
Original article

Bird flock effect-based dynamic community detection: Unravelling network
patterns over time

Siti Haryanti Hairol Anuar a,*, Zuraida Abal Abas b, Iskandar Waini c,
Mohd Fariduddin Mukhtar d, Zejun Sun e, Eko Arip Winanto f, Norhazwani Mohd Yunos b

a Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal, Melaka
76100, Malaysia
b Fakulti Teknologi Maklumat Dan Komunikasi (FTMK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
c Fakulti Teknologi Dan Kejuruteraan Industri Dan Pembuatan (FTKIP), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal, Melaka
76100, Malaysia
d Fakulti Teknologi Dan Kejuruteraan Mekanikal (FTKM), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
e School of Information Engineering, Pingdingshan University, Henan 467000, China
f Computer Engineering, Dinamika Bangsa University, Jambi 36138, Indonesia

A R T I C L E I N F O

Keywords:
Network structure
Dynamic community detection
Bird flock effect
Similarity measure

A B S T R A C T

Community structure is essential for topological analysis, function study, and pattern detection in complex
networks. As establishing community structure in a dynamic network is difficult, it gives a unique perspective in
many interdisciplinary fields. Many researchers have explored the challenging technique that requires parameter
specification and optimization for quality result. This study proposed an eco-system conceptual framework based
on bird flock effect. Relying on the natural law of rule, we designed a dynamic community detection named
DCDBFE. The design of algorithm was based on the three basic rules of bird flock: separation, alignment, and
cohesion phase. Then, we provide an explanation of similarity measure used between vertices to identify the
modules attraction. DCDBFE employs an incremental community detection approach to repeatedly detect
communities in each network snapshot or time step. The contributions are obtained for high quality community
detected, free-parameter and well stability. To test its performance, extensive experiments were conducted on
both synthetic and real-world networks. The outcomes demonstrate that our approach can effectively find
satisfaction from each time step by comparison with the other well-known algorithms.

1. Introduction

Over the past 20 years, network analysis has evolved into an indis-
pensable tool for interpreting complex systems across diverse domains,
from sociology to biology. In sociology, network analysis helps uncover
social structures, relationships, and behavioral patterns [1], while in
biology, it reveals interactions between genes, proteins, and ecosystems
[2]. Data mining leverages networks to detect clusters and correlations
in large datasets [3], and intelligent computing applies graph theory to
optimize algorithms for decision-making [4]. Social networks provide
insights into community formation, influence spread, and collective
behavior [5], whereas communication networks improve message
routing and efficiency across channels [6]. In healthcare, network
models are used to track disease spread and improve patient care

coordination [7], and wireless sensor networks ensure reliable data
transmission in environmental monitoring [8]. Telecommunication re-
lies on network topologies to manage traffic and prevent congestion [9],
while transportation networks optimize routes and logistics [10]. Eco-
nomics employs network models to understand market behavior and
financial dependencies [11], and e-commerce uses them to enhance
recommendation systems and buyer-seller interactions [12].

Market segmentation identifies consumer clusters based on shared
traits, and manufacturing utilizes network structures to streamline
production processes and enhance supply chain connectivity [13].
Nature-inspired networks model ecosystem dynamics and species in-
teractions [14], and in agriculture and aquaculture, network analysis
optimizes resource use and tracks food production systems [15]. Supply
chain management relies on network theory to enhance efficiency,

* Corresponding author.
E-mail address: sitiharyanti@utem.edu.my (S.H.H. Anuar).

Contents lists available at ScienceDirect

Alexandria Engineering Journal

journal homepage: www.elsevier.com/locate/aej

https://doi.org/10.1016/j.aej.2024.10.097
Received 13 November 2023; Received in revised form 23 October 2024; Accepted 24 October 2024

Alexandria Engineering Journal 112 (2025) 177–208

Available online 4 November 2024
1110-0168/© 2024 The Author(s). Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:sitiharyanti@utem.edu.my
www.sciencedirect.com/science/journal/11100168
https://www.elsevier.com/locate/aej
https://doi.org/10.1016/j.aej.2024.10.097
https://doi.org/10.1016/j.aej.2024.10.097
https://doi.org/10.1016/j.aej.2024.10.097
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2024.10.097&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

mitigate risks, and ensure sustainability [16]. The interdisciplinary na-
ture of real-world networks presents both opportunities and challenges,
particularly when attempting to capture dynamic interactions within
these systems [17]. As networks grow and change over time, under-
standing the evolution of communities within them becomes crucial for
uncovering hidden patterns and relationships [18]. However, despite
the advances in dynamic community detection, one of the most persis-
tent problems is the instability of these algorithms, which often struggle
to maintain consistent accuracy when dealing with networks that
experience rapid or unpredictable changes [19].

The problem of instability in dynamic community detection is
further complicated by the scale and complexity of the networks
involved. The real-world networks often involve massive datasets with
constantly shifting structures [20]. Existing algorithms, while effective
in certain contexts, frequently fail to keep up with the rapid pace of
change in these dynamic environments. They may produce results that
are inconsistent or highly sensitive to minor fluctuations, making it
difficult to trust the detected community structures. This issue poses a
significant barrier to some practical application of dynamic community
detection, where the ability to detect stable, evolving communities is
essential for optimizing performance and decision-making [21].

Addressing this challenge requires the development of more adaptive
and resilient algorithms that can maintain stability even in highly dy-
namic settings. Many current methods struggle to balance accuracy with
computational efficiency, especially when applied to large-scale net-
works across diverse sectors [22–25]. The instability in dynamic com-
munity detection not only limits our understanding of the network’s
evolution but also hampers the ability to make informed decisions based
on the detected patterns. Generally, dynamic community detection
techniques can be categorized into two types, independent and depen-
dent detection [26]. However, each type has its strengths and weak-
nesses depending on the nature of the network and the availability of
data, but the overarching challenge remains to maintain a balance be-
tween temporal stability and structural adaptability.

This study addresses the dynamic community detection problem
through the perspective of connectedness and influences, inspired by
bird flock effect. Leveraging these properties, we present a dynamic
community detection algorithm based on bird flock effect (DCDBFE) to
reveal the community structure within networks. The networks are
modeled based on ecological systems to imitate the formation process of
bird flock and facilitate the analysis of their temporal evolution.
DCDBFE is an unsupervised approach, as it does not require labeled data
[27,28]. In recent years, unsupervised approaches have gained popu-
larity for their effectiveness in detecting unknown events and addressing
real-world challenges. By simulating the behaviour of the bird flock
effect, the proposed dynamic community detection algorithm offers
several advantages. The main contributions of this work are summarized
as follows:

1) Novelty: The DCDBFE algorithm leverages the bird flock effect and is
based on natural ecological principles to identify accurate modules
or communities.

2) High quality: The DCDBFE algorithm through the experiment shows
the most efficient and accurate value quality of community detection
compared to others. Proven in Figs. 6–28.

3) Parameter free: The DCDBFE algorithm does not need initial
parameter to set.

4) Stability: The DCDBFE algorithm shows that the result of quality
community detection is very good and consistent. Proven in
Figs. 6–28.

5) Extensive experiments are carried out on six groups of synthetic
networks and six real-world networks to verify the performance of
the proposed algorithm.

The following is the structure of the paper. Section 1 presents an
introduction, and Section 2 elaborate the related works. Section 3

describes the basic idea, nomenclature used in this study and method-
ology of DCDBFE in depth. Section 4 present the datasets, evaluation
metrics and the performance evaluation of experiment. Section 5 is the
results and discussions of this work. Finally, Section 6 is the conclusion.
This ends the article with elaborating the limitation or challenges
encountered during the extension testing on network datasets and sug-
gests future enhancements to this work.

2. Related work

Dynamic community detection in complex networks has garnered
increasing attention recently, emerging as a significant area of study due
to its potential to enhance our understanding of how social phenomena
evolve over time. Numerous studies have explored the temporal evolu-
tion of communities using various approaches [26]. The development of
this field has been acknowledged through several comprehensive review
papers, which highlight the preferred methodologies based on previous
research focused on tracking community detection and evolution in
temporal networks.

The existing classification schemes in this field originated from the
ideas of Bansal, Bhowmick and Paymal, [29], as well as Hartmann,
Kappes, and Wagner, [30], who identified two primary approaches;
offline and online clustering. This classification has evolved with con-
tributions from Aynaud et al. [31], Rossetti and Cazabet, [32], and
Dakiche et al. [20], who introduced additional perspectives. Aynaud
et al., 2019 proposed three categories for detecting communities:
two-stage approaches, evolutionary clustering, and coupling graphs.
Rossetti and Cazabet identified three themes in dynamic community
detection: instant optimal or two-stage approaches, temporal trade-off,
and cross-time or incremental approaches. Furthermore, Dakiche et al.
[20] classified studies on tracking community evolution in dynamic
social networks into four main approaches; independent community
detection and matching, dependent community detection, simultaneous
community detection on all snapshots, and dynamic community detec-
tion on temporal networks.

This paper follows the thematic classifications proposed by Elishi
et al., who suggested two main approaches: independent and dependent
community detection. Independent community detection, also known as
two-stage clustering, treats each network snapshot independently and
applies static community detection methods to dynamic cases [33–42].
In this approach, the network’s progression is divided into multiple time
steps, with communities identified at each step. Each snapshot detects
communities independently, which are then matched with those from
the previous step based on similarity measures. Common similarity
measures used for this matching process include Jaccard, Sorensen, and
Salton indices, among others. The advantage of this method is that it can
be applied directly to the dataset without requiring modifications.
However, a significant drawback is that the results of dynamic com-
munity detection can be unstable. This instability may lead to in-
consistencies in the detected communities across consecutive time steps,
as the approach does not consider prior information.

On the other hand, dependent community detection eliminates the
need to match communities, streamlining the community identification
process [43–62]. This approach detects communities at a given time
(present) based on those identified in a previous period (prior). This
method can be further categorized into an evolutionary approach is
typically aligned with the cost function and incremental approaches is
associated with the direct method.

The evolutionary approach, which considers temporal dependencies
between snapshots, is associated with cost function methods and focuses
on maintaining smooth transitions in community structures over time by
optimizing single or multiple objectives. This approach accounts for the
influence of historical community structures on the current one.

For example, FacetNet is a well-known technique of evolutionary
approach that employs a hybrid method combining non-negative matrix
decomposition and cost function optimization for dynamic community

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

178

discovery iteratively [63]. Another example is DYNMOGA, which uti-
lizes a multi-objective optimization genetic algorithm and requires
manual parameter specification to identify the optimal partitions for
dynamic community detection [64]. The goal is to maximize cluster
accuracy with respect to current data while minimizing clustering drift
between time steps. This method also requires user input for either
snapshot or temporal quality preferences. S. Ranjkesh et al. proposed a
robust memetic algorithm called RDNMA_NET adapts to changes in
network structures over time by combining evolutionary algorithms and
local search strategies to maintain robust and accurate community
detection across evolving networks [43]. H. Ma et al. proposed HoKT
(Higher-Order Knowledge Transfer) which is a multi-objective genetic
algorithm that enhances optimization by leveraging knowledge from
higher-order patterns and relationships within and across evolving so-
lutions, enabling more effective search and convergence in dynamic and
complex problem spaces [44]. D. Li et al. proposed jLMDC (Joint
Learning Model for Dynamic Community detection) which is a novel
approach for detecting communities in temporal networks that simul-
taneously performs feature extraction and clustering in a unified opti-
mization framework, capturing both structural and temporal patterns
more effectively while reducing computational complexity compared to
traditional methods [55].

However, this approach has several significant drawbacks. These
optimization methods are time-consuming because they typically opti-
mize objectives iteratively, requiring the complete regrouping of each
snapshot even when changes are minimal [64]. Additionally, many
optimization algorithms involve parameters that are difficult to set and
produce nondeterministic results, often requiring multiple runs to ach-
ieve the best outcome. Consequently, these optimization methods are
not well-suited for large-scale or rapidly evolving networks.

To address the drawbacks of the previous approach, the incremental
approach is associated with the direct method and uses global commu-
nity discovery to identify structural changes in each network time step
incrementally. This direct method reduces time complexity by utilizing
information from the previous time step to detect communities in the
current step, allowing for rapid adaptation to changes in the network
[65]. The incremental approach continuously updates community
structures as new nodes or edges appear, directly utilizing information
from the previous time step to detect communities in the current time
step.

For instance, IncNSA identifies dynamic communities by examining
vertex variations. It analyzes only the community affiliations of a subset
of vertices, specifically those that are new or active from the previous
snapshot, as the network evolves [66]. Similarly, DCDID employs an
information dynamics model to simulate node communication and le-
verages batch processing to incrementally detect communities in dy-
namic networks, improving detection by filtering out unmodified
subgraphs [67]. A related process is seen in DCDME, which is based on
the sociological concept known as the Matthew effect, where "the rich

get richer and the poor get poorer" forms the foundation of the algorithm
[68]. However, the DCDME algorithm may not be suitable for dynamic
networks with a low clustering coefficient, as this could indicate that the
network changes too rapidly for stable communities to form or that the
network’s structure is decentralized. As a result, DCDME might struggle
with variability and complexity, potentially leading to less stable com-
munity detection.

Furthermore, many incremental approaches suffer from diminishing
results over time due to the accumulation of incorrect historical infor-
mation, despite their contributions to efficiency. To address these
challenges, our objective is to propose a stable and parameter-free in-
cremental dynamic community detection algorithm that consistently
identifies high-quality communities. In this paper, we demonstrate the
embedding of the behavior of the natural law of the bird flock effect in
the dynamic community detection algorithm.

