atur yang lain. Hasil kajian ini membuktikan, keberkesanan pendekatan bersepadu yang dibangunkan dalam mendapatkan konfigurasi susun atur yang dioptimumkan dengan strategi aliran bahan yang lebih baik.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank and praise my parents, especially my demise mother, for everything I received since the beginning of my life. I would like to extend my appreciation to Universiti Teknikal Malaysia Melaka (UTeM) for providing the research platform. My utmost appreciation goes to my main supervisor, Ir. Dr.-Ing. Azrul Azwan Bin Abdul Rahman, from the Falculty of Manufacturing, Department Robotics and Automation, Universiti Teknikal Malaysia Melaka (UTeM), who is always there to assist and constantly supported my journey. My special thanks go to Mr. Adeboye Oluwamayowa Joshua, a graduate student in the same faculty for his assistance and support in conducting the simulation process. I would also like to express my gratitude to Prym Consumer (M) Sdn Bhd, management and staff for allowing me to carry out my study at their company. Without their assistance, it would be difficult for me to complete this thesis. Last but not least, from the bottom of my heart a gratitude to my beloved wife, Tan Ah Wat, for her encouragements and who have been the pillar of strength in all my endeavors. My eternal love also to all my children, Leonard Ng Chong Yew and Lewis Ng Chong Xiang, for their patience and understanding. Finally, thank you to all the individual(s) who had provided me the assistance, support and inspiration to embark on my study.

> اونيونرسيتي تيكنيكل مليسياً مالاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

> > iii

TABLE OF CONTENTS

			PAGE
DEC	CLAR	ATION	
	PROV		
		TION	
	STRA		i
	STRA		ii
		WLEDGEMENTS	iii
		OF CONTENTS	
			iv :
		TABLES	vii
		FIGURES	viii
		SYMBOLS AND ABBREVIATIONS	xi
LIS	ГOF	PUBLICATION	xiii
CH	APTE	R	1
1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Statement of the Problem	3
	1.3	Purpose of the Research	4
	1.4		4
	1.5		5
	1.6	Project Report Organization	5 5
	1.0	Toject Report Organization	3
2.	LIT	ERATURE REVIEW	7
	2.1	Facility Layout Planning	7
	2.2		11
	2.3	Objectives of Factory Layout	13
	2.4	Factors affecting Factory Layout	14
	2.7	2.4.1 Nature of material to be utilized	14
		2.4.2 Machinery	15
		2.4.3 Human factor KNIKAL MALAYSIA MELAKA	15
		2.4.4 Nature of the product	15
		2.4.5 Material handling	16
		2.4.6 Labour	18
		2.4.7 Waiting time	
	2.5	•	18 19
	2.5	Type of Factory Layout	
		2.5.1 Fixed Product Layout (FPL)	20
		2.5.2 Process Layout	21
		2.5.3 Product Layout	24
	2.0	2.5.4 Machine Grouping in Cellular Layout	27
	2.6	1	29
	2.7	, and the second se	31
	2.8	ę ,	31
		2.8.1 Immer's Basic Steps (1950)	32
		2.8.2 Naddler's Ideal System Approach (1961)	33
		2.8.3 Reed's Plant Layout Procedure (1961)	34
		2.8.4 Muther's Systematic Layout Planning (1961)	35
		2.8.5 Apple's Plant Layout Procedure (1977)	36
		2.8.6 Next Generation of Factory Layouts (Benjagfar, 2002)	37

