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Abstraci—Chew count is a critical parameter in analyz-
ing mastication signals, yet traditional methods of manual
counting by trained clinicians are often labor-intensive and
prone to errors. As a result, there has been a growing
interest among researchers in developing automated meth-
ods for estimating chew count. This article reviews the
existing approaches, evaluates their effectiveness, and pro-
poses a new approach based on optimization technique. This
work proposes a novel approach to chew count estimation
using particle swarm optimization (PSO) combined with a
peak detection algorithm. The chewing dataset comprises
signals collected from 20 participants consuming eight dif-
ferent food types, with proximity sensors (PSs) detecting
temporalis muscle activity. The peak detection algorithm
identifies key signal features, while PSO optimizes the peak
prominence and width parameters to minimize the mean
absolute error (MAE) in chew count estimation. Two specific
chewing cycle approaches were implemented: a participants-
based (P) cycle and a participants-food type-based (PF)
cycle. These approaches were compared to the traditional
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All (A) chewing cycle method, which evaluates chew count across the entire dataset in a single analysis. Results
demonstrate that the PF method yields the lowest MAE at 1.25%, followed by the P method at 3.46%, and the A method at
4.26%. Moreover, the PF method required the least computational time at 8012.2 s, compared to 9392.0 s for the P method

and 36 621.4 s for the A.

Index Terms— Chew count estimation, chewing cycle, chewing episode, maximum peak width, minimum peak
prominence, particle swarm optimization (PSO), peak detection.

|. INTRODUCTION
ONITORING food intake involves assessing nutri-

tional information that reflects an individual’s eating
habits, including the timing, duration, and frequency of eating
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episodes [1]. This information is crucial for understand-
ing dietary patterns that contribute to obesity [2]. The use
of sensors to detect hand-to-mouth actions, biting, chewing,
and swallowing has significantly advanced food intake moni-
toring, especially in the past year [1], [3]. Chewing is a critical
activity that provides detailed nutritional information, as it is
directly involved in the food intake process, from biting to
swallowing.

For food intake monitoring applications, chewing data can
be used to understand individual eating patterns and habits [4].
Three key questions arise when studying eating behavior: 1) Is
the user eating? 2) What is the user eating? and 3) How much
is the user eating? [5]. The data collected can be classified into
dietary intake (i.e., what and how much is consumed), eating
behaviors (i.e., food choices, motives, habits, and events), and
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context (i.e., who is eating, when, where, with whom, etc.) [6].
To gain a comprehensive understanding of dietary habits, it is
essential to track the dynamic process of eating episodes, often
referred to as meal microstructure.

Meal microstructure encompasses various aspects of food
intake behavior, including total eating episode duration (from
the start of food intake to the end, including pauses), true
ingestion duration (time spent chewing), number of eating
events (a bite followed by chewing and swallowing), ingestion
rate, chewing frequency and efficiency, and bite size [4]. Stud-
ies have shown a clear relationship between food intake rate
and energy intake, suggesting that examining meal microstruc-
ture could offer new insights into obesity [7].

Mastication, commonly known as chewing, is the process
of breaking down food using teeth. Sensor-based systems can
automatically detect and analyze chewing, extracting data,
such as the number of chews, chewing speed (frequency),
chewing time, chewing force (strength), cycle duration, and
skull vibration [8]. This information can classify food types
and estimate food volume, representing stages 2 and 3 in
automatic food intake monitoring [9] (with stage 1 being
the detection of food intake). For instance, Wang et al. [§]
utilized dynamic mastication parameters to identify food types
based on different food properties. Chewing and swallow-
ing counts are also used to estimate energy intake [10].
Yang et al. [4] combined chewing duration and chew count
with bite and swallow features to estimate mass and energy
intake, Hussain et al. [11] focused on using chewing and
swallowing cycles to identify food types, volume, and calorie
count.

Among the various mastication dynamics, chew count is
the most commonly used parameter for advancing food intake
monitoring. Chew count is one of the mastication parameters
extracted and analyzed from the chewing signal. Manually
counting chews by trained clinicians and the effort involved
in studies enlisting even small number of subjects is large
considering the number of chews per minute. The process is
tedious, time-consuming, and error prone. Several researchers
have focused on estimating chew count. In the literature,
several approaches of manual and automatic chew counts
estimation have been proposed.