3. Methodology

Dynamic community detection algorithms in complex networks have
been significantly influenced by natural phenomena, drawing on the
self-organizing and self-adapting behaviours observed in nature to
create more effective methods for identifying community structures
[69]. A notable example is the application of swarm intelligence prin-
ciples, inspired by the collective behaviour of animals like bees, swarms,
birds, fish, and insects [70]. In natural systems, individuals operate by
adhering to straightforward behavioural rules, such as aligning their
speed with that of their neighbours, maintaining proximity, and avoid-
ing collisions [71]. These seemingly simple rules guide each individual’s
actions, yet collectively, they result in highly complex, adaptive, and
coordinated group behaviour [72]. Remarkably, this sophisticated
group dynamics emerges without any centralized control, highlighting
the power of simple interactions in producing intricate patterns of or-
ganization [73].

This study was interested in exploring the intersection of mathe-
matics, and biological phenomena, particularly on bird flocking
behaviour. This fascinating area of study, known as bio-inspired
computing, involves deriving mathematical models from natural sys-
tems and applying them to solve complex problems. The unique aspects
of bird flocking were used to inspire a community detection concept,
where the three fundamental rules of the bird flock effect were inte-
grated into the graph analysis process to identify modules or commu-
nities in each stage of a continuously dynamic network. In static
networks, community detection algorithms commonly rely on basic
metrics like centrality and node similarity [74]. However, when dealing
with dynamic networks, these metrics must be reformulated and
adapted to account for the changes over time [75]. This adaptation
ensures that the community detection process remains accurate and
effective as the network evolves. In this section, we provide a detailed
explanation of the DCDBFE algorithm, including its basic idea, relevant

Fig. 1. The formation process of bird flock effect model.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

179

definitions, model and framework of DCDBFE.

3.1. Basic idea

In the context of network dynamics and community detection, an
ecosystem can be viewed as a complex network of interactions, where
the bird flock effect model draws inspiration from the coordinated
movements of birds in a flock. This model leverages specific character-
istics of bird flocking, such as self-organization, collective decision-
making, and adaptive behavior, to represent how entities in a network
interact and influence each other [76]. From an ecosystem perspective,
bird flocks exhibit emergent behavior where individual birds follow
simple rules based on their local interactions, leading to complex global
patterns. This is analogous to dynamic community detection in net-
works, where communities emerge based on the interactions between
vertices rather than predefined structures. This bio-inspired approach
enhances the efficiency and accuracy of community detection in
evolving networks [77].

In the physical world, people are attracted by activities according to
their interests, a phenomenon similar to the bird flock effect in the sky.
The concept behind the formation process of bird flock effect, where the
algorithm is designed is based on three basic rules from Craig Reynolds
in 1987 [78,79]. Fig. 1 illustrates the formation process of bird flock
effect model through three fundamental rules: Separation, Alignment,
and Cohesion. Each rule corresponds to a phase in the dynamic behav-
iour of entities within a network, and together, they help in under-
standing how communities form and evolve.

In the Separation phase, depicted in Fig. 1(a), each bird (or network
entity) maintains a certain distance from its neighbors to prevent
overcrowding. This is visually represented by the arrows pointing away
from one another, ensuring that the entities do not cluster too closely at
this initial stage. The concept here is similar to individuals in a social
network who begin by exploring their surroundings independently,
without forming any close ties. For example, imagine a group of people
at a conference where each person starts by moving around indepen-
dently, avoiding clustering too early, thus exploring different topics or
discussions without being influenced by others.

During the Alignment phase, depicted in Fig. 1(b), the entities begin
to align themselves with others based on commonalities or shared be-
haviors. This phase is illustrated by the birds adjusting their positions to
align with their neighbors, which is quantified by the numbers on the
lines (e.g., 0.2, 0.4, 0.8, 0.9, etc.). These numbers represent the degree of
alignment or similarity between entities. For instance, in a workplace
setting, colleagues may begin to work more closely together based on

shared projects or goals, aligning their efforts to be more cohesive as a
team.

Finally, in the Cohesion phase shown in Fig. 1(c), the entities, which
were once separated, come together to form tightly knit clusters or
communities. The birds are now grouped into distinct clusters. The
connections within each group are stronger, indicating a high level of
interaction and mutual influence. For example, in an online community,
this would be the stage where users with similar interests form distinct
groups, such as forums or chat groups, where they engage more deeply
with one another, sharing ideas and collaborating closely.

3.2. Relevant definitions

Let a graph, G = (V, E) be the given network, which are undirected
and unweighted graph with the set of vertices, V and the set of edges, E.
We formulated several symbols used in the proposed algorithm based on
the definitions. Fig. 2 illustrates a toy network to explain each definition
in detail. This network consists of 23 vertices, divided into two distinct
modules, A and B. The vertices are organized into three levels based on
their connectivity. The vertices within each module are represented by
different shapes, indicating their varying levels of connectivity and their
roles in bridging the two modules. This layered structure of level con-
nection—with circle as core vertex, triangles representing the highest
connectivity and influence, squares indicating significant internal con-
nections, and diamonds showing peripheral connections—visually ex-
plains how different nodes contribute to the network’s overall
organization and module attractiveness.

Definition 1. : Resource allocation.

Resource allocation is a similarity measures introduced by Zhou et al.
in 2009, as represented in Eq. (1) as follows [80].

simRAuv =
∑

i∈CNuv

1
Di

(1)

where simRAuv is a similarity measure between two vertices u and v in
the network, CNuv represents the common neighbors between vertices u
and v,

∑
is the summation symbol indicating the summation over all the

inverse of the degree of each common neighbor, and Di denotes the
degree of vertex i, which is the number of edges connected to i.

The edge attraction between vertices reflects their similarity, calcu-
lated using the

simRAuvmeasure, which prioritizes giving resources to high-degree
vertices, leading to accurate but less diverse spreading. Initially, each
vertex has its own position based on similarity, and as the bird flock

Fig. 2. A toy network of two distinct modules, A and B.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

180

Fig. 3. Flowchart of community detection inspired by bird flock effect.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

181

spreads during the alignment phase, modules are naturally revealed by
these similarities. This approach is particularly effective in network
analysis, as it shows that neighbors with fewer connections significantly
impact vertex similarity, making it a valuable method for uncovering
structural patterns. Despite being simple, local methods like simRAuv are
preferred for their efficiency and effectiveness in comparative studies.

From Fig. 2, we can calculate the simRAuv as in Eq. (1) between each
vertex u and v in the graph. For example, simRA4,7 is the similarity be-
tween vertex 4 and 7. The process begins by identifying the neighbors of
both vertices. Vertex 4 is connected to vertex 3, vertex 7, and vertex 8,
while vertex 7 is connected to vertex 10, vertex 8, and vertex 4. The next
step is to find the common neighbors between these two vertices, which
involves identifying the vertices that both shares. In this case, the
common neighbor between vertex 4 and vertex 7 is vertex 8. Once the
common neighbor is identified, the simRA4,7 is calculated by summing
the inverse of the degrees of the common neighbors. The degree of a
vertex is the number of edges connected to it. Vertex 8, the common
neighbor, has a degree of 4, meaning it is connected to four other
vertices in the graph. Using the Eq. (1), the inverse of vertex 8’s degree is
calculated as simRA4,7 =

∑
D8∈CN4,7

1
D8

= 1
4 = 0.25. This score reflects the

structural similarity between vertex 4 and vertex 7 based on their shared
neighbor, and the degree of that neighbor.

A high similarity score implies that two vertices have strong struc-
tural cohesion, which is crucial for forming stable communities. This
same similarity calculation applies uniformly across all vertex pairs in
the graph, ensuring a consistent metric for determining attraction be-
tween vertices. In dynamic community detection, these scores serve as a
key factor in module attraction, continuously influencing how vertices
are grouped and how communities evolve over time. The evolving
similarity between vertices allows the algorithm to dynamically adjust
community membership, reflecting the current state of the network.

Definition 2. : Vertex attractiveness

In a graph, G = (V,E), the attractiveness of vertex v to u is defined as
in Eq. (2).

VAv→u = simRAuv ∗ Du (2)

where VA is a vertex attractiveness and it is the product of the
simRAuvsimilarity measure between vertex uand v, and Du the degree of
vertex u. This suggests that the vertex exerts a local influence, and a
higher value indicates that the vertex is more likely to attract or move
towards a similar vertex.

Similarly, just as the first bird in a flock can attract others to join and
fly together, we introduce a new concept called module attractiveness.
This concept explains how a module can attract a vertex based on how
well that vertex is connected within the module. The stronger the con-
nections a vertex has within a module, the more attractive that module
becomes to the vertex.

Definition 3. : Module attractiveness

In a graph, G = (V,E), the concept of module attractiveness (MA), as
defined in Eq. (3).

MAv→A = DA(u)2
⏟̅̅̅ ⏞⏞̅̅̅ ⏟

First− Level Connection

+
∑

v∈N(u),v∈A

DA(v)

⏟̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅ ⏟
Second− Level Connection

+
∑

w∈N(v),w∈A

DA(w)

⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟
Third− Level Connection

(3)

where MAv→A represents the module attractiveness of a vertex v to a
module A by considering the three components: (i) DA(u) represents the
degree of vertex u in the first-level connection, indicating its direct
connections of core vertex within the module. (ii) DA(v) represents the
internal degree of vertex v in module A at the second-level connection.
According to the connection between vertices and distinct modules, the
MAv→A can be divided into two conditions: one is DA(v) equality, and the
other is DA(v) inequality. (iii) DA(w) represents the internal degree of
vertex w is a neighbor of the neighbors of u in module A at the third-level

connection.
We can clarify Eq. (3) for calculating the module attractiveness fol-

lows from first, second and third-level of connectivity in the modules.
There are two conditions. (i) First condition, when a vertex is equal
within two modules at the first-level connection. For example, for
vertex 5 in Fig. 2, DA(5) = DB(5) = 1, it is not easy to move which
module, A or B, are more attractive to vertex 5. Consequently, the
impact of indirect neighbors appears in vertex 5 must be attentively
considered. In module A, vertex 6 is connected with vertex 5, and the
degree of vertex 6 is 2, so DA(6) = 2. However, the problem is internal
degree at second-level connection is still equal DA(6) = DB(1) = 2.
Then, we consider the third-level of connection, where vertex 9 and 10
are connected with vertex 6 in module A and the degree of vertex 9 is 2
and the degree of vertex 10 is 3, total is 5, DA(9) + DA(10) = 2 + 3 = 5.
So according to Eq. (3), the attraction of module A to vertex 5 can be
calculated as MA5→A = DA(5)2 + [DA(6)] + [DA(9) + DA(10)] = 12 +

2 + 5 = 8. In module B, since the degree of vertex 1 is 2, equal to
module A, we consider the third-level connection, where vertex 13 and 2
are connected with vertex 1 in module B and the degree of vertex 13 is 3
and the degree of vertex 2 is 3, total is 6, DB(13) + DB(2) = 3 + 3 = 6.
So according to Eq. (3), the attraction of vertex 5 to module A can be
calculated as MA5→A = DA(5)2 +[DA(6)] +[DA(9)+DA(10)] = 12 +2+5
= 8 and the attraction of vertex 5 to module B can be calculated as
MA5→B = DB(5)2 + [DB(1)] + [DB(13) + DB(2)] = 12 + 2+ 6 = 9.
Because module B is more attractive to Vertex 5, Vertex 5 is more likely
to join module B.

Second condition, (ii) when a vertex is inequal within two
modules at the first-level connection. For example, for vertex 4 in
Fig. 2, the degree of vertex 4 in module A is DA(4) = 2, while the degree
of vertex 4 in module B is DB(4) = 1. From this value, module A is more
attractive to vertex 4, then vertex 4 is more likely to join module A. To
clarify using Eq. (3), the module attraction of vertex 4 to module A is
MA4→A = DA(4)2 + [DA(7) + DA(8)] + [DA(10) + DA(11) +
DA(12)] = 22 + 3 + 5 = 12, while the module attraction of vertex 4 to
module B isMA4→B = DB(4)2 + [DB(3)] + [DB(2) + DB(14) +
DB(16)] = 12 + 3 + 5 = 9.

In conclusion, the module attractiveness analysis for vertex 5 reveals
that it has a stronger connection to module B, with a total attractiveness
score of 9, compared to module A, which has a score of 8. This indicates
that vertex 5 is more closely integrated within module B, with higher
connectivity across all three layers, suggesting that it plays a more
central role in module B’s structure. Meanwhile, the module attrac-
tiveness analysis for vertex 4 reveals that it has a stronger connection to
module A, with a total attractiveness score of 12, compared to module B,
which has a score of 9. The calculation considers both direct connections
and indirect connections through subsequent layers, demonstrating that
vertex 5’s and 4’s influence.

3.3. Bird flock effect model

After introducing some symbols and definitions, we started building
the bird flock effect model. The flowchart of community detection
inspired by bird flock effect contains three parts: the network initiali-
zation, submodules formulation, and inspired by bird flock effect, as
shown in Fig. 3.

The explanation of flowchart of community detection inspired by
bird flock effect is in below:

Part 1:Network Initialization. The process begins with the network
initialization, where the similarity measure (simRAuv) between vertices
is calculated, providing a foundation for understanding the relationships
within the network. This is followed by calculating the vertex attraction,
which determines the potential of a vertex to either remain within its
current submodule or join a new one. This part corresponds to the
separation phase in the bird flock effect, where individual vertices
(analogous to birds) begin to separate from each other based on their

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

182

unique characteristics using degree of vertices.
Part 2: Submodules Formation. The flow then transitions into

submodule formulation, which is associated with the alignment phase.
Bird flocking in the sky is not dependent and each bird has their own
characteristics and types. Therefore, the differences among the birds
show the attractiveness of themselves to others and we call vertex
attractiveness (cf. Eq. (2)). The more attraction the birds have, the other
birds will join the module or group automatically. In simple terms, every
vertex selects its neighbours with the strongest attraction according to
two conditions as in Eq. (4):

msub u =

{ g(u), D(u) > Dmax(v), v ∈ N(u)
g(v)

max(MA(u→v))

,D(u) ≤ Dmax(v), v ∈ N(u) (4)

where g(u) represents the original module to which vertex u belongs,
d(u) is the degree of vertex u, and msub u denotes as the submodule. If
vertex u has more attraction than its neighbors, then it has more degree
and vertex u will remain in the original module, m(u). Similarly, if
neighbor vertex v has more degree, then vertex u will join the module in
which vertex v belongs g(v). During this phase, the algorithm checks
whether each vertex has a higher degree of connectivity than its
neighbors iteratively. If a vertex’s degree is higher, it remains in its
original module, but if it is lower, the vertex joins the submodule of the
neighboring vertex with the highest degree. This decision-making pro-
cess mirrors the behavior of birds aligning themselves within a flock
based on the direction and movement of those closest to them.