	2.9	Relati	onship between material handling and factory layout	40
	2.10	Strate	gic Plan Layout	41
		2.10.1	Facilities Planning Process	42
		2.10.2	System Layout Planning (SLP) - Facilities Planning and Design	
			(Alberto Garcia-Diaz and J MacGregor Smith, 2008)	43
		2.10.3	Activity Relationship, Material flow analysis and Space requirement	ents45
			2.10.3.1 Activity Relationships	45
			2.10.3.2 Flow Planning	46
			2.10.3.3 The flow of Material Analysis	48
			2.10.3.4 Quantitative Flow Measurements	48
			2.10.3.5 Qualitative Flow Measurements	49
			2.10.3.6 Space Requirements	51
			2.10.3.7 Space Available	52
			Material Handling	54
			Space Relationship Diagram	55
			Modifying Constraints	55
			Practical Limitations	56
		2.10.8	Develop Alternative Layout	56
			2.10.8.1 Evaluation of Layout Alternatives	57
			Comparison and Gaps of the 5 Procedures.	58
			ry Layout and Material Flow Analysis and Improvement Through	
	Simu	lation		60
			Simulation Technology	61
			Advantages and Disadvantages of Simulation	63
	0.10		Discrete-Event Simulation	63
	2.12		y of Constraint	65
			Core Concept	66
		2.12.2	The Five Focusing Steps	67
2	Mari		اوتور سی سا	72
3.			OLOGY **	72 73
	3.1	75.1	et's process flow	75 76
	3.2		Study on Production Process and Factory Layout Production Flow Process	
			Various Manufacturing Processes	78 79
		3.2.2	3.2.2.1 Hard Haberdashery Products	79 79
			3.2.2.2 Knitting Products	80
		3.2.3	<u> </u>	84
		3.4.3	3.2.3.1 Safety Pins	84
			3.2.3.2 Straight Pins	85
			3.2.3.3 Snap Fasteners	85
			3.2.3.4 Aluminium Hooks	86
			3.2.3.5 Knitting Needles	87
	3.3	Data a	and information collection	88
	3.3	3.3.1	Develop layout alternative	90
			Verify data	90
		3.3.3	·	90
		5.5.5	3.3.3.1 Material flow object	91
			3.3.3.2 Information Flow Object	92
			3.3.3.3 Mobile Objects	92
			3.3.3.4 SimTalk Programming Language	93
				, ,

		3.3.4	Model Visualization	94
		3.3.5	Data Analysis	94
4.	RES	ULTS.	AND DISCUSSION	96
	4.1	Collec	etion and collation of data	99
	4.2	From-	To Chart	104
	4.3	Activi	ty Relationship Chart (ARC)	109
	4.4	-	requirements	111
	4.5	Existin	ng Layout of ABC Company (AS-IS)	113
		4.5.1	Simulated Representation of Existing and Proposed Factory	Layouts117
	4.6	Altern	atives Layout	117
		4.6.1	1 3	118
		4.6.2	1	122
	4.7	-	sed Layout Evaluation on Simulation	124
	4.8		ation Results and Analysis	125
			Factory 1 Total Distribution Time	126
			Working, Waiting and Total Simulation Time	127
		4.8.3	\mathcal{U}_{1}	129
			Number of Forklifts Used and Distance Travelled	130
	4.9		sis of Layout	132
		100	Result on Simulation	134
			sed layout	138
	4.12	Appro	each and Alternative Layout	140
5	CON	ICLUS	ION AND RECOMMENDATION	142
	REF	EREN	CES	144
		رك	اونيوسيتي تيكنيكل مليسيا ما	
		UNI	VERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Advantages and limitations for FPL	21
2.2	Advantages and disadvantages of process-oriented layout	23
2.3	Advantages and disadvantages of product-oriented layout	25
2.4	Advantages and limitations for Cellular plant layout	29
2.5	Comparison between process layout and product layout	30
2.6	Comparison of basic layout patterns	31
2.7	Showing the Charts created in SLP and their purpose	35
2.8	From-To Chart (Tompkins and White 1984)	49
2.9	Closeness Relationship Values	50
2.10	Recommend aisle widths for various types of flow	54
2.11	Sample of Layout alternative Evaluation	58
2.12	Five Focusing Steps	69
4.1	Time Structure	101
4.2	Data of Safety Pin	102
4.3	Data of Straight Pin	102
4.4	Data of Snap fastener	102
4.5	Data of Aluminium Hook Imra	103
4.6	Data of Aluminium Hook Susan Bates	103
4.7	Summary of all the Simulation Results Obtained	126
4.8	Simulation Results	137