Farooq and Sazonov [12] developed a peak detection
algorithm based on chewing signal peaks to estimate chew
count, employing both semi-automatic and fully automatic
approaches [13]. They later used linear regression methods to
estimate chew count by extracting features, such as the number
of peaks, valleys, zero crossings, and the duration of chew-
ing sequences [14], [15]. Hossain et al. [7] used video-based
methods to count chews by extracting the number of peaks,
while Alshboul and Fraiwan [16] also employed video data
for chew counting based on peak detection from processed
signals.

According to the literature, most chew counting methods
rely on peak counting or a combination of other character-
istics of chewing signals. For instance, some studies have
extracted the number of peaks, chewing sequence duration,
and zero crossings [15], while others have included the
number of valleys [14]. Hossain et al. [7] and Farooq and
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Fig. 1. Chewing detection system.

Sazonov [12] used the numbers of peaks and the number
of peak-to-peak [17] without implementing restrictions. Sev-
eral researchers implemented the peak detection algorithm
limitation to reduce the mean absolute error (MAE) (improv-
ing the chew count). For example, some studies introduced
threshold values to count peaks exceeding a certain value [13],
while others implemented limitations on peak height or used
peak prominence [18] and width to refine peak detection [16].

In chewing count estimation, the previous study used
and extracted the features of number of peaks [12], [13],
[14], [15], valleys [14], zero crossings [14], [15], and the
duration [14], [15]. The performances of MAE of the pre-
viously proposed approach were 3.43% (laboratory) [15],
542% =+ 4.61 (slow) [16], 8.09% £ 7.16% [12], 9.66% [14],
10.4% =+ 7.0% (semi-automatic) [13], 11.1% (calculated) [7],
12.2% [19], and 15.0% =+ 11.0% (automatic) [13].

A new approach to chew counting, based on a particle
swarm optimization (PSO)-based peak detection algorithm,
has been proposed, achieving an MAE of 4.26% [20]. This
algorithm counts peaks that meet specific criteria for promi-
nence and width, with the parameters optimized using PSO to
minimize MAE. However, the approach is prone to accumu-
lating errors due to the need to balance overall performance,
potentially missing or incorrectly detecting some peaks.

The main contributions of this article are as follows.

1) Introducing two new approaches to improve the
PSO-based peak detection algorithm: one based on
chewing cycle participants and the other on participant-
food types.

2) Analyzing and comparing these new approaches with
the existing PSO-based algorithm, evaluating MAE, total
chew count, percentage difference in MAE, and time
consumption.

3) Comparing the literature that utilizes peak detection
approaches for chew counting estimation.

II. CHEWING DETECTION SYSTEM

In this study, we utilized the chewing detection system
proposed by Selamat and Ali [21], as illustrated in Fig. 1.

Authorized licensed use limited to: Universiti Teknikal Malaysia Melaka-UTEM. Downloaded on January 23,2025 at 07:00:44 UTC from |IEEE Xplore. Restrictions apply.



SELAMAT et al.: NOVEL CHEWING CYCLE APPROACH FOR PEAK DETECTION ALGORITHM 805

R
L2 i -

oo &6
_N N -

o

(c)

M*WWW

6 8

o &
gt

10 12 14 16 18 20 2224 26 28 30 32 34

Time (minutes)

o

2 4

Fig. 2. Example of the preprocessed chewing signal of three
participants. (a) Participant 3, (b) Participant 9, and (c) Participant 13.

The system was developed using a wearable eyeglass device
equipped with a proximity sensor (PS), an Arduino Nano, and
two pushbuttons. The sensor was programmed to detect signals
from the temporalis muscle movement, which were combined
with signals from the pushbuttons. The data were read by a
computer using Microsoft Excel with the Data Streamer add-
in, interfacing with the Arduino Nano board at a sampling
rate of 50 Hz. Further data processing was conducted on
the computer, with data validation based on the labeling of
chewing episodes.

The study involved 20 participants, all of whom were thor-
oughly briefed and provided informed consent. Data collection
occurred in a controlled environment, focusing on both eating
and resting activities. For the eating portion, eight types of
food were served in controlled portions per spoonful and
per size. Apple (A), banana (B), watermelon (W), and car-
rot (C) were served in spoonful portions, while crackers, jelly,
gummy candy, and chewing gum were served in standardized
sizes.