Part 3: Inspired by Bird flock effect. After obtaining the

submodules, an increasing number of vertices are attracted to different
submodules according to Eq. (5).

M(u) = Mi
max(MAu→mi)

(5)

whereM(u) is the module that vertex uwill join,Mi is the neighborhood
module of vertex u is evaluating, and MAu→mi denotes the maximum
module attractiveness that vertex u experiences toward any of the
available submodules mi. The structure and attractiveness of sub-
modules may change when a vertex joins it by variations of modules
formation. The update process culminates by iteratively refining and
stabilizing the network, ensuring all vertices are grouped into the most
attractive neighboring modules, resulting in a cohesive and stable
network structure. The bird flock effect metaphorically unites these
phases, illustrating the dynamic adjustment and final alignment of all
vertices into reveal the modules.

This process continues if there are vertices in the network that have
not yet joined a module. Over multiple cycles, each vertex adjusts its
attractiveness based on the evolving network topology. As vertices join
different modules, the network structure gradually stabilizes, reaching a
point where vertices no longer change their module assignments. This
stabilization ensures that the community structure is cohesive and well-
defined, akin to a flock of birds moving together in harmony once their
positions within the group are settled.

3.4. DCDBFE framework

We used the bird flock effect to embed in dynamic community
detecting algorithm. Here, we provide the step by step to understand the
specific iterative approach employed by DCDBFE for detecting com-
munities in each network snapshot. Fig. 4 illustrates the whole frame-
work of proposed algorithm. The process begins with constructing the
network using either an extended LFR dataset or real-world networks.
The proposed dynamic community detection approach consists of two
main components: initial and incremental community detection, each
designed to identify and adapt the community structure within evolving
networks.

The detailed of framework of DCDBFE algorithm:
Initial community detection. This initial community detection step

is labelled as CDBFE. This component is guided by a model inspired by
the bird flock effect, which involves three key phases: Separation,
Alignment, and Cohesion. This approach obtained initial modulesM0 at
time step T0 from the whole network G0.

By studying the model, researchers can now guess how these mod-
ules will react to changes in their surroundings. According to the three
phases of bird flock effect model mentioned earlier, Fig. 5 demonstrates
the process of incremental community detection based on the bird flock
effect from time steps T1 until T8. This figure illustrates how commu-
nities evolve over time within a network as vertices, V and edges, E are
added or removed, thereby affecting the overall community structure.

Incremental community detection. This incremental community
detection step, labeled as DCDBFE, will repeat the process of community
detection at each time step after the initial community detection. The
detailed process of incremental community detection is provided below:

(1) Extract Changed Submodules, Δmts. In contrast to a static
network, the vertices and edges in a dynamic network can vary
over time, leading to ongoing changes in the community struc-
ture across different time steps. These changes include adding or
deleting vertices and edges, which are handled by specific
algorithms.

(a) Addition Vertex Event, VAV . When a new vertex and its associ-
ated edges are added to the current time step, Gts, rather than the
previous time step, Gts− 1 it is referred to as a vertex addition

Fig. 4. Framework of DCDBFE.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

183

Fig. 5. Demonstration of the process of incremental community detection based on bird flock effect from time steps T1 until T8.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

184

event. Let’s denote the addition vertex as VAV . We define this
formally in Eq. (6):

VAV = {u|u ∈ Vts, u ∕∈ Vts− 1} (6)

where Vts and Vts− 1 denote the vertices in networks Gts and Gts− 1,
respectively. The addition of new vertices can lead to changes in the
community structure within the network, and two possible scenarios
may arise: (i) the addition of a vertex within a single module, and (ii) the
addition of a vertex between two modules. Fig. 5(b) demonstrates when
a vertex V1 is introduced within amodule at T1, the community structure
remains unchanged. The inclusion of additional vertices within a mod-
ule enhances interconnectivity, consequently increasing the connection
density. However, the overall number of modules remains unchanged,
and the newly inserted vertex must be partitioned within the commu-
nity. Quick Community Adaptation (QCA) provides theoretical proof for
this [81]. On the other hand, Fig. 5(c) shows the addition of a vertex V2
between two modules at T2 has the potential to induce modifications in
the community structure. In this scenario, it is necessary to document
the newly added vertex along with its corresponding edges and the
modules it connects to. These elements are then incorporated into the
submodules, denoted as Δmts.

Deletion Vertex Event, VDV.When a vertex and its associated edges
are eliminated from the current time step Gts, rather than the previous
time stepGts− 1, it is referred to as a deletion vertex event. Deletion vertex
is represented by VDV as shown in Eq. (7):

VDV = {u|u ∕∈ Vts, u ∈ Vts− 1} (7)

where Vts and Vts− 1 denote the vertices in networks Gts and Gts− 1,
respectively. Fig. 5(d) and Fig. 5(e) show a deletion edge within single
module and between module, respectively. We observe that deletion
vertex of vertex V2 within a module at T3 and vertex V3 between mod-
ules at T4 leads to changes in the community structure. When deleting a
vertex, its associated edges must also be removed. The connected
modules are then added to the submodules Δmts.

Addition Edge Event, EAE. Similarly, adding new edges to the cur-
rent time step Gts, as opposed to the previous time step Gts− 1 is referred
to as an edge addition event. This is defined formally in Eq. (8):

EAE = {e|e ∈ Ets, e ∕∈ Ets− 1} (8)

where Ets and Ets− 1 denote the edges of networks Gts and Gts− 1, respec-
tively. Adding edge E1 inside a module at T5 will not change the struc-
ture of the community; instead, it will increase the density of edges
within the module as shown in Fig. 5(f). However, Fig. 5(g) show
changes in the community structure may result from the addition of
edges E1 between modules at T6. Therefore, there is no need to re-detect
the module for newly added edges.

Deletion Edge Event, EDE. An edge deletion event occurs when an
edge is eliminated from the previous time step Gts− 1, and instead appears
in the current time step Gts. The deleted edges are represented by EDE as
shown in Eq. (9):

EDE = {e|e ∕∈ Ets, e ∈ Ets− 1} (9)

where Ets and Ets− 1 denote the edges of networks Gts and Gts− 1,
respectively. A community’s structure may change as a result of edge
deletion. However, because there are typically few connections between
modules, eliminating the edges E1between them at T7 often has little
effect on their structure. In contrast, Fig. 5(i) shows that removing edge
E3 within a module at T8 might cause a split or division. Consequently, it
is necessary to compute the deleted edges and the related modules in the
submodules Δmts.

(2) Compute Changed Modules ΔMts. By adding and deleting
vertices and edges from the network, we may compute the sub-
modules Δmts, which may change the community structure. Next,

we use the bird flock effect model to find modules in the sub-
modules to complete Algorithm 1 (CDBFE).

(3) Compute Unchanged Modules, M t́s− 1. The modules Mts− 1 can
be obtained at time steps Gts− 1. Additionally, the modules whose
structures are most likely to change, as indicated by the changed
submodules Δmts, can be computed. By computing the difference
between the two sets, the unchanged modules M t́s− 1 at current
time step Gts can be obtained.

(4) Compute all Modules,Mts of network Gts.Modules in time step,
Mts consist of unchanged modules M t́s− 1 and changed modules
ΔMts. LetMts represent the modules of network Gts at time step, ts,
which is defined in Eq. (10):

Mts = M t́s− 1 +ΔMts (10)

In this study, dynamic community detection based on bird flock ef-
fect model uses repeated event processing such as adding and removing
vertices and edges, to produce an accurate and efficient community. This
approach is supported by some researchers with a good understanding of
community detection [66–68,82].

3.5. DCDBFE algorithm

In this section, we introduce the DCDBFE algorithm, an extension of
the CDBFE algorithm, which is proposed to find communities in dy-
namic networks. While the CDBFE algorithm is used for static networks,
we have improved and modified it to be embedded in a dynamic setting.
The DCDBFE consists of three steps: (1) Initialization community
detection, (2) Change submodules, and (3) Dynamic community detec-
tion. The pseudo code is presented as Algorithm 16, and we will explain
the steps involved in these algorithms.

Initialization Community Detection. The bird flock effect model is
applied to simulate the network’s behaviour in detecting communities,
drawing inspiration from how birds flock together based on their posi-
tions and attractions to one another. Initially, each vertex is treated as a
separate module, with its degree representing its resources. Submodules
are then formed by drawing vertices towards their neighbouring
vertices, as described in Eq. (4). The bird flock effect is further simulated
through an iterative process, following the procedures outlined in Eqs.
(3) and (5). This iterative approach is crucial in Phase 3, where module
attractiveness is calculated using Eq. (3). The process involves evalu-
ating each vertex’s attraction to its neighbours, extending up to the third
layer. Eq. (5) models the structure and attractiveness of submodules for
each vertex. The network’s module structure reaches stability when all
vertices have joined different modules, and no further changes occur.

If the community structure of the network is known at advance,
ground truth measure is used [27]. The most popular measurement for
evaluating the quality of community detected uses the normal mutual
index (NMI) [83] and adjusted random index (ARI) [84] as indicator.
Due to topologically driven influences, the network eventually con-
verges as it changes over time, allowing us to obtain the optimal module
partition.

For example, flock control is distributed to each bird by having them
follow their neighbors’ actions. The behavior of separation requires
birds to avoid their neighbors, with the force of separation increasing as
they get closer. Due to this separation rule, each bird in the flock creates
space around itself. More space gives a bird greater maneuverability,
reducing the risk of collisions. A balanced flock is achieved when all
separation forces equal zero, meaning each bird is sufficiently distanced
from its neighbors. Birds should coordinate their direction based on the
similarity value, with greater attraction balancing the flock as birds
maintain the same direction, which also maintains separation and
cohesion forces. Consequently, we employed the CDBFE algorithm to
determine the original network’s community structure at a given time
step, T0. Algorithm 1 provides the pseudocode for the CDBFE algorithm.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

185

Algorithm 1. CDBFE

• Changed Submodules. Considering actions that might lead to
changes in the community structure, we divided network events into
four categories—addition vertex, deletion vertex, addition edge, and

deletion edge. Algorithms 2–5 show the detailed process that each
event returns a changeable submodule, ΔMts.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

186

Algorithm 2. Addition Vertex Event.

Algorithm 3. Deletion Vertex Event.

Algorithm 4. Addition Edge Event

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

187

Algorithm 5. Deletion Edge Event

• Dynamic Community Detection. Over time, we identified the
modules by constructing upon the obtained changed submodules
using the bird flock effect model. The DCDBFE algorithm outlined in
Algorithm 6 starts with an initial community detection at time step
T0. In Step 1, the algorithm receives the dynamic network, repre-
sented as a series of snapshots DynGt = {G0,G1,…,Gts}, as input. Step
2 involves applying the CDBFE (Algorithm 1) to the initial network
snapshot G0, which results in the first set of modulesM0. This setM0
serves as the baseline for further dynamic community detection in
subsequent time steps. The dynamic phase of the algorithm begins at
Step 3, where a loop iterates through each time steps starting from ts
= 1.

Within each iteration, Step 5 computes the sets of vertices and edges

that have been added or deleted at the current time step, denoted as VAV ,

VDV , EAE, EDE. In Steps 6 and 7, the algorithm updates the community
structure by adding and deleting vertices using the respective Eqs. (6
and 7). Steps 8 and 9 involve updating the edges in the community
structure based on the added and deleted edges using Eq. (8 and 9). In
Step 10, the algorithm calculates the modules that remain unchanged
from the previous time step. Step 11 then applies the CDBFE function to
the modified network snapshot ΔGts, producing an updated community
structure Mts. Finally, Step 12 computes the complete community
structure for the current time step using Eq. 10, and the loop continues
until all time steps are processed, concluding in Step 13.

Algorithm 6. DCDBFE.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

188

4. Experiments

In this study, we evaluated the performance of our dynamic com-
munity detection algorithm, DCDBFE, on both synthetic and real-world
networks commonly used in the study of community detection over
time. The results were compared with those of several popular dynamic
community detection methods, including FaceNet, QCA, DCDID, DYN-
MOGA, IncNSA, and DCDME. A brief description of five of these
methods is provided below.

FacetNet (2009) is a dynamic community detection technique that
employs non-negative matrix decomposition and cost function optimi-
zation, using Kullback-Leibler (KL) divergence tominimize snapshot and
temporal costs in evolutionary clustering. However, its effectiveness is
limited by the need for parameter settings, such as specifying the
number of communities in the network [85].

QCA (2011) is a modularity optimization method designed for dy-
namic online social networks, adapting to structural changes to identify
new communities efficiently with minimal computational resources.
QCA may overlook certain structural properties of communities and
struggle with scalability in extremely large networks, leading to
increased complexity and longer processing times [81].

DYNMOGA (2014) utilizes a multi-objective genetic algorithm to
detect communities in dynamic networks, aiming to maximize cluster
accuracy while minimizing drift between time steps. Despite its effec-
tiveness, DYNMOGA requires manual parameter tuning and can face
challenges with high spatial and temporal complexity, especially in
networks with rapidly changing dynamics [64].

DCDID (2019) is an incremental approach that uses an information
dynamics model and batch processing to incrementally detect commu-
nities in dynamic networks, improving accuracy by filtering unmodified
subgraphs. However, it faces challenges with parameter tuning, high
time complexity, and reduced detection accuracy as the network’s
complexity increases, leading to higher computational costs over time
[67].