LIST OF FIGURES

FIGUR	E TITLE	PAGE
2.1	Simulated sample of a facility layout (Sanchez, 2022)	9
2.2	Sample of Cluttered workflow in a factory (Spaghetti Chart - Lean Enterpri	ise
	Institute, 2022)	11
2.3	Essentials for Materials Handling Problems (Ailing, 2009)	16
2.4	Material flow system for fixed materials location product departments (Tor	npkins
	et al., 2003)	20
2.5	Material flow system for process departments (Tompkins et al., 2003)	22
2.6	Material flow system for product family layout (Tompkins et al., 2003)	25
2.7	Material flow system for cellular production lines product departments	28
2.8	The Hierarchical ideal systems approach (Grassie, 2010)	33
2.9	Phases in Layout Planning (Muther, 1961)	36
2.10	Sample of Distributed Layouts (Benjaafar, 2002)	38
2.11	Sample of Modular Layouts (Benjaafar, 2002)	39
2.12	Sample of Agile Layouts (Benjaafar, 2002)	40
2.13	The facilities planning process for manufacturing facilities (Tompkins et al	.,
	2003)	43
2.14	Steps for SLP layout process (Muther, 1973)	45
2.15	Flow planning hierarchy (Tompkins et al., 2003)	47
2.16	Sample of Flow Materials Analysis (Asad et al., 2016)	48
2.17	Relationship chart (Tompkins and White1984)	50
2.18	Workstation sketch required to determine total area requirements (Tompkir	is and
	White, 1984)	52
2.19	Sample of Space Available Report and Block Plan (Nagi and Altarazi, 2017	7) 53
2.20	Sample of Space Relationship Diagram (Asad et al., 2016)	55
2.21	Layout of SLP Alternatives (Ali Naqvi et al., 2016)	57
2.22	Sample of a simulated plant using Tecnomatix plant simulation software	65

2.23	Five Focusing Steps of TOC (Leanproduction.com, 2020)	68
3.1	Project methodology flow chart	75
3.2	Main product families in ABC company	77
3.3	ABC Company Production Process Flow Chart	78
3.4	Production Process of Safety Pins	84
3.5	Production Process of Straight Pins	85
3.6	Production process for Snap Fasteners	86
3.7	Production Process of Imra Aluminium Hook	87
3.8	Production Process of Susan Bates Knitting Needles	88
3.9	Sample of Material Flow Objects (Pmcorp.com, 2019)	92
3.10	Sample of Information Flow Objects (Pmcorp.com, 2019)	92
3.11	Sample of Mobile Objects (Mobile Objects (MUs), 2020)	93
3.12	Simulation flow chart	95
4.1	Integrated Approach for Layout Re-Configuration Flowchart	98
4.2	Safety Pin Flow Material Analysis	105
4.3	Safety Pin From-To Chart	106
4.4	Snap Fasteners From-To Chart	107
4.5	Straight Pin From-To Chart	107
4.6	Aluminium Hook From-To Chart	108
4.7	Knitting Needle From-To Chart	108
4.8	ARC Chart for Factory 1 MALAYSIA MELAKA	109
4.9	ARC Chart for factory 2	110
4.10	Existing Layout of ABC Company (Factory 1)	113
4.11	Existing Layout of ABC Company (Factory 2)	114
4.12	Existing Layout of ABC Company (Factory 3)	115
4.13	Factory 1, Option 1	119
4.14	Factory 2, Option 1	120
4.15	Factory 3, Option 1	121
4.16	Factory 1, Option 2	122
4.17	Factory 2, Option 2	123
4.18	Factory 3, Option 2	124
4.19	Total Simulation Time	128
4.20	Working and Waiting Time of Three Layouts	128
4.21	Throughput per minute / hour / day of Three Layouts	130