For classification and chew count estimation,
MATLAB 2022a (MathWorks, Inc.) was utilized. The raw data
were preprocessed using normalization and filtering methods.
Initially, the “range” normalization method was applied to
eliminate amplitude variations caused by different participants.
A low-pass filter, with a cutoff frequency range of 0.3-2.2 Hz,
was then implemented to remove dc components and
retain the signal relevant to chewing. According to
Selamat et al. [20], this system achieved a mean accuracy
of 96.37% across 20 participants, with the highest accuracy
recorded at 98.48%.

The preprocessed chewing signals for three participants are
shown in Fig. 2, highlighting the amplitude variations due to
differences in participants and food types.

[Il. CHEW COUNT ESTIMATION
Chew count is a key mastication parameter extracted
and analyzed from chewing signals. In previous studies,
chew count estimation has been achieved by combining fea-
tures, such as the number of peaks, the duration of the
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Fig. 3. Features extracted for chew count estimation.

chew sequence, and the number of zero crossings. The
characteristics of these extracted features used for counting
chews are illustrated in Fig. 3. An abstract diagram pro-
vides an overview of the proposed chew count estimation
method.

A. Peak Detection Algorithm

The peak detection algorithm is designed to identify the
preferred chewing cycle and the start and end times of
all related chewing episodes for each preprocessed chewing
signal. The algorithm then extracts peaks from the chewing
signal, focusing on their prominence and width characteristics.
These features are critical for eliminating insignificant peaks
caused by nonchewing activities. The prominence of the
peaks reflects the opening and closing of the jaw (temporalis
muscle), while the width of the peaks corresponds to chewing
frequency [20].

The algorithm uses a minimum peak prominence and max-
imum peak width to filter out irrelevant peaks, ensuring that
only significant chewing-related peaks are considered. Both
parameters are essential for accurate chew count estimation,
as they directly relate to jaw movement and chewing fre-
quency [20]. To account for individual variations in chewing
patterns—due to factors, such as food hardness [18], sen-
sor placement, face shape, and jaw structure—the average
peak prominence and width are calculated for each chewing
episode.

To further refine the algorithm and reduce time consump-
tion, a multiplier parameter is introduced, determined using
PSO. This approach simplifies the process by optimizing the
search parameters based on three defined chewing cycles. This
article also presents new approaches that are participant-based
and participant-food type-based, enhancing the method pre-
sented in previous studies [20].

B. Particle Swarm Optimization

PSO is one of the most effective metaheuristic optimization
techniques, known for its simplicity and ease of implemen-
tation. By defining an appropriate objective function, PSO
can achieve optimal results for chew count estimation. In this
study, we adopted an inertia-weight (w)-based PSO algorithm.
The algorithm determines the multipliers for the average
prominence and width of peaks using PSO. The objective func-
tion minimizes the sum of the absolute differences between the
estimated and actual chew counts (labeling), as expressed in
equation.
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Fig. 4. PSO-peak detection algorithm.

Since the peak patterns of chewing can vary depending on
participants and food types, PSO searches for the multipliers
that best suit each chewing episode, resulting in the smallest
possible overall error in chew count estimation, as shown
in (2) and (3). Here, Min.pp represents the minimum peak
prominence, Max.pw represents the maximum peak width,
L is the total chew count, M is the respective chewing
episode, and P4 and Pp are the parameters contributing to
the optimized error.

The flow of developing the PSO-based peak detection
algorithm is illustrated in Fig. 4, where P; is the participant
number, F; is the food type sequence, M,; corresponds to
the chewing episode for the respective participant, and 7y,
and 1, are the start and end times of the respective chewing
bout (n), P, identifies the peak for the respective chewing bout,
while P4 and Pp are the multipliers for the minimum peak
prominence and maximum peak width, respectively, obtained
using PSO. Finally, P, and P represent the actual and
estimated peak counts after applying the algorithm

M
|Total Error| = Z| Pey, (n) — Pey ()] (1)

m=1

L
1
Min.pp (M) = 7 ZPeak prominence (M) | X Py (2)

=1

L

1 .

T E Peak width (M) | x Pg. 3)
I=1

Max.pw (M) =

C. Chewing Cycle

Determining the window size is a crucial step in chew count
estimation, as a larger window is required for estimating chew
count than for chewing classification. The approach in [20]
addresses variations in chewing patterns among participants by
using the average prominence and width within each chewing
episode. To simplify the process, PSO is employed to find a
constant multiplier that optimizes chew count estimation. This
article will implement, analyze, and compare three different
chewing cycles (segmentation).