IncNSA (2020) is an incremental approach that identifies dynamic
communities by analyzing node variations, focusing on new or active
nodes from previous snapshots to detect high-quality community
structures. While it excels in identifying community structures, it may
not efficiently address all node affiliations, as it primarily targets
newborn or active nodes, potentially overlooking others in the network

[66].
DCDME (2022) is an incremental approach that based on the

Matthew effect, designed to detect community structures in dynamic
networks by incrementally processing each network snapshot. While it
performs well without requiring settings and scales effectively, DCDME
may struggle with networks that have a low clustering coefficient,
leading to challenges in reliably detecting communities in rapidly
changing or decentralized structures [68].

4.1. Data description

This section provides two types of datasets: synthetic and real-world
networks.

Synthetic networks
Synthetic network is a generated network which the ground-truth

communities are known and provided by Lancichinetti-Fortunato-
Radicchi (LFR) in 2008. Then, in 2010, Greene at al. made an
improvement to suit for dynamic network called extended LFR [86].
This extended LFR model allows the generation of networks with spe-
cific parameters, such as the average degree of vertices d, and the mixing
parameter 0 < μ < 1 [27], providing a controlled environment for
testing. The ability to quickly generate these networks, due to their
linear complexity in construction, makes them ideal for analyzing how
various hyperparameters—such as resolution parameters, time decay
factors, and community merging thresholds—affect the accuracy and
performance of community detection methods. By leveraging synthetic
networks, researchers can systematically optimize hyperparameters to
enhance the effectiveness of dynamic community detection in
real-world scenarios. Table 1 provides detailed descriptions of the pa-
rameters of the extended LFR model. The details of synthetic network
used in this study are shown in Table 2.

The description of each extended LFR network is provided below
[67,68]:

1. Expansion and contraction networks: This is the process of
adjusting the size of a community or the number of vertices and
edges inside a community in each time step. The process is also
known as the network grows or shrinks, respectively. It affects the
overall network size and connectivity. In this study, the variation of

Table 1
Description of parameters of the extended LFR.

Symbol Definition

n Number of vertices in each time step
S Number of time steps in the dynamic network
μ Mixing parameter
k Average degree of the dynamic network
p Probability of vertex switching between two adjacent time steps
e Number of modules expands in every time step
c Number of modules contracts in every time step
b Number of modules births in every time step
d Number of modules deaths in every time step
m Number of modules mergers in every time step
s Number of modules splits in every time step

Table 2
Synthetic network used in experiment.

No Extended LFR Network Fix Parameter, n = 1000, S = cmin = 20

e c b d m s μ k p

1 Effect of Expansion and Contraction 5, 20, 40 5, 20, 40 - - - - 0.1 5 0.1
2 Effect of Birth and Death - - 2,8,16 2, 8 - - 0.1 5 0.1
3 Effect of merger and Split - - - - 5, 20, 40 5, 20, 40 0.1 5 0.1
4 Effect of Mixing Parameter - - - - - - 0.2, 0.4 5 0.1
5 Effect of Community Density - - - - - - - 5, 15, 25 0.1
6 Effect of Vertex Switching - - - - - - 0.1 5 0.1, 0.4, 0.8

Table 3
The real-world network features.

Network Feature

Nodes
(n)

Edges
(m)

Average
number of
degrees
(k)

Average
clustering
coefficient
(CC)

Number of
Time Step
(S)

WC 88 537 11.4 0.38 8
HS2011 123 1271 20 0.51 7
HS2012 175 1629 18 0.43 8
PS 239 6146 50.8 0.52 9
NCC 107

180
375
567

4.3 0.49 17

CC 107
166

375
543

4.3 0.49 17

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

189

expansion, e = 5, 20,40 and the variation of contraction, c = 5, 20,
40.

2. Birth and death networks: This is the process of introducing new
nodes into the network or removal or deactivation of existing nodes
from the network. It does not necessarily imply the addition of new
edges unless explicitly stated. It affects the network composition. In
this study, the variation of number of communities birth, b = 2, 8, 16
and the variation of number of communities death, d = 2, 8.
Extended LFR benchmark could not generate the time path when
community birth and death both reached 16, therefore no d = 16
variety.

3. Merger and split networks: This is the process of combining mul-
tiple clusters or components into one or dividing a cluster or
component into multiple parts. It affects the internal structure and
organization of clusters. In this study, the variation number of
community merger, m = 5, 20, 40, and the variation number of
community splits, s = 5,20,40.

4. Mixing parameter networks: This is the process of controlling the
degree of interconnectedness between vertices within a community
(kintra) versus vertices between different communities (kinter). It is
used to assess the strength and clarity of community structures
within a network. Lower mixing parameters (μ≈0) indicate stronger
and more distinct communities, while higher mixing parameters
(μ≈1) suggest more inter-community connections and less distinct
community boundaries. The mixing parameter, μ can be defined as;

μ =
kinteri
ki where k is the degree of vertex i. Alternatively, it can be

expressed in terms of the intra-community connections as: μ = 1 −

kintrai
ki . In this study, the variation of mixing parameter value is μ = 0.2,

0.6. Community detection becomes harder as mixing parameters
increases.

5. Community density networks: This is the process of measuring the
cohesiveness and distinctiveness of community structures. It is about
intra- and inter-community edge densities, focused on understanding

Fig. 6. Comparison of NMI and ARI indicators with 5 events of expansion and 5 events of contraction.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

190

community strength and interactions. In this study, the variation of
the average degree, k = 5,15,25.

6. Vertex switching networks: This is the process of altering the
network structure while maintaining certain constraints like degree
distribution. It is an edge rewiring between existing nodes,
randomizing or optimizing specific network properties. In this study,
the variation of probability, p = 0.1,0.4,0.8

Real-world networks
We also conducted an experiment on four real-world networks, with

the details provided in Table 3.
The real-world datasets use in sociology. Fundamentally, empirical

networks are unknown ground truths. The description of each social
network is provided below:

1. Primary School dynamic networks: A student-teacher social
network and the data set contains a time series network of contacts
between children and teachers. Each child or teacher represents a
vertex, and the contact between them represents an edge.

2. Workplace Contact dynamic networks: A social network of con-
tacts between people in a French office building. The time series has

five departments as real communities and recorded contact between
people at intervals is 20 seconds.

3. High School 2011 dynamic networks: A social network of con-
nections formed between student by three classes of a high school in
Marseille, France. The time series is in December 2011. HS2011 has 7
paths or time slices and each of it has three communities. In HSD11
dynamic network, one vertex represents a student, and one edge
indicates that there is a connection between the students.

4. High School 2012 dynamic networks: Similar to HS2011, a social
network of connections formed between student by five classes of a
high school in Marseille, France. The time series is in November
2012. HS2012 has 7 paths or time slices and each of it has five
communities. The other information is consistent with HSD11.

5. Cumulative Co-authorship Network (CC): This dataset represents
a collaboration network derived from a citation network. The version
used in this study has been curated and modified based on reference
Chakraborty, T. et al., 2014. In this dynamic network, each node
represents an author, while edges denote coauthorship relationships.
The CC network accumulates the changes of nodes and edges over
time, reflecting ongoing collaborations.

Fig. 7. Comparison of NMI and ARI indicators with 20 events of expansion and 20 events of contraction.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

191

6. Noncumulative Co-authorship Network (NCC): Similar to the CC
network, this dataset also represents a collaboration network.
However, unlike the CC network, the NCC dynamic network does not
accumulate changes. In this case, even if two authors coauthor
multiple papers, only a single link exists between them, regardless of
how many collaborations occur.

4.2. Evaluation metrics

To evaluate the effectiveness and community structure correctness of
different methodologies, two commonly criteria; normalized mutual
index (NMI) [83], and adjusted random index (ARI) [87], were used.
Results improved with higher NMI, and ARI values [88].

A well-known information theory function of NMI is represented as
in Eq. (11) as follows:

NMI =
2I(U;V)

H(U) +H(V)
(11)

where U and V are the partitions of communities, I(U;V) denotes the
mutual information of random variables U and V, and H(U) represents
the entropy of U. NMI represents the degree of dependence between two
partitions. When the ground truth is known, the NMI can be used to
compare the partitions given by proposed algorithms to the ground truth
and non-overlapping community identification. NMI computations
calculate the similarity (mutual information) between network groups,
which indicates a clustering method’s robustness and homogeneity. The
value of NMI ranges from 0 to 1, where 0 represents that the detected
communities are completely independent of the real communities, and 1
denotes a perfect match with the ground truth. A higher NMI score in-
dicates a better alignment between the detected communities and the
actual structure of the network.

Fig. 8. Comparison of NMI and ARI indicators with 40 events of expansion and 40 events of contraction.

Fig. 9. Comparison of NMI and ARI indicators with 2 events of birth and 2 events of death.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

192

Fig. 11. Comparison of NMI and ARI indicators with 16 events of birth and death 8 events of death.

Fig. 10. Comparison of NMI and ARI indicators with 8 events of birth and 8 events of death.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

193

ARI is another function to evaluate the similarity between two
communities. The definition of ARI is explained as in Eq. (12) as follows:

ARI =
RI − RIexpected

RImax + RIexpected
(12)

where R is the random and I is the index. RI denotes the similarity of two
partitions, which includes all pairs of samples. Next, it calculates the
numbers of pairs that are assigned to the same or different partitions in
the predicted and true partitions [89]. More details can be referred to
[87]. It quantifies the accuracy of community detection results, with a
higher ARI indicating better performance.

4.3. Performance evaluation

In this section, we execute all the algorithms on a device with
installed python running on an Intel Core i7-7700 CPU @ 2.8 GHz and
24 GB of RAM. In these experiments, we employed the parameters of
comparison algorithms to the default values suggested by the authors.

The codes of QCA, FacetNet, DYNMOGA, IncNSA, DCDME, and DCDBFE
are available at GitHub (https://github.com/sitiharyanti/DC
DBFE_2024). For each dynamic network, the average result of each al-
gorithm was obtained by averaging 20 independent runs. We conducted
experiments on both well-studied synthetic and real-world networks to
validate our approaches.

5. Results and discussion

This section presents the results and analysis on the development of
dynamic community detection based on bird flock effect (DCDBFE). The
performance of the proposed method is compared to various community
detection methods in synthetic benchmark and real-world networks.

5.1. Results on synthetics networks

In the actual world, community expansion and contraction, birth and
death, merger and splitting, and vertex switching across communities

Fig. 12. Comparison of NMI and ARI indicators with 5 events of merger and 5 events of split.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

194

https://github.com/sitiharyanti/DCDBFE_2024
https://github.com/sitiharyanti/DCDBFE_2024

occur in dynamic networks. It is now standard practice in the field to test
community detection methods on data that have been generated [90].
To simulate community structure fluctuation, we investigated six effects
in extended LFR networks. Without loss of generality, Table 3 lists all
extended LFR network parameters. Figs. 6–22 show the result of com-
parison value of NMI and ARI obtained from these six types of effect.

1) Effect of expansion and contraction

We set the parameters to k = 5, µ = 0.1, and p = 0.1, while varying
the number of expanding and contracting communities from 5 to 40 to
further assess the performance of each algorithm on community
expansion and contraction events. The effectiveness of performance al-
gorithms on 5 events of expansion and 5 events of contraction with the
comparison value of NMI and ARI measurements is shown in Fig. 6(a)-
(d).

In Fig. 6(a), the NMI values of DCDBFE consistently maintain the
highest NMI, indicating excellent clustering quality with a slight dip to
approximately 0.999 at the 7th time step. In contrast, QCA shows a
significant decline, starting around 0.85 and dropping steadily to

approximately 0.3 by the end of the time steps. The other methods
exhibit moderate fluctuations. Fig. 6(b) is a zoom-in view of Fig. 6(a),
highlighting the stability of DCDBFE. DCDME also shows stable per-
formance with high NMI values, close to 1.0, but experiences a slight
drop to about 0.998 at the 7th time step.

Fig. 6(c) illustrates the ARI values, which mirror the NMI trends.
DCDBFE maintains high ARI values, demonstrating robust (high) com-
munity detected consistency, while QCA’s ARI declines considerably
over time. Fig. 6(d) focuses on high ARI values, further emphasizing
DCDBFE’s stability, with a slight decrease to around 0.998 at the 7th
time step. Overall, DCDBFE outperforms other methods in both NMI and
ARI, maintaining superior clustering quality and consistency. In
contrast, QCA exhibits the most significant performance decline, with its
lowest NMI reaching 0.3 and its ARI dropping to 0.2.

Furthermore, Fig. 7(a) demonstrates the NMI performance for six
algorithms over 20-time steps for 20 events of expansion and 20 events
of contraction. The DCDBFE algorithm consistently achieved an NMI of
1.0, indicating perfect clustering performance. DCDME also maintains
high NMI values with minor fluctuations. In contrast, algorithms like
QCA and IncNSA exhibited a noticeable decline in NMI as time

Fig. 13. Comparison of NMI and ARI indicators with 20 events of merger and 20 events of split.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

195

progressed, with IncNSA showing a sharp drop after the midpoint.
DYNMOGA demonstrated moderate performance with some fluctua-
tions, while FacetNet remained relatively stable. Fig. 7(c) displays the
ARI for the same algorithms and conditions, corroborating the trends
observed in the NMI analysis. DCDBFE and DCDME maintained the
highest ARI values, indicating superior clustering agreement over time.
The ARI performance of QCA and IncNSA showed more variability, with
IncNSA experiencing a significant decline, similar to its NMI trend.
DYNMOGA and FacetNet showed moderate ARI values, consistent with
their NMI performance. Fig. 7(b) and Fig. 7(d) provide a zoomed-in view
of the best-performing algorithms (DCDBFE and DCDME), confirming
their near-perfect community detected consistency with minimal de-
viations. This detailed comparison highlights the stability of DCDBFE in
dynamic community detection tasks, significantly outperforming other
algorithms.