4.22	Distance travelled of forklift for 3 the layouts	132
4.23	Full simulated version of the Option 1 of ABC Company's Factory	135
4.24	Full simulated version of the Option 2 Layout of ABC Company's Factory	136

LIST OF SYMBOLS AND ABBREVIATIONS

ARC - Activity Relationship Chart

BSA - Buffer Storage Area

CAD - Computer Aided Design

CAPEX - Capital Expenditure

FEM - Finite Element Method

FG - Finished Goods

FPL - Fixed Product Layout

GA - Genetic Algorithms

ICT Information and Communication Technologies

ISO - International Standard Organization

KG - Kilograms

MFA - Material Flow Analysis

MHS Material Handling System

NSF - National Science Foundation

PCS UNIVERSESTITEKNIKAL MALAYSIA MELAKA

QC - Quality Control

RM - Raw Material

SA - Simulated Annealing

SLP - Systematic Layout Process

TOC - Theory of Constraint

TS - Tabu Search

VCB - Vacuum Circuit Breaker

VDI - Verein Deutscher Ingenieure

WIP - Work In Progress

LIST OF PUBLICATION

Abdul Rahman, A.A., Leong, R.N.H., Adeboye, O.J., Mohamad, E., Yee, T.J. and Md Saad, M.H., 2022. An Integrated Systematic Approach for Reconfiguration of Facilities Layout in a Stochastic Product Demand. *Jordan Journal of Mechanical & Industrial Engineering*, 16(5).

CHAPTER 1

INTRODUCTION

1.1 Background

Factory can usually be called an industrial site ground containing buildings and machinery where workers operate machinery from one product to another producing and processing goods. Factories may either manufacture goods which are discrete or continuous.

Factory layout refers to the arrangement of physical facilities such as machinery, equipment, furniture, and so on. within the factory building. It includes departments and individual's working place. The essence of factory layout is to facilitate the quickest flow of material at the lowest cost and with the least amount of handling in processing the product from the receipt of material to the loading of the finished product. The arrangement of the manpower, materials location and material handling is also considered to ease the production processes. A factory layout is designed to meet the required output, in terms of both quantity and quality, in the most cost-efficient manner. An optimum and good arrangement can make the flow of the material free from any interruption and will increase the productivity.

Material flow analysis of a production system in the manufacturing sector is of great importance for efficiency and profitability. Material flow analysis (MFA) is a systematic assessment of the material flows and stocks within a space- and time-defined structure. It connects the sources, the pathways, and the intermediate and final sinks of a material (Brunner and Rechberger, 2016). Major acceptance of the concept of improving

material flow is one of the core challenges facing the manufacturing sector in the future. Especially when factory expansion and optimisation must be involved, which is a fundamental goal for the manufacturing industry. Material flow analysis has several advantages: reducing operational costs, streamlining material flow, increasing efficiency, increasing competitiveness, and reducing turnaround time. Vital information resulting from a material flow analysis gives the project teams the ability to make objective decisions regarding the design of a factory layout or factory expansion.

The re-layout of a factory or facility design is aimed at improving the productivity of machines, designing an effective work-flow, workers and material flow (Kovács and Kot, 2017). Re-layout for a factory is important to improve and expand the efficient manufacturing process and to meet the needs of the workers. We also see that re-layout has a significant impact in constantly fluctuating consumer demands, resulting in changes in the inventory of products, amount of output, and improvements in the manufacturing process and innovation. In the manufacturing system's real-life operation, a reduction in the system's production costs and efficiency can be achieved to a greater extent by factory re-layout design.

Analysis of the material flow and improvement of a manufacturing system by factory re-layout can be carried out through simulation using some kind of software. Over time the method of imitating the various operations involved in a real-world process or system is called simulation. First it requires an already established model when simulating a process or system. The model is the system itself, while the simulation represents system operation over time (Anonymous, 2019). Simulation is one of the engineering methods which can be used to address scale and complexity issues. In its complex behaviour it can accurately predict any manufacturing system by observing the movement and interactions of many components within the given system. It also has ease

of scalability where the effect of any potential changes in capacity plan on efficiency and cost can be measured rather than waiting until after implementation.