1) Chewing Cycle Based on All Episodes: This method
determines the PSO parameter values based on a single
chewing cycle for the entire dataset. The PSO algorithm
searches for two parameter values—prominence and
peak width multipliers—across all data. The stopping
criterion for this method is the maximum number of
iterations in the PSO.

2) Participant-Based Chewing Episodes: This method
determines the PSO parameter values based on 20 chew-
ing cycles, each corresponding to one participant. The
PSO searches for two parameters (prominence and peak
width multipliers) for each participant, resulting in a set
of two parameters for each of the 20 chewing cycles. The
stopping criterion is the maximum number of iterations
per participant, continuing until all participants have
been processed [as shown in Fig. 4, L(1)].

3) Participant-Food Type-Based Chewing Episodes: This
method determines the PSO parameter values based
on 160 chewing cycles, derived from eight food types
across 20 participants. The PSO searches for two param-
eters (prominence and peak width multipliers) for each
chewing cycle, resulting in a set of two parameters for
each of the 160 cycles. The stopping criterion is the
maximum number of iterations per cycle, continuing
until all participants and food types have been processed
[as shown in Fig. 4, L.(ii)].

In this study, the term “chewing cycle” refers to the segmen-
tation of data from the 20 participants to determine the PSO
parameter values. The implementation of the chewing cycle to
find the PSO parameters is illustrated in Fig. 5, where P rep-
resents the participants, and PF represents the participant-food
type combinations. The numbering corresponds to the respec-
tive participant, and the color coding in PF indicates the food

type.

D. Analysis of the Estimated Chew Count

The performance of chew count estimation for an individual
participant is evaluated using the percentage of absolute error
between the actual chew count (Ca¢) and the estimated chew
count (Cgg), as shown in (4). The overall system performance
is assessed by calculating the MAE across all participants,

Authorized licensed use limited to: Universiti Teknikal Malaysia Melaka-UTEM. Downloaded on January 23,2025 at 07:00:44 UTC from |IEEE Xplore. Restrictions apply.



SELAMAT et al.: NOVEL CHEWING CYCLE APPROACH FOR PEAK DETECTION ALGORITHM

807

All

i

Participant based

Participant-food

PL | p2fpP3]prafps|pre|[pP7 P8 pPofPio]prin]rPi2]ria]riafrisfrie{ri7]ris]rio]r]

e AT T g |§||||| BB BB |' BN

type based PF1 : PF2 : PF3 [ PF4 . PF5 © PF6 : PF7 . PF8 : PF9 _PF10:.PF11 'PF12 PFH PFM PFH PF]6 PF17. PFTS PF19 PFZO
Kracker I Jelly I Gummy | Gum | Apple | Banana Watu‘mdonl Carrot
Fig. 5. Overview of the chewing cycle for the whole data of 20 participants.
0.1 0.1 . . .
0.05 : 0.05 - Zﬁﬁﬁ E
| | I i i _
R \/\NH\/U\J
(LA RS LEAS LA B |
Cest A Pc Cest A PCest Cact A PCact‘
%340 542 " 346 548 350 352 364 356 _0'%40 342 344 346 348 350 352 354 356
(a) (b)
Fig. 6. Detection of peak (a) without and (b) with implementation of prominence and width of the peak.
960 17 2
19 ¢
as0 16.5 18 F
1.7¢
920 - 16 16
@ B B 15[
§ 900 § 1o § 14
880 15 13
12
860 14.5
1.1
840 L L L L . | 14 1 L L L L L L
0 10 20 30 40 50 60 70 80 920 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Iteration Iteration Iteration
PA=0.5253 Ps=1.7666 PA=0.4103 Pg=1.7392 PA=0.5131 Pg=1.6019
(a) (b) (c)

Fig. 7. PSO iteration for chewing cycle of (a) all, (b) participant-based
type jelly).

given by (5). Here, M represents the total number of chewing
episodes, and n denotes the specific chewing episodes for each
participant

() — CEggq
\%Error| = ‘ Act(1) Est() % 100 @)
CAct(n)
M
1 C — Cgq
|%Mean Error| = — Z Aa() £ () x 100. (5)
M CAct(n)

n=I

IV. RESULTS, ANALYSIS, AND DISCUSSION

For chew count estimation, results were presented as means
to analyze the performance of the proposed method. The
metrics include the estimated chew count, MAE, average
MAE, and PSO computational time.