Fig. 8(a) shows that DCDBFE algorithm consistently maintains an
NMI of 1.0 throughout all time steps, indicating perfect clustering per-
formance and stability despite the dynamic changes. DCDME also per-
formed well with high NMI values, although it experienced minor
fluctuations. On the other hand, QCA exhibited significant decline in
NMI, indicating that it struggled to maintain accurate clustering as the

network evolves. DYNMOGA and IncNSA showed relatively stable but
lower NMI values compared to DCDBFE and DCDME, suggesting mod-
erate performance in handling dynamic changes. FacetNet maintained a
stable but moderate NMI performance throughout the time steps.

Fig. 8(b) displays the ARI values for the same algorithms and con-
ditions, which reflect the degree of agreement between the detected
modules and the true module labels over time. Similar to the NMI re-
sults, DCDBFE achieved the highest ARI values, indicating superior
clustering consistency and accuracy. DCDME also showed high ARI
values with minor variability, reinforcing its stability in dynamic envi-
ronments. QCA again showed a significant drop in ARI, highlighting its
difficulty in maintaining reliable clustering as the network undergoes
expansion and contraction. DYNMOGA exhibited better stability in ARI
compared to NMI, yet still fell short of the top-performing algorithms.
IncNSA and FacetNet displayed moderate ARI values, ranging from 0.3
to 0.6, indicating average performance. Overall, the figure emphasizes
the exceptional stability and performance of DCDBFE and DCDME in
dynamic network clustering, significantly outperforming older algo-
rithms like QCA, which struggle to adapt to dynamic changes.

2) Effect of Birth and Death

Fig. 14. Comparison of NMI and ARI indicators with 40 events of merger and 40 events of split.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

196

We set the parameters to k = 5, µ = 0.1, and p = 0.1, while varying
the number of birth and death communities from 5 to 40 to further assess
the performance of each algorithm on community birth and death
events. Because the dynamic LFR model could not generate a dynamic
network when the number of birth and death communities both reached
16, we changed the number of birth communities from 2 to 16 and
varied the number of death communities from 2 to 8 as shown in
Figs. 9–11. The NMI and ARI indicators show how the DCDME and
DCDBFE algorithms perform under different scenarios of community
birth and death events (birth2 death2, birth8 death8, and birth16
death8). Both algorithms exhibited slight changes in NMI and ARI values
as the number of birth and death events increased. This slight fluctuation
suggests that while these algorithms are stable in detecting and preser-
ving community structures, the introduction of new communities (birth
events) and the dissolution of existing ones (death events) introduce
additional complexity that challenges the algorithms’ ability to main-
tain perfect stability. The AA (Adamic-Adar) and RA (Resource Alloca-
tion) similarity measures used in these algorithms are effective at
capturing local structural information, but as the frequency of these
dynamic events increases, the network’s evolving nature makes it harder
to consistently maintain the same community structure, leading to

minor variations in the NMI and ARI values. These small changes reflect
the inherent difficulty in tracking community births and deaths, even
with stable algorithms like DCDME and DCDBFE.

Fig. 10(a) shows a small improvement (0.15 %) when birth and
death events were 8 at 9th time path. DCDBFE consistently achieved an
NMI of 1.0, demonstrating perfect clustering accuracy throughout the
dynamic changes. DCDME also performed well, maintaining high NMI
values with minor dips at certain points. IncNSA and DYNMOGA
exhibited moderate NMI values with noticeable fluctuations, indicating
a moderate level of adaptability to the birth and death events. However,
QCA showed a significant decline in NMI, reflecting its poor perfor-
mance in maintaining accurate clustering under these dynamic
conditions.

Fig. 10(c) shows the ARI values for the same algorithms, providing a
measure of agreement between the detected clusters and the true cluster
labels over time. Similar to the NMI results, DCDBFE maintained the
highest ARI values throughout the time paths, confirming its superior
clustering consistency and accuracy. DCDME also showed high ARI
values, although it experienced slight drops at specific time points.
IncNSA and DYNMOGA exhibited fluctuating ARI values, indicating
their moderate performance in dynamic environments. QCA again

Fig. 15. Comparison of NMI and ARI indicators with mixing parameter μ = 0.2.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

197

showed a significant decline in ARI, highlighting its inability to maintain
reliable clustering as the network undergoes birth and death events.
Fig. 10(b) and Fig. 10(d) provide a zoomed-in view of the best-
performing algorithms (DCDBFE and DCDME), showing that despite
minor fluctuations, these algorithms maintain near-perfect clustering
accuracy. Overall, the figure emphasizes the robustness and superior
performance of DCDBFE and DCDME in handling dynamic network
conditions, outperforming older algorithms like QCA, which struggle
significantly with the birth and death events.

Fig. 11(a) shows that DCDBFE and DCDME maintain near-perfect
NMI values throughout the time steps, indicating their superior adapt-
ability to the dynamic changes of the community. In contrast, DYN-
MOGA shows a steady decline in performance, and QCA exhibits the
weakest performance, with its NMI values sharply decreasing early on.
Fig. 11(b) presents similar trends in ARI, where DCDBFE and DCDME
maintain almost perfect ARI scores, while DYNMOGA and QCA struggle
significantly as the death events increase. The inability to generate all 16
death events could be due to the limitations of certain algorithms in
managing large-scale node or community removal, which leads to per-
formance degradation, especially in older algorithms like DYNMOGA
and QCA. The best performance from DCDBFE and DCDME can be

attributed to their advanced methodologies, which allow them to handle
both birth and death events efficiently, maintaining high accuracy
despite the structural changes within the network.

3) Effect of merger and Split

In Figs. 12–14, the NMI and ARI indicators illustrate how the DCDME
and DCDBFE algorithms respond to different numbers of community
merger and split events (merger5 split5, merger20 split20, and
merger40 split40). For these algorithms, there are slight changes in the
NMI and ARI values as the number of merger and split events increases.
This suggests that while these algorithms are stable in tracking com-
munity structures, the increasing complexity of the network dynam-
ics—due to more frequent mergers and splits—introduces minor
challenges in maintaining perfectly stable community detection. The use
of AA and RA similarity measures in these algorithms helps in capturing
local structural details effectively, even as communities merge and split,
but as the number of such events increased, the algorithms faced more
difficulty in consistently preserving the exact community structures,
leading to slight fluctuations in the NMI and ARI values. These minor
changes indicate that while the algorithms are generally reliable, the

Fig. 16. Comparison of NMI and ARI indicators with mixing parameter μ = 0.4.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

198

increased frequency of structural changes in the network introduces
complexity that slightly impacts their performance.

Fig. 12(a) shows DCDBFE and DCDME consistently perform at the
highest level, maintaining NMI values close to 1.0 throughout all time
steps, signifying excellent adaptability to dynamic community merging
and splitting. However, DYNMOGA shows a steady decline in NMI
values after the 5th time step, highlighting its difficulty in handling such
events. Fig. 12(b) zooms in on DCDBFE and DCDME, showing minor
fluctuations, particularly at time steps 14 and 18, where both algorithms
briefly dip below 0.998 but quickly recover.

In Fig. 12(c), ARI values reflect similar trends, with DCDBFE and
DCDME maintaining close to perfect performance, while DYNMOGA
and QCA exhibit significant performance degradation over time. IncNSA
performs moderately well, with more variability. Fig. 12(d) highlights
specific dips for DCDBFE and DCDME during the same time steps,
especially at time steps 14 and 18, where both algorithms briefly drop to
around 0.95 but regain their near-perfect ARI afterward. These fluctu-
ations in both NMI and ARI likely result from the complexity introduced
by community splits and merges, which challenge even the most
advanced algorithms, though DCDBFE and DCDME show the best
overall stability and performance.

In Fig. 13(a), DCDBFE and DCDME consistently maintain near-

perfect NMI values, while DYNMOGA steadily declines after the 5th
time step, reflecting its difficulty in handling complex community
changes. IncNSA and FacetNet demonstrate moderate performance,
with more variability. Fig. 13(b) focuses on DCDBFE and DCDME,
showing minor fluctuations around time steps 8, 12, and 16, where the
NMI slightly dips but remains above 0.995.

Fig. 13(c) highlights the ARI performance, where DCDBFE and
DCDME continue to dominate with ARI values consistently near 1.0,
showcasing their robustness in accurately detecting community struc-
tures despite 20 merger and 20 split events. In contrast, DYNMOGA
experiences a sharp decline in ARI after the 5th time step, while QCA
and FacetNet show moderate but fluctuating performance. IncNSA
performs relatively better than the older algorithms but still struggles to
match the consistency of DCDBFE and DCDME. Fig. 13(d) further zooms
in on the ARI fluctuations of DCDBFE and DCDME, showing small dips at
time steps 8, 12, and 16, where the ARI momentarily falls to around 0.98
before quickly recovering. These fluctuations can be attributed to the
complexity introduced by the high number of merging and splitting
events, but overall, DCDBFE and DCDME demonstrate superior adapt-
ability, maintaining high accuracy throughout the process.

Fig. 14(a) shows that DCDBFE and DCDME maintain near-perfect
NMI values close to 1.0 throughout all time steps, while the

Fig. 17. Comparison of NMI and ARI indicators with average degree k = 5.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

199

performance of DYNMOGA drops sharply after the 5th time step and
continues to decline. FacetNet and IncNSA showmoderate performance,
but their NMI values fluctuate significantly, particularly around the 5th
and 10th time steps. In Fig. 14(b), DCDBFE and DCDME showminor dips
in NMI at the 6th, 12th, and 14th time steps, but these fluctuations are
brief, and both algorithms quickly recover. Fig. 14(c) highlights similar
patterns in ARI, where DCDBFE and DCDME again dominate with high
values, while DYNMOGA struggles significantly, dropping to very low
ARI values after the 5th time step. QCA and FacetNet exhibit significant
variability in ARI values, indicating their challenges in handling com-
plex dynamic changes. Fig. 14(d) zooms in on the fluctuations of
DCDBFE and DCDME, particularly during the 6th, 12th, and 14th time
steps, where ARI values momentarily drop to around 0.8 but quickly
recover to near-perfect levels. Despite these minor fluctuations, DCDBFE
and DCDME demonstrate superior adaptability and stability in man-
aging high volumes of merger and split events, solidifying their position

as top performers in dynamic community detection.

4) Effect of mixing parameter

In Fig. 15 and Fig. 16, the NMI and ARI indicators illustrate the
performance of the algorithms at different mixing parameters (μ = 0.2
and μ = 0.4). For both the DCDME and DCDBFE algorithms, there were
slight changes in the NMI and ARI values as the mixing parameter
increased from 0.2 to 0.4, but overall, they remained relatively stable.
This stability suggests that these algorithms effectively manage the
overlap between communities, likely due to their use of AA and RA
similarity measures, which are adept at capturing the local structural
information even as communities become more mixed. However, when
the mixing parameter increased further to μ = 0.8, the results became
very unstable, indicating that the algorithms struggled to maintain ac-
curate community detection in highly mixed networks. At higher mixing

Fig. 18. Comparison of NMI and ARI indicators with average degree k = 15.

Fig. 19. Comparison of NMI and ARI indicators with average degree k = 25.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

200

parameters, the distinction between communities became more blurred,
making it difficult for the similarity measures to discern the underlying
structure, leading to significant fluctuations in NMI and ARI values. This
instability reflects the challenge of accurately detecting communities in
networks where nodes share connections with many different
communities.

Fig. 15 compares the performance of six different algorithms in terms
of NMI and ARI for dynamic community detection, with a mixing
parameter μ = 0.2. Fig. 15(a) and Fig. 15(c) present the variation of NMI
and ARI values over 20 time steps, while Fig. 15(b) and Fig. 15(d) focus
on a detailed comparison of DCDME and DCDBFE, showing their
exceptional stability. In Fig. 15(a), DCDBFE and DCDME achieve near-
perfect NMI values, maintaining around 1.0 throughout the time steps.
By contrast, DYNMOGA experiences a significant decline from approx-
imately 0.8 at the 5th time step to about 0.45 at the 15th. QCA and
IncNSA exhibit moderate performance, with FacetNet staying relatively

stable but lower than the top performers. In Fig. 15(c), the ARI values
show a similar pattern: DCDBFE and DCDME remain close to 1.0, while
DYNMOGA drops sharply. QCA and IncNSA maintain moderate levels,
and FacetNet is more consistent. The consistently high values for
DCDBFE and DCDME indicate their stability in handling dynamic
changes, especially with low noise, while the significant drop in DYN-
MOGA suggests its lower adaptability to evolving community structures.

In Fig. 16(a) and Fig. 16(c), DCDBFE and DCDME consistently ach-
ieve near-perfect NMI and ARI values, showing exceptional stability
across all time steps. Fig. 16(b) and Fig. 16(d) provide a zoomed-in view
of the best-performing algorithms of DCDME and DCDBFE, showing
their exceptional stability. In contrast, DYNMOGA steadily declines in
both metrics after the initial time steps. At the 4th and 5th time steps,
DCDBFE and DCDME maintain NMI and ARI values close to 1.0,
reflecting superior performance. However, at the 6th and 8th time steps,
there are slight dips, especially in NMI, where DCDBFE drops to around

Fig. 20. Comparison of NMI and ARI indicators with probability p = 0.1.

Fig. 21. Comparison of NMI and ARI indicators with probability p = 0.4.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

201

0.998. These fluctuations may be attributed to changes in the data
structure, where community overlaps or dynamic adjustments tempo-
rarily challenge the algorithms’ ability to detect clusters consistently. At
the 15th and 16th time steps, both algorithms exhibit small fluctuations,
but their values remain above 0.995, while DYNMOGA continues its
sharp decline in ARI, falling to around 0.5 by the 15th time step. These
results underscore the strong resilience of DCDBFE and DCDME in
managing complex and dynamic data scenarios despite temporary
fluctuations due to structural changes in the network.