Computer simulation is an instrument to carry out a simulation with various layout and manufacturing techniques without real experiment. Simulation is one among the tools that can be accustomed to resolve issues regarding size and quality. It can forecast advanced production system behavior by analyzing the movement and interactions between elements within the systems. It helps in coming up with a layout and permits the user to assess alternatives and examine the flexibility without making large alteration or closing off any section.

1.2 Statement of the Problem

Over the years, a manufacturing company, had undergone numerous expansion programs with many new equipment of various types of manufacturing of different products were added on to the production floor due to stochastic product demand changes. The stochastic product demand here refers to fluctuation of demand for different product ranges and not of random demand changes of the specific items. Most of this equipment were installed hastily, without taking into consideration the impact of material flow which has caused tremendous strain to the smooth flow of material around the facilities. Currently, the existing approach, is placing these new production facilities in any available space in the factory without proper layout planning of the current facilities. Obvious impact, to this, would be clogged arterial flow, long delays of material replenishment and high transportation frequency causing a drop-in productivity. Hence, any planned expansion program of additional machineries to be implemented in the company needs a new approach for layout planning as to avoid production inefficiency and loss of productivity. As capacity grows, these layouts will provide many bottlenecks

(Naik and Kallurkar, 2016) and re-layout is necessary to adapt to these internal and external changes.

Due to increased competition in the manufacturing market, there is a great need for companies involved in this market to invest aggressively in expansion and development to meet the competitive and rising consumer demand.

1.3 Purpose of the Research

Manufacturing companies going through several expansion of relocation from other group overseas production sites, and production expansions may not be able to take into consideration proper facilities planning. Most of the time, it was done hastily, just to allow the production of these new products to commence production in a short time period.

This research is to develop a methodological approach in assisting manufacturing companies which has undergone expansion in its manufacturing facilities, to reconfigure or re-layout its current layout to an optimum layout.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.4 Objectives of the Research

The objectives of this research are:

- To study on the most common methodological approaches to (re-)configure facilities layout under stochastic product demands.
- ii. To formulate a systematic approach based on Systematic Layout Process (SLP), Theory of Constraint (TOC) and develop a simulation-based approach for reconfiguration of facilities layout under stochastic product demands.
- iii. To validate the formulated algorithm and develop approach based on real industry case study.

iv. To evaluate the effectiveness of the developed approach, generated by the reconfiguration approach.

1.5 Scope of the Research

The scopes of this research are:

- To develop a systematic approach incorporating SLP and TOC, focused on the facilities layout with stochastic product demands.
- ii. A case study of the research will be focused on the layout of a manufacturer of sewing and handicraft accessories factory.
- iii. Two (2) improved layout alternatives will be developed and compared with the current planned factory layout.
- iv. Material flow simulation software based on discrete event simulation technology will be used to determine which is the best option of the two alternatives, for the development of improved factory layouts.

1.6 Project Report Organization

The summary for each chapter of the report for this project are as follow:

i. Chapter 1: Introduction

This chapter entails a background of study, and it covers of introduction, problem statements, objectives of study, scope and limitation and project report organization.

IIKAL MALAYSIA MELAKA

ii. Chapter II: Literature Review

This chapter is based on literature reviews on related topics for this study. Mainly the literature reviews are from books, journals, articles and internet.

iii. Chapter III: Research Methodology

This chapter explains the methodologies used to carry out this study.

iv. Chapter IV: Results and Discussion

This chapter is about data collection and the preliminary analysis on several data. Various techniques and methodologies are applied in analyzing the data gathered. Analysis and discussion in this chapter are carried out in fulfilling the objectives of the research.

v. Chapter V: Conclusion and Recommendation

This chapter concludes the end results of the study of applying this systematic approach on to the case study. It will touch on several recommendation to be applied for future analysis of this approach.