Chew count was determined by counting peaks in the
proximity signal. The PSO algorithm was used to identify
the optimal prominence (minimum) and width (maximum)
multipliers for accurate chew count estimation. The adapta-
tion of PSO for peak detection is illustrated in Fig. 6. PSO
iteration parameters, which search for the optimal solution

(Participant 13), and (c) participant-food type-based (Participant 13—food

by minimizing the total absolute error across all chewing
cycles, are shown in Fig. 7. Example for participant based
and participant food type based of participant 13 with jelly
(food type) are depicted in (b) and (c), respectively. The
reduction in absolute error from the first to the 100th iteration
is illustrated for the three chewing cycle methods: all episodes,
participant-based, and participant-food type based, with reduc-
tions of 125 (962-837), 3 (17-14), and 1 (2-1), respectively.

The PSO completion times for different methods are pro-
vided in Table I. The time taken for the PF method was
400.61 s per participant, for the P method was 469.63 s, and for
the A method was 36 621.44 s. Estimations for 20 participants
are 8012.2 s for PF, 9392.6 s for P, and 36621.44 s for A.
Thus, PF is faster overall compared to P and A.

Data collected from 720 chewing episodes (36 per partic-
ipant) are detailed in Table II. The study recorded 30097
actual chew counts, with 30136 estimated by method A,
30115 by method P, and 30 059 by method PF. Fig. 8 plots the
estimated total chew counts against the actual counts for all
methods.
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TABLE |
EXAMPLE OF TIME TAKEN FOR PSO TO FIND THE PARAMETERS
Chewing A P P13
Cycle 13 PF, PF, PF3 PF4 PFs PFs PF; PFs PF 1t
Time (s) 36621.44 469.63 46.06 44.24 50.36 33.58 44.08 66.00 44.89 71.40 400.61

TABLE Il
DETAILS OF THE CHEW COUNT ESTIMATION
Pcact P.st (count) Mean absolute error (%) Difference of MAE (%)
Participants
(count) A P PF A P PF A-P A-PF P-PF
1 1705 1677 1693 1707 3.48 2.97 1.01 0.51 2.47 1.96
2 1142 1139 1155 1143 4.75 5.04 1.43 3.32 3.62
3 1106 1102 1105 1107 1.76 5.26 3.50
4 1710 1689 1703 1705 2.32 2.00 0.55 0.32 1.77 1.45
5 1153 1172 1155 1157 4.75 3.30 1.32 1.45 3.43 1.97
6 1772 1762 1784 1768 2.57 2.69 0.92 -0.12 1.65 1.77
7 1809 1790 1806 1803 2.38 1.53 0.56 0.85 1.82 0.97
8 1311 1331 1312 1319 6.19 5.47 1.71 0.71 4.47 3.76
9 1147 1182 1155 1158 6.72 5.33 2.57 1.39 4.15 2.76
10 1777 1758 1778 1776 1.49 1.33 0.47 0.16 M
11 1277 1305 1270 1276 5.57 3.48 1.64 2.09 3.93 1.84
12 1246 1263 1238 1208 6.48 5.29 2.13 1.20 4.36 3.16
13 1855 1850 1859 1857 1.46 1.20 0.34 0.26 1.12 0.86
14 1767 1760 1771 1768 2.05 1.62 0.97 0.44 1.09
15 1830 1815 1836 1834 3.22 1.99 0.53 1.23 2.69 1.46
16 1879 1859 1877 1879 2.14 1.74 0.51 0.41 1.63 1.23
17 1814 1797 1810 1811 2.66 1.92 0.70 0.74 1.96 1.22
18 1271 1299 1281 1272 6.57 6.11 1.73 0.47 4.84 4.38
19 1228 1247 1227 1222 5.63 4.87 2.11 0.76 3.52 2.76
20 1298 1339 1300 1289 7.36 5.59 1.65 1.77 5.71 3.94
Total 30097 30136 30115 30059
Mean 4.26 3.46 1.25 0.8 3.01 2.21
Std 2.09 1.77 0.69
Total Estimated Chew Count Versus Total Actual Distribution of Mean Absolute Error
2000 Chew Count 0.7
0.6 —o—All
1500 0.5
§ .5 —o0— Participant
81000 304 based
: 503
S 500 04, Partcipants-
5 : Food Type
S 9 0.1 é ed
1234567 8 91011121314151617181920
Participant b 0.0
articipants number 0 9 4 6 8
u All = Participant based = Participant-food type based = Actual Mean Absolute Error
Fig. 8. Total chew count estimation versus total actual chew count plot. Fig. 9. Distribution of MAE.