5) Effect of community density

In Figs. 17–19, the NMI and ARI indicators compare the performance
of various algorithms across different time steps and average degrees (k
= 5, 15, and 25). For the DCDME and DCDBFE algorithms, the NMI and
ARI values remained stable and consistent when the average degree was

higher (k = 15 and k = 25), indicating that these algorithms effectively
preserve the community structure in denser networks. The lack of
change in these metrics suggests that the AA and RA similarity measures
employed by these algorithms are particularly well-suited to handling
networks with higher connectivity, where they can accurately capture
the local structural information. However, when the average degree was
lower (k = 5), there were some fluctuations in the NMI and ARI values,
likely because sparser networks present fewer connections, making it
more challenging for these similarity measures to maintain consistent
community detection. In sparse networks, the lower number of edges
reduces the effectiveness of AA and RA in capturing the necessary
structural cues, leading to more noticeable changes in the community
structure as detected by these algorithms.

Fig. 17(a) and Fig. 17(b) display the NMI values, while Fig. 17(c) and
Fig. 17(d) show the ARI values. The algorithms compared are FacetNet,
QCA, DYNMOGA, IncSNA, DCDME, and DCDBFE. In Fig. 17(a) and

Fig. 22. Comparison of NMI and ARI indicators with probability p = 0.8.

Fig. 23. Comparison methods on workplace contact in terms of NMI and ARI.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

202

Fig. 17(c), which focus on the performance over time, DCDME and
DCDBFE maintain higher NMI and ARI scores compared to the other
algorithms. IncSNA shows a notable decrease in both NMI and ARI
values as the time steps increase. Fig. 17(b) and Fig. 17(d) show varia-
tions in NMI and ARI across time steps for DCDBFE and DCDME, high-
lighting the slight fluctuations in the performance of these two
algorithms, with DCDBFE consistently achieving higher stability and
accuracy.

Fig. 18 and Fig. 19 compare the performance of clustering algorithms
based on NMI and ARI over time for two different average degrees, k =

15 and k = 25. In both figures, the algorithms DCDME and DCDBFE
demonstrate consistently high and stable performance across time steps
for both NMI and ARI, regardless of the increase in the average degree.
In contrast, IncSNA shows a steep decline in both metrics, particularly
after the initial time steps, indicating its poor performance in main-
taining accurate clustering over time as the network evolves. The other
algorithms, such as FacetNet, QCA, and DYNMOGA, show moderate and
relatively stable performance but are consistently outperformed by

DCDME and DCDBFE. This suggests that DCDBFE is the most stable and
accurate algorithm, offering superior clustering stability as measured by
both NMI and ARI, particularly as the average degree k increases,
highlighting its effectiveness in more complex networks.

6) Effect of vertex switching

We varied the value of p from 0.1 to 0.8 and fixed the parameters k=

5, and µ = 0.1. Figs. 20–22 shows the performance of comparison al-
gorithms with different p on NMI and ARI metrics and we only visualized
the results of community detection when p is 0.1, 0.4, and 0.8 across
different time steps. Notably, both the DCDME and DCDBFE algorithms
maintained consistent NMI and ARI values throughout the time steps,
unlike the other algorithms, which showed significant fluctuations. This
consistency indicates that DCDME and DCDBFE are highly robust and
stable in preserving the quality of the detected communities over time,
regardless of the probability parameter. The reason why is because the
stability of these algorithms can be attributed to their effective use of AA

Fig. 24. Comparison methods on primary school in terms of NMI and ARI.

Fig. 25. Comparison methods on high school in 2011 in terms of NMI and ARI.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

203

and RA similarity measures, which robustly capture the local structural
information in dynamic networks, ensuring consistent community
detection as the network evolves. Even as the probability of vertex
switching increased from 0.1 to 0.8, potentially causing more drastic
changes in the network structure, DCDME and DCDBFE continued to
accurately track the underlying community structure, reflected in the
unchanging NMI and ARI values across different time steps.

The other algorithms—QCA, FacetNet, DYNMOGA, and
IncNSA—showed varying degrees of sensitivity to changes in the net-
work’s structure, as reflected in the fluctuations of their NMI and ARI
values across different time paths and probabilities. QCA exhibited the
most significant decline in performance, particularly as the probability
of vertex switching increased, indicating its vulnerability to network
changes. FacetNet, while more stable than QCA, still showed some
variability, suggesting that it struggled to maintain consistent commu-
nity detection as the network evolves. DYNMOGA and IncNSA displayed
moderate fluctuations, with DYNMOGA generally maintaining higher
NMI and ARI values than QCA and FacetNet, yet still showing sensitivity
to increasing vertex switching probabilities. IncNSA, while more stable
at higher probabilities, also exhibited some instability, particularly at

lower probabilities. These fluctuations indicate that these algorithms are
less stable in capturing and maintaining community structure in dy-
namic networks, particularly as the network undergoes more significant
changes.

5.2. Results on real-world networks

Now we tested the performance of DCDBFE using four real-world
networks that have received significant attention from many re-
searchers [66–68,81,91]. The details of these six real-world networks
are explained in Section 4.1. In the experiments, we used NMI and ARI to
evaluate the quality of the extracted community structures due to the
absence of ground-truth community structures. The comparison of al-
gorithms on the six real-world dynamic networks is shown in
Figs. 23–28, illustrating the overall performance of each approach.

Fig. 23 shows a comparative analysis of different algorithms on dy-
namic workplace contact networks, evaluating their performance using
NMI and ARI over 8th time steps. The results indicated that DCDBFE and
DCDME significantly outperformed older algorithms like QCA, DYN-
MOGA, IncNSA, and DCDID in terms of both NMI and ARI. DCDBFE

Fig. 26. Comparison methods on high school in 2012 in terms of NMI and ARI.

Fig. 27. Comparison methods on cummulative coauthor in term of NMI and ARI.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

204

consistently achieved NMI values above 0.7, peaking at 0.75 at 6th time
step, and ARI values around 0.75 at 5th time step, demonstrating
exceptional clustering accuracy and stability over time. DCDME also
maintained high performance, with NMI peaking at 0.7 at 7th time step
and ARI around 0.65 at the same time step. These results highlight the
stability and adaptability of these newer models in dynamic conditions,
where older models like QCA showed significant declines in perfor-
mance, with NMI values starting at 0.3 and peaking at 0.6, and ARI
values starting at 0.2 and peaking at 0.5. The superior performance of
DCDBFE and DCDME is attributed to their advanced design, which
effectively handles frequent changes in network structure, thereby
providing more stable and accurate clustering results.

Fig. 24 compares the performance of different clustering methods on
primary school networks using NMI and ARI metrics. DCDME and
DCDBFE maintain consistently high and stable values for both NMI and
ARI across all time steps, demonstrating superior performance compared
to other methods like DYNMOGA and IncSNA, which show significant
fluctuations and lower overall clustering accuracy, suggesting they
struggle to adapt effectively to the evolving structure of the network.
NMI results of DCDBFE indicate their strong ability to handle dynamic
changes in primary school networks, maintaining stable and accurate
clustering performance.

Fig. 25 and Fig. 26 compare the performance of clustering methods
in high school networks for the years 2011 and 2012, respectively, using
NMI and ARI metrics. In both figures, DCDBFE and DCDME generally
show superior performance, with higher and more stable NMI and ARI
values compared to the other algorithms, although there are some
fluctuations in certain time steps. Methods like QCA and DYNMOGA
perform notably worse, showing consistently lower and less stable
values, particularly in ARI, highlighting their reduced adaptability to
dynamic changes in the high school networks over time.

Fig. 27 and Fig. 28 clearly demonstrate the superior performance of
DCDBFE in both cumulative and non-cumulative coauthor networks.
DCDBFE consistently maintains the highest NMI and ARI values, indi-
cating its stability in capturing and preserving community structures as
the network evolves. DCDME also performs exceptionally well, closely
matching the performance of DCDBFE in both cumulative and non-
cumulative coauthor networks. This algorithm demonstrates minimal
fluctuations over time, outperforming other methods like QCA, IncNSA,
and DCDID, which show significant declines in both metrics. Notably,
DCDBFE achieves a balance between stability and accuracy across all
time steps, particularly in comparison to older algorithms that fail to

keep pace with the network’s dynamic changes. This consistent perfor-
mance across both networks positions DCDBFE as the most reliable and
effective algorithm for dynamic community detection.

In conclusion, numerous studies on dynamic networks have shown
that the DCDBFE algorithm remains capable and can effectively detect
communities by leveraging network events. In synthetic dynamic net-
works, the difficulty of community detection is often influenced by the
mixing parameter µ. When the values of the mixing parameter exceed
0.4, many community detection algorithms face significant challenges.
In real-world network, the DCDBFE algorithm also performed well with
varying characteristics.

5.3. Limitation and challenges

DCDBFE addresses the challenge of identifying community struc-
tures in dynamic networks. The challenge is from the dataset itself. For
artificial networks, first parameter tuning remains a challenge due to
changing network conditions over time. Artificial networks often
require careful tuning of parameters to simulate realistic dynamic
changes, which can be time-consuming and may not accurately reflect
real-world scenarios. Second, the algorithm’s time complexity increases
as the number of time steps grows, impacting computational efficiency.
While artificial networks provide controlled environments for testing,
they may not capture the full complexity of real-world networks. This
can lead to over-optimistic performance metrics that do not fully
translate to practical applications. Third, there’s an inherent trade-off
between detection accuracy and computational speed. Striking the
right balance is crucial. Fourth, real-world networks exhibit diverse
characteristics, making it challenging to design an algorithm that per-
forms consistently across different domains and scenarios.

The next problem we encountered occurred when running the events
of birth 5 and death 5, which resulted in an error. A significant limitation
in our analysis arose from an IndexError, specifically when attempting
to access an element at position 990 in an array of size 990, where valid
indices range from 0 to 989 due to zero-based indexing. This error
highlights a common challenge in handling array indices, particularly in
contexts requiring precise access to array elements within their bounds.
Such errors typically result from off-by-one mistakes, where the code
inadvertently exceeds the array’s valid index range, leading to runtime
failures. This limitation underscores the need for careful index man-
agement, especially when dealing with dynamic arrays or loops that
iterate over data structures, to ensure robustness and prevent access

Fig. 28. Comparison methods on non-cummulative coauthor in term of NMI and ARI.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

205

violations that could disrupt the analysis.
Challenges for the real-world networks, the data availability and

quality are crucial. First, the real-world dynamic networks, such as those
in primary schools or workplaces, can suffer from issues like incomplete
data, noisy measurements, and irregular updates. These challenges can
affect the accuracy and reliability of clustering results. Second, scal-
ability. As real-world networks grow in size and complexity, ensuring
the scalability of algorithms like DCDBFE becomes crucial. High
computational and memory requirements can limit the practical appli-
cability of these algorithms in large-scale networks. Third, evaluation
Metrics. While NMI and ARI are robust metrics, they may not capture all
aspects of clustering performance in dynamic networks. Developing new
metrics that better reflect the intricacies of dynamic changes and com-
munity evolution remains a challenge.

In summary, the study highlights the exceptional performance of
DCDBFE in dynamic network clustering, evidenced by its high NMI and
ARI values. However, the limitations encountered during testing on both
artificial and real-world networks underscore the need for further
research to address data quality, scalability, and the development of
more comprehensive evaluation metrics.

5.4. Future research

Based on the proposed DCDBFE algorithm, we may further analyze
the algorithm with COVID-19 as a case study. The application of the
DCDBFE algorithm to COVID-19 transmission networks provides sig-
nificant insights into the dynamic evolution of community structures,
revealing how persistent clusters, merging events, and the impact of
interventions such as lockdowns can be analyzed to understand and
manage virus spread. By tracking the stability and changes in commu-
nities over time, the algorithm helps identify sustained transmission
within specific groups and the effectiveness of public health measures in
breaking transmission chains. These findings have practical implications
for public health officials, who can use this information to target in-
terventions more effectively and design strategies for managing future
pandemics. Additionally, the analysis opens avenues for future research,
such as exploring the role of different network topologies in disease
spread and refining dynamic community detection methods to enhance
their predictive capabilities in real-world scenarios.

This contribution is directly aligned with several Sustainable
Development Goals (SDGs). For example, SDG 9 (Industry, Innovation,
and Infrastructure), where the development of robust

computational tools for managing evolving data in dynamic systems
(e.g., telecommunications, transport, and energy grids) enhances infra-
structure stability and fosters innovation, especially in real-time com-
munity detection for industries like smart cities and IoT applications.
Another furter research is realted to SDG 11 (Sustainable Cities and
Communities), which incremental dynamic community detection opti-
mizes urban mobility, energy distribution, and resource management in
smart cities, enabling planners to better predict and adapt to network
changes. It also helps in identifying stable community structures in so-
cial, transportation, and communication networks, contributing to sus-
tainable urban development.

6. Conclusions

This novel work presents dynamic community detection based on
bird flock effect as an eco-system perspective, called DCDBFE. The
ecosystem perspective in network analysis provides a comprehensive
framework to understand the complex interactions and dynamics within
a system, whether it’s a flock of birds or an innovation ecosystem.
DCDBFE is an inspired by bird flock effect using incremental community
detection. The design of this algorithm imitates the three basic rules of
bird flock: separation, alignment, and cohesion. DCDBFE successfully
found high quality community structure naturally in dynamic networks,
without settings any parameter. DCDBFE was tested against several

well-known dynamic algorithms on the extended LFR and four real-
world networks. A lot of tests showed that DCDBFE was good at
finding groups in various types of dynamic networks by using NMI and
ARI for checking the accuracy. It establishes a benchmark for evaluating
the robustness and accuracy of dynamic clustering algorithms in main-
taining high clustering accuracy despite frequent network changes,
provides insights into the limitations of existing algorithms, and offers
valuable guidance for practitioners and researchers by identifying the
most reliable algorithms for dynamic environments. A future suggestion
for the next researcher is to apply this algorithm to other possible real-
world networks. Especially, in healthcare and medicine dataset or in the
field of intelligent transportation, such as unnamed aerial vehicles
(UAV) or drone movement and relate with the Sustainable Development
Goals (SDGs).