The MAE ranged from 1.46% to 7.45% for all chew- an average of 3.46%. The PF method had an MAE range
ing cycle methods, with an average of 4.26%. For the of 0.34%-2.19%. The best MAE was achieved by Partic-
P method, the MAE ranged from 1.20% to 5.69%, with ipant 13, while the worst was by Participant 3. MAE
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Fig. 10. Example of PSO-peak detection implementation taken from the first chewing episode of the banana (food type). (a) Based on all methods
taken from the participants that contribute to the best MAE (Participant 13) and (b) based on all methods taken from the participants that contribute

to the worst MAE (Participant 3).

distributions are shown in Fig. 9, with all methods exhibiting
a symmetrical shape with a single peak.

The examples of PSO-peak detection implementation for
the best (Participant 13) and worst (Participant 3) MAE
are provided for the first chewing episode with banana.
Fig. 10(a) and (b) illustrates improvements in chew count esti-
mation. For instance, Fig. 10(a) shows that P and PF methods
estimate 25 chews, compared to 24 by A. In Fig. 10(b), P and
PF methods estimate 16 and 15 chews, respectively, while A
estimates 13 chews.

Participant 13 achieved the smallest MAE across all three
methods, while Participant 3 had the largest MAE. The
MAE for method A was reduced from 4.26% to 3.46%
(a 0.80% improvement) using the P method and from 4.26%
to 2.21% (a 3.01% improvement) using the PF method. The
P method, in turn, was improved from 3.46% to 1.25%
(a 2.21% improvement) by the PF method. The PF method
showed the greatest improvement over method A, with
a 3.01% reduction, followed by the P method with a 2.21%
reduction. The difference between the P and PF methods
was 0.80%. Overall, the PF method consistently provided the
highest improvement across all participants.

The MAE distributions are characterized by symmetrical
shapes with a single peak. The chewing cycle method A has a
peak at 4.46% with an average of 4.26%. The participant-based
method has a peak at 3.48% with an average of 3.46%, while
the participant-food type-based method has a peak at 1.32%
with an average of 1.25%. The PF method’s narrower shape
indicates that the values are more concentrated around the
mean compared to the A and P methods.

In addition to reducing MAE, the proposed method reduces
computational time. The total times for the PF, P, and
A methods are 400.6, 469.6, and 36621.4 s, respectively.

Difference of MAE Between each Chewing Cycle
Method

O = MW s n D

Difference of MAE

/\/\A/

1 12345678 91011121314151617181920

Participants number
A-PF

e AP P-PF

Fig. 11. Difference of MAE in comparison to other methods.

For 20 participants, the estimated completion times are
8012.2 s for PF and 9392.6 s for P. The total completion
time for method A is significantly longer at 36 621.4 s. The
difference in computational time between methods A and P is
27229.4 s (74.35%), between A and PF is 28 609.2 s (78.12%),
and between P and PF is 1379.8 s (14.69%). Thus, the PF
method substantially reduces computational time compared
to methods A and P, with P and PF methods differing by
only 14.69%.

The differences between methods illustrate the MAE
improvements or changes. The P method improved method
A by the largest margin of 2.09%, with Participant 11 con-
tributing the best result. For method A compared to PF,
the MAE reduction ranged from 1.02% (Participant 10)
to 5.71% (Participant 2). The P method compared to PF
showed improvements ranging from 0.65% (Participant 14)
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TABLE IlI
SUMMARY OF THE CHEW COUNT METHODS USED IN THE LITERATURE
Chewing signal Methods in Participants
Reference estimating the chew Feature extracted Limitation to the peak Mean absolute error
data count Number
Proximity sensor- PSO- peak detection Minimum peak
Proposed  Temporalis muscle algorithm-Participant- Number of peaks prominence 20 1.25%
detection Food type-based Maximum peak width
Proximity sensor- PSO- peak detection Minimum peak
Proposed  Temporalis muscle algorithm-Participants Number of peaks prominence 20 3.46%
detection based Maximum peak width
Proximity sensor- . Minimum peak
[20] Temporalis muscle PSO- pegk detection Number of peaks prominence 20 4.26%
f algorithm-All . .
detection Maximum peak width
Proximity sensor- . .
f Peak detection Minimum peak o
[22] Temporalls.muscle algorithm Number of peaks prominence (trial & error) 1 2.69%
detection
Piezoelectric-lower Peak detection o
[12] jaw movement algorithm Number of peaks n/a 5 8.09+7.16%
. . . The peak must exceed a
[13] Piezoelectric-lower  Histogram-peak Number of peaks ~ threshold value (obtained 30 10.4% + 7.0%
jaw movement detection algorithm . )
using a histogram)
Number of peaks
[14] Pl_ezoelectrlc-lower Multiple regression VaIIeys_ n/a 30 9.66%
jaw movement model Zero crossings
Duration
Piezoelectric Multivariate regression Number of peaks
[15] temporalis muscle modelg Zero crossings n/a 10 3.43%
detection Duration
Triaxial .
The peak of the z-axis of the o
[19] accelerometerlon the MFC accelerometer n/a 4 12.2%
temporalis
) . Deep learning Number of peaks Mean accuracy
Y Videorecording 4 4ffine optical flow n/a 28 88.9% +7.4%
Image processing of 5.42% + 4.61 (slow)
[16] Video recording chewing videos Number of peaks Minimum peak height 100 7.47% + 6.85 (normal)
No. 9.84% + 9.55 (fast)
Optical distance .
[17] sensor-Earphone n/a Peak to Peak n/a 6 P:gcgsslgn

type

to 4.38% (Participant 18). Fig. 11 illustrates the MAE
differences between methods for each participant, show-
ing that the PF method generally provided the largest
improvement.

For a comprehensive comparison of chew count estimation
methods, we review and compare those presented in previous
literature. To the best of our knowledge, ten articles have dis-
cussed various chew count methods. Of these, eight employed
sensors, such as piezoelectric sensors, accelerometers, optimal
distance sensors, and PSs, typically placed on the jaw or
temporalis muscle to detect chewing. Two studies utilized
video recordings, which were processed to extract the chewing
signal.

All methods reviewed for chew count estimation rely on
peak counting. Four articles applied specific limitations for
peak detection, including threshold values [13], minimum peak
height [16], prominence of the peak obtained through trial and
error [22], and argument implementation of minimum peak
prominence, and a combination of minimum peak prominence
and maximum peak width using PSO [20]. The most common
performance measurement for chew count is the MAE. The
MAE values for different sensors are as follows: piezoelectric
sensors 8.09 £ 7.16% [12], 10.4% + 7.0% [13], 9.66% [14],
3.43% [15], the accelerometer 12.2%, and the PSs 2.69% [22],
4.26% [20].

A summary of the chew count methods proposed in the
literature, compared to the method presented in this article,
is provided in Table III.

V. CONCLUSION

This article introduces new chewing cycle methods to
optimize the PSO approach for chew count estimation using
minimum peak prominence and maximum peak width in a
peak detection algorithm. The study utilizes PS data, cap-
turing chewing signals from temporalis muscle movements.
These signals were preprocessed with z-score normalization,
a bandpass filter of 0.3-2.2 Hz, a 3-s window size, and a peak
detection system constrained by peak prominence and width.

Chewing patterns vary between individuals, influenced by
factors, such as facial structure, masticatory muscle properties,
and food type. To address this variability, this study proposes
two chewing cycles: one based on individual participants
and the other on a combination of participants and food
types. These cycles aim to enhance chew count estimation
by accounting for participant and food type diversity.

The PSO-peak detection algorithm provides different
parameter combinations depending on the chewing cycle: A
cycle is one combination of two parameters (P4 and Pg).
P cycle is 20 combinations of two parameters. PF cycle is
160 combinations of two parameters.
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Results indicate that the PF method yields the lowest
MAE at 1.25%, followed by the P method at 3.46%, and
the A method at 4.26%. The MAE distribution for the PF
method is narrower compared to the A and P methods, sug-
gesting higher probability and consistency around the mean.
Additionally, the PF method requires the shortest computation
time (8012.2 s), followed by the P method (9392.0 s), while
the A method demands the longest time (36621.4 s).

Future research will explore inter- and intrasubject variabil-
ities, assessing the suitability of subject groups for quantitative
evaluation. Additionally, the robustness of the proposed
method will be tested for chew count estimation using data
collected during physical activities.
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