CRediT authorship contribution statement

Norhazwani Mohd Yunos: Supervision. Eko Arip Winanto: Soft-
ware. Zejun Sun: Supervision. Mohd Fariduddin Mukhtar: Writing –
review & editing. Iskandar Waini: Funding acquisition. Zuraida Abal
Abas: Supervision. Siti Haryanti Hairol Anuar: Writing – original
draft, Methodology, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This research was funded by Centre for Research and Innovation
Management (CRIM), and Universiti Teknikal Malaysia Melaka (UTeM)
(JURNAL/2022/FTKIP/Q00088).

References

[1] C. Zhang, B. Zheng, F. Tsung, Multi-view metro station clustering based on
passenger flows: a functional data-edged network community detection approach,
Data Min. Knowl. Discov. 37 (3) (May 2023) 1154–1208, https://doi.org/10.1007/
s10618-023-00916-w.

[2] S. Chatterjee, B.S. Sanjeev, Community detection in Epstein-Barr virus associated
carcinomas and role of tyrosine kinase in etiological mechanisms for oncogenesis,
Microb. Pathog. 180 (May) (Jul. 2023) 106115, https://doi.org/10.1016/j.
micpath.2023.106115.

[3] L. Jiang, L. Shi, L. Liu, J. Yao, B. Yuan, Y. Zheng, An efficient evolutionary user
interest community discovery model in dynamic social networks for internet of
people, IEEE Internet Things J. 6 (6) (Dec. 2019) 9226–9236, https://doi.org/
10.1109/JIOT.2019.2893625.

[4] Z.A. Abas, et al., Analytics: a review of current trends, Future Appl. Chall. 9 (I)
(2020).

[5] Q. Zhang, V.Y.F.F. Tan, C. Suh, Community detection and matrix completion with
social and item similarity graphs, IEEE Trans. Signal Process. 69 (Dec. 2021)
917–931, https://doi.org/10.1109/TSP.2021.3052033.

[6] A. Daher, M. Coupechoux, P. Godlewski, P. Ngouat, P. Minot, A dynamic clustering
algorithm for multi-point transmissions in mission-critical communications, IEEE
Trans. Wirel. Commun. 19 (7) (2020) 4934–4946, https://doi.org/10.1109/
TWC.2020.2988382.

[7] H. Damgacioglu, E. Celik, N. Celik, Intra-cluster distance minimization in DNA
methylation analysis using an advanced tabu-based iterative kk-medoids clustering
algorithm (T-CLUST),”, IEEE/ACM Trans. Comput. Biol. Bioinforma. 17 (4) (2020)
1241–1252, https://doi.org/10.1109/TCBB.2018.2886006.

[8] D. Lin, Q. Wang, An energy-efficient clustering algorithm combined game theory
and dual-cluster-head mechanism for WSNs, IEEE Access 7 (2019) 49894–49905,
https://doi.org/10.1109/ACCESS.2019.2911190.

[9] F. Saggese, M. Moretti, A. Abrardo, A quasi-optimal clustering algorithm for
MIMO-NOMA downlink systems, IEEE Wirel. Commun. Lett. 9 (2) (2020) 152–156,
https://doi.org/10.1109/LWC.2019.2946548.

[10] M.S. Talib, et al., A center-based stable evolving clustering algorithm with grid
partitioning and extended mobility features for VANETs, IEEE Access 8 (2020)
169908–169921, https://doi.org/10.1109/ACCESS.2020.3020510.

[11] N.H.M.M. Shrifan, G.N. Jawad, N.A.M. Isa, M.F. Akbar, Microwave nondestructive
testing for defect detection in composites based on k-means clustering algorithm,
IEEE Access 9 (2021) 4820–4828, https://doi.org/10.1109/
ACCESS.2020.3048147.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

206

https://doi.org/10.1007/s10618-023-00916-w
https://doi.org/10.1007/s10618-023-00916-w
https://doi.org/10.1016/j.micpath.2023.106115
https://doi.org/10.1016/j.micpath.2023.106115
https://doi.org/10.1109/JIOT.2019.2893625
https://doi.org/10.1109/JIOT.2019.2893625
http://refhub.elsevier.com/S1110-0168(24)01262-6/sbref4
http://refhub.elsevier.com/S1110-0168(24)01262-6/sbref4
https://doi.org/10.1109/TSP.2021.3052033
https://doi.org/10.1109/TWC.2020.2988382
https://doi.org/10.1109/TWC.2020.2988382
https://doi.org/10.1109/TCBB.2018.2886006
https://doi.org/10.1109/ACCESS.2019.2911190
https://doi.org/10.1109/LWC.2019.2946548
https://doi.org/10.1109/ACCESS.2020.3020510
https://doi.org/10.1109/ACCESS.2020.3048147
https://doi.org/10.1109/ACCESS.2020.3048147

[12] Z. Li, Y. Li, W. Lu, J. Huang, Crowdsourcing logistics pricing optimization model
based on DBSCAN clustering algorithm, IEEE Access 8 (2020) 1-1, https://doi.org/
10.1109/ACCESS.2020.2995063.

[13] C. Jiang, J. Wan, H. Abbas, An Edge computing node deployment method based on
improved k -means clustering algorithm for smart manufacturing, IEEE Syst. J. 15
(2) (Jun. 2021) 2230–2240, https://doi.org/10.1109/JSYST.2020.2986649.

[14] B. Heinz, J. Henkel, Balancing wind energy and participating in electricity markets
with a fuel cell population, Energy 48 (1) (Dec. 2012) 188–195, https://doi.org/
10.1016/j.energy.2012.07.002.

[15] V. Alcácer, V. Cruz-Machado, Scanning the industry 4.0: a literature review on
technologies for manufacturing systems, ” Eng. Sci. Technol. Int. J. 22 (3) (2019)
899–919, https://doi.org/10.1016/j.jestch.2019.01.006.

[16] X. Xueshuo, et al., AWAP: Adaptive weighted attribute propagation enhanced
community detection model for bitcoin de-anonymization, Appl. Soft Comput. 109
(Sep. 2021) 107507, https://doi.org/10.1016/j.asoc.2021.107507.

[17] S.H. Hairol Anuar, Z.A. Abas, M.F. Mukhtar, N.H. Miswan, Community detection in
practice: a review of real-world applications across six themes, Int. J. Acad. Res.
Bus. Soc. Sci. 14 (10) (Oct. 2024) 953–996, https://doi.org/10.6007/IJARBSS/
v14-i10/23160.

[18] A. Karatas, S. Sahin, A Novel Efficient Method For Tracking Evolution Of
Communities In Dynamic Networks, IEEE Access 10 (2022) 46276–46290, https://
doi.org/10.1109/ACCESS.2022.3170476.

[19] J. Jia, L. Li, DynaMic Community Detection Based On Similarity Of Social Network
Nodes. 2022 4th International Academic Exchange Conference on Science and
Technology Innovation (IAECST), IEEE, Dec. 2022, pp. 1147–1151, https://doi.
org/10.1109/IAECST57965.2022.10061958.

[20] N. Dakiche, F. Benbouzid-Si Tayeb, Y. Slimani, K. Benatchba, Tracking community
evolution in social networks: A Survey, Inf. Process. Manag. 56 (3) (May 2019)
1084–1102, https://doi.org/10.1016/j.ipm.2018.03.005.

[21] S.H. Hairol Anuar, Z. Abal Abas, N. Md Yunos, M.F. Mukhtar, T. Setiadi, A.
S. Shibghatullah, IdentifyIng Communities With Modularity Metric Using Louvain
And Leiden Algorithms, Pertanika J. Sci. Technol. 32 (3) (Apr. 2024) 1285–1300,
https://doi.org/10.47836/pjst.32.3.16.

[22] A. Karaaslanli, M. Ortiz-Bouza, T.T.K. Munia, S. Aviyente, Community detection in
multi-frequency EEG networks, Sci. Rep. 13 (1) (May 2023) 8114, https://doi.org/
10.1038/s41598-023-35232-2.

[23] K. Nallusamy, K.S. Easwarakumar, Classifying schizophrenic and controls from
fMRI data using graph theoretic framework and community detection, Netw.
Model. Anal. Heal. Inform. Bioinforma. 12 (1) (Apr. 2023) 19, https://doi.org/
10.1007/s13721-023-00415-4.

[24] H. Gao, Q. Zhu, W. Wang, Optimal deployment of large-scale wireless sensor
networks based on graph clustering and matrix factorization, EURASIP J. Adv.
Signal Process. 2023 (1) (2023), https://doi.org/10.1186/s13634-023-00995-3.

[25] S. Wang, X. Yao, D. Gong, H. Tu, Overlapping community detection in software
ecosystem based on pheromone guided personalized PageRank algorithm, Inf.
Softw. Technol. 163 (June) (2023) 107283, https://doi.org/10.1016/j.
infsof.2023.107283.

[26] N. Alotaibi, D. Rhouma, A review on community structures detection in time
evolving social networks, J. King Saud. Univ. - Comput. Inf. Sci. 34 (8) (Sep. 2022)
5646–5662, https://doi.org/10.1016/j.jksuci.2021.08.016.

[27] F. Bouhatem, A.A. El Hadj, F. Souam, A. Dafeur, Incremental methods for
community detection in both fully and growing dynamic networks, Acta Univ.
Sapientia, Inform. 13 (2) (Dec. 2021) 220–250, https://doi.org/10.2478/ausi-
2021-0010.

[28] M. Seifikar, S. Farzi, A comprehensive study of online event tracking algorithms in
social networks, J. Inf. Sci. 45 (2) (Apr. 2019) 156–168, https://doi.org/10.1177/
0165551518785548.

[29] S. Bansal, S. Bhowmick, P. Paymal, Fast community detection for dynamic complex
networks, Commun. Comput. Inf. Sci. (Conf. Pap.) (2011) 196–207, https://doi.org/
10.1007/978-3-642-25501-4_20.

[30] T. Hartmann, A. Kappes, D. Wagner, Clustering Evolving Networks, Lect. Notes
Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma.) (2016)
280–329, https://doi.org/10.1007/978-3-319-49487-6_9.

[31] T. Aynaud, E. Fleury, J.-L. Guillaume, Q. Wang, Communities in evolving
networks: definitions, detection, and analysis techniques, Model. Simul. Sci., Eng.
Technol. (2013) 159–200, https://doi.org/10.1007/978-1-4614-6729-8_9.

[32] G. Rossetti, R. Cazabet, Community discovery in dynamic networks: a survey, ACM
Comput. Surv. 51 (2) (Mar. 2019) 1–37, https://doi.org/10.1145/3172867.

[33] H. Jiang, et al., Exploring the inter-monthly dynamic patterns of Chinese urban
spatial interaction networks based on baidu migration data, ” ISPRS Int. J. Geo-Inf.
11 (9) (Sep. 2022) 486, https://doi.org/10.3390/ijgi11090486.

[34] S.S. Mishra, S.S. Singh, S.S. Mishra, B. Biswas, TCD2: Tree-based community
detection in dynamic social networks, Expert Syst. Appl. 169 (September 2020)
(May 2021) 114493, https://doi.org/10.1016/j.eswa.2020.114493.

[35] J. Liu, Y. Shao, S. Su, Multiple local community detection via high-quality seed
identification over both static and dynamic networks, Data Sci. Eng. (May 2021),
https://doi.org/10.1007/s41019-021-00160-6.

[36] K. Kadkhoda Mohammadmosaferi, H. Naderi, Evolution of communities in
dynamic social networks: an efficient map-based approach, Expert Syst. Appl. 147
(Jun. 2020) 113221, https://doi.org/10.1016/j.eswa.2020.113221.

[37] D. Zhuang, et al., DynaMo: Dynamic community detection by incrementally
maximizing modularity, IEEE Trans. Knowl. Data Eng. 33 (5) (May 2019) 1-1,
https://doi.org/10.1109/TKDE.2019.2951419.

[38] H.S. Cheraghchi, A. Zakerolhosseini, S. Bagheri Shouraki, E. Homayounvala,
A novel granular approach for detecting dynamic online communities in social

network, Soft Comput. 23 (20) (Oct. 2019) 10339–10360, https://doi.org/
10.1007/s00500-018-3585-z.

[39] D. Zhuang, M.J. Chang, M. Li, DynaMo: dynamic community detection by
incrementally maximizing modularity, IEEE Trans. Knowl. Data Eng. 171 (March
2020) (Jun. 2019) 1-1, https://doi.org/10.1109/TKDE.2019.2951419.

[40] H.S. Cheraghchi, A. Zakerolhosseini, Toward a novel art inspired incremental
community mining algorithm in dynamic social network, Appl. Intell. 46 (2) (Mar.
2017) 409–426, https://doi.org/10.1007/s10489-016-0838-3.

[41] R. Interdonato, A. Tagarelli, D. Ienco, A. Sallaberry, P. Poncelet, Local community
detection in multilayer networks, Data Min. Knowl. Discov. 31 (5) (Sep. 2017)
1444–1479, https://doi.org/10.1007/s10618-017-0525-y.

[42] J. He, D. Chen, C. Sun, Y. Fu, W. Li, Efficient stepwise detection of communities in
temporal networks, ” Phys. A Stat. Mech. its Appl. 469 (Mar. 2017) 438–446,
https://doi.org/10.1016/j.physa.2016.11.019.

[43] S. Ranjkesh, B. Masoumi, S.M. Hashemi, A novel robust memetic algorithm for
dynamic community structures detection in complex networks, World Wide Web
27 (1) (Jan. 2024) 3, https://doi.org/10.1007/s11280-024-01238-7.

[44] H. Ma, K. Wu, H. Wang, J. Liu, Higher order knowledge transfer for dynamic
community detection with great changes, IEEE Trans. Evol. Comput. 28 (1) (Feb.
2024) 90–104, https://doi.org/10.1109/TEVC.2023.3257563.

[45] L. Ni, Q. Li, Y. Zhang, W. Luo, V.S. Sheng, LSADEN: local spatial-aware community
detection in evolving geo-social networks, IEEE Trans. Knowl. Data Eng. (2024)
1–16, https://doi.org/10.1109/TKDE.2023.3348975.

[46] S. Mishra, S.S. Singh, S. Mishra, B. Biswas, Multi-objective based unbiased
community identification in dynamic social networks, Comput. Commun. 214
(ember 2023) (2024) 18–32, https://doi.org/10.1016/j.comcom.2023.11.021.

[47] R. Márquez, R. Weber, Dynamic community detection including node attributes,
Expert Syst. Appl. 223 (March) (Aug. 2023) 119791, https://doi.org/10.1016/j.
eswa.2023.119791.

[48] Y. Sun, X. Sun, Z. Liu, Y. Cao, J. Yang, Core node knowledge based multi-objective
particle swarm optimization for dynamic community detection, Comput. Ind. Eng.
175 (December 2022) (2023) 108843, https://doi.org/10.1016/j.
cie.2022.108843.

[49] W. Wang, Q. Li, W. Wei, An adaptive dynamic community detection algorithm
based on multi-objective evolutionary clustering, Int. J. Intell. Comput. Cybern.
(Oct. 2023), https://doi.org/10.1108/IJICC-07-2023-0188.

[50] X. Li, X. Zhen, X. Qi, H. Han, L. Zhang, Z. Han, Dynamic community detection
based on graph convolutional networks and contrastive learning, Chaos, Solitons
Fractals 176 (2022) (Nov. 2023) 114157, https://doi.org/10.1016/j.
chaos.2023.114157.

[51] R. Márquez, R. Weber, Dynamic community detection including node attributes,
Expert Syst. Appl. 223 (Aug. 2023) 119791, https://doi.org/10.1016/j.
eswa.2023.119791.

[52] M.E. Samie, E. Behbood, A. Hamzeh, Local community detection based on
influence maximization in dynamic networks, Appl. Intell. 53 (15) (Aug. 2023)
18294–18318, https://doi.org/10.1007/s10489-022-04403-5.

[53] N. Chinichian, et al., A fast and intuitive method for calculating dynamic network
reconfiguration and node flexibility, Front. Neurosci. 17 (2023), https://doi.org/
10.3389/fnins.2023.1025428.

[54] P. Jiao, T. Li, H. Wu, C.-D. Wang, D. He, W. Wang, HB-DSBM: modeling the
dynamic complex networks from community level to node level, IEEE Trans.
Neural Netw. Learn. Syst. 34 (11) (Nov. 2023) 8310–8323, https://doi.org/
10.1109/TNNLS.2022.3149285.

[55] D. Li, X. Ma, M. Gong, Joint learning of feature extraction and clustering for large-
scale temporal networks, IEEE Trans. Cybern. 53 (3) (Mar. 2023) 1653–1666,
https://doi.org/10.1109/TCYB.2021.3107679.

[56] H. Long, X. Li, X. Liu, W. Wang, BBTA: Detecting communities incrementally from
dynamic networks based on tracking of backbones and bridges, Appl. Intell. 53 (1)
(Jan. 2023) 1084–1100, https://doi.org/10.1007/s10489-022-03418-2.

[57] L. Cai, J. Zhou, D. Wang, Improving temporal smoothness and snapshot quality in
dynamic network community discovery using NOME algorithm, PeerJ Comput. Sci.
9 (2023) 1–21, https://doi.org/10.7717/peerj-cs.1477.

[58] A.R. Costa, C.G. Ralha, AC2CD: An actor–critic architecture for community
detection in dynamic social networks, Knowl. -Based Syst. 261 (Feb. 2023) 110202,
https://doi.org/10.1016/j.knosys.2022.110202.

[59] M. Mazza, G. Cola, M. Tesconi, Modularity-based approach for tracking
communities in dynamic social networks, Knowl. -Based Syst. 281 (September)
(Dec. 2023) 111067, https://doi.org/10.1016/j.knosys.2023.111067.

[60] X. Li, et al., Local node feature modeling for edge computing based on network
embedding in dynamic networks, J. Parallel Distrib. Comput. 171 (Jan. 2023)
98–110, https://doi.org/10.1016/j.jpdc.2022.09.013.

[61] Y. Zhao, B.Y. Chen, F. Gao, X. Zhu, Dynamic community detection considering
daily rhythms of human mobility, Travel Behav. Soc. 31 (December 2022) (Apr.
2023) 209–222, https://doi.org/10.1016/j.tbs.2022.12.009.

[62] T. Li, et al., Exploring Temporal Community Structure via Network Embedding,
IEEE Trans. Cybern. 53 (11) (Nov. 2023) 7021–7033, https://doi.org/10.1109/
TCYB.2022.3168343.

[63] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, B.L. Tseng, Analyzing communities and
their evolutions in dynamic social networks, ACM Trans. Knowl. Discov. Data 3 (2)
(Apr. 2009) 1–31, https://doi.org/10.1145/1514888.1514891.

[64] F. Folino, C. Pizzuti, An Evolutionary Multiobjective Approach for Community
Discovery in Dynamic Networks, IEEE Trans. Knowl. Data Eng. 26 (8) (Aug. 2014)
1838–1852, https://doi.org/10.1109/TKDE.2013.131.

[65] S. Elhishi, M. Abu-Elkheir, A. Abou Elfetouh, Perspectives on the evolution of
online communities, Behav. Inf. Technol. 38 (6) (Jun. 2019) 592–608, https://doi.
org/10.1080/0144929X.2018.1546901.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

207

https://doi.org/10.1109/ACCESS.2020.2995063
https://doi.org/10.1109/ACCESS.2020.2995063
https://doi.org/10.1109/JSYST.2020.2986649
https://doi.org/10.1016/j.energy.2012.07.002
https://doi.org/10.1016/j.energy.2012.07.002
https://doi.org/10.1016/j.jestch.2019.01.006
https://doi.org/10.1016/j.asoc.2021.107507
https://doi.org/10.6007/IJARBSS/v14-i10/23160
https://doi.org/10.6007/IJARBSS/v14-i10/23160
https://doi.org/10.1109/ACCESS.2022.3170476
https://doi.org/10.1109/ACCESS.2022.3170476
https://doi.org/10.1109/IAECST57965.2022.10061958
https://doi.org/10.1109/IAECST57965.2022.10061958
https://doi.org/10.1016/j.ipm.2018.03.005
https://doi.org/10.47836/pjst.32.3.16
https://doi.org/10.1038/s41598-023-35232-2
https://doi.org/10.1038/s41598-023-35232-2
https://doi.org/10.1007/s13721-023-00415-4
https://doi.org/10.1007/s13721-023-00415-4
https://doi.org/10.1186/s13634-023-00995-3
https://doi.org/10.1016/j.infsof.2023.107283
https://doi.org/10.1016/j.infsof.2023.107283
https://doi.org/10.1016/j.jksuci.2021.08.016
https://doi.org/10.2478/ausi-2021-0010
https://doi.org/10.2478/ausi-2021-0010
https://doi.org/10.1177/0165551518785548
https://doi.org/10.1177/0165551518785548
https://doi.org/10.1007/978-3-642-25501-4_20
https://doi.org/10.1007/978-3-642-25501-4_20
https://doi.org/10.1007/978-3-319-49487-6_9
https://doi.org/10.1007/978-1-4614-6729-8_9
https://doi.org/10.1145/3172867
https://doi.org/10.3390/ijgi11090486
https://doi.org/10.1016/j.eswa.2020.114493
https://doi.org/10.1007/s41019-021-00160-6
https://doi.org/10.1016/j.eswa.2020.113221
https://doi.org/10.1109/TKDE.2019.2951419
https://doi.org/10.1007/s00500-018-3585-z
https://doi.org/10.1007/s00500-018-3585-z
https://doi.org/10.1109/TKDE.2019.2951419
https://doi.org/10.1007/s10489-016-0838-3
https://doi.org/10.1007/s10618-017-0525-y
https://doi.org/10.1016/j.physa.2016.11.019
https://doi.org/10.1007/s11280-024-01238-7
https://doi.org/10.1109/TEVC.2023.3257563
https://doi.org/10.1109/TKDE.2023.3348975
https://doi.org/10.1016/j.comcom.2023.11.021
https://doi.org/10.1016/j.eswa.2023.119791
https://doi.org/10.1016/j.eswa.2023.119791
https://doi.org/10.1016/j.cie.2022.108843
https://doi.org/10.1016/j.cie.2022.108843
https://doi.org/10.1108/IJICC-07-2023-0188
https://doi.org/10.1016/j.chaos.2023.114157
https://doi.org/10.1016/j.chaos.2023.114157
https://doi.org/10.1016/j.eswa.2023.119791
https://doi.org/10.1016/j.eswa.2023.119791
https://doi.org/10.1007/s10489-022-04403-5
https://doi.org/10.3389/fnins.2023.1025428
https://doi.org/10.3389/fnins.2023.1025428
https://doi.org/10.1109/TNNLS.2022.3149285
https://doi.org/10.1109/TNNLS.2022.3149285
https://doi.org/10.1109/TCYB.2021.3107679
https://doi.org/10.1007/s10489-022-03418-2
https://doi.org/10.7717/peerj-cs.1477
https://doi.org/10.1016/j.knosys.2022.110202
https://doi.org/10.1016/j.knosys.2023.111067
https://doi.org/10.1016/j.jpdc.2022.09.013
https://doi.org/10.1016/j.tbs.2022.12.009
https://doi.org/10.1109/TCYB.2022.3168343
https://doi.org/10.1109/TCYB.2022.3168343
https://doi.org/10.1145/1514888.1514891
https://doi.org/10.1109/TKDE.2013.131
https://doi.org/10.1080/0144929X.2018.1546901
https://doi.org/10.1080/0144929X.2018.1546901

[66] X. Su, J. Cheng, H. Yang, M. Leng, W. Zhang, X. Chen, IncNSA: Detecting
communities incrementally from time-evolving networks based on node similarity,
Int. J. Mod. Phys. C. 31 (07) (Jul. 2020) 2050094, https://doi.org/10.1142/
S0129183120500941.

[67] Z. Sun, J. Sheng, B. Wang, A. Ullah, F. Khawaja, Identifying communities in
dynamic networks using information dynamics, Entropy 22 (4) (Apr. 2020) 425,
https://doi.org/10.3390/e22040425.

[68] Z. Sun, et al., Dynamic community detection based on the Matthew effect, Phys. A
Stat. Mech. its Appl. 597 (4) (Jul. 2022) 127315, https://doi.org/10.1016/j.
physa.2022.127315.

[69] Y. Shen, C. Wei, Multi-UAV flocking control with individual properties inspired by
bird behavior, Aerosp. Sci. Technol. 130 (2022) 107882, https://doi.org/10.1016/
j.ast.2022.107882.

[70] J. Shang, Y. Li, Y. Sun, F. Li, Y. Zhang, J. Liu, MOPIO: a multi-objective pigeon-
inspired optimization algorithm for community detection, Symmetry (Basel) 13 (1)
(Dec. 2020) 49, https://doi.org/10.3390/sym13010049.

[71] M.A. Peeples, R. J. Bischoff, Archaeological networks, community detection, and
critical scales of interaction in the U.S. Southwest/Mexican Northwest,
J. Anthropol. Archaeol. 70 (March) (Jun. 2023) 101511, https://doi.org/10.1016/
j.jaa.2023.101511.

[72] B. Erfianto, I. Muchtadi-Alamsyah, Stability and vulnerability of bird flocking
behaviour: a mathematical analysis, HAYATI J. Biosci. 26 (4) (2019) 179–184,
https://doi.org/10.4308/hjb.26.4.179.

[73] A. Bellaachia, A. Bari, SFLOSCAN: A biologically-inspired data mining framework
for community identification in dynamic social networks, IEEE Ssci 2011 - Symp.
Ser. Comput. Intell. - SIS 2011 2011 IEEE Symp. Swarm Intell., no. Ssci (2011)
156–163, https://doi.org/10.1109/SIS.2011.5952580.

[74] M.F. Mukhtar, et al., Integrating local and global information to identify influential
nodes in complex networks, Sci. Rep. 13 (1) (Jul. 2023) 11411, https://doi.org/
10.1038/s41598-023-37570-7.

[75] X. Huang, D. Chen, T. Ren, D. Wang, A survey of community detection methods in
multilayer networks, Data Min. Knowl. Discov. 35 (1) (Jan. 2021) 1–45, https://
doi.org/10.1007/s10618-020-00716-6.

[76] G. Beauchamp, Flocking in birds increases annual adult survival in a global
analysis, Oecologia 197 (2) (Oct. 2021) 387–394, https://doi.org/10.1007/
S00442-021-05023-5/METRICS.

[77] X. Liu and L. Qiu, “Bird Flocking Inspired Control Strategy for Multi-UAV
Collective Motion,” no. 1, pp. 1–7, Nov. 2019, [Online]. Available: 〈http://arxiv.
org/abs/1912.00168〉.

[78] C.W. Reynolds, Flocks-Hers-and-Schools, Comput. Graph. (ACM). 21 (4) (1987)
25–34.

[79] D. Lijcklama à Nijeholt, “Control for Cooperative Autonomous Driving Inspired by
Bird Flocking Behavior,” 2020.

[80] T. Zhou, L. Lü, Y.-C. Zhang, Predicting missing links via local information, Eur.
Phys. J. B 71 (4) (Oct. 2009) 623–630, https://doi.org/10.1140/epjb/e2009-
00335-8.

[81] N.P. Nguyen, T.N. Dinh, Y. Xuan, M.T. Thai, Adaptive algorithms for detecting
community structure in dynamic social networks, Proc. - IEEE INFOCOM (2011)
2282–2290, https://doi.org/10.1109/INFCOM.2011.5935045.

[82] W.H. Chong and L.N. Teow, “An incremental batch technique for community
detection,” Proc. 16th Int. Conf. Inf. Fusion, FUSION 2013, no. January 2013, pp.
750–757, 2013..

[83] L. Danon, A. Díaz-Guilera, J. Duch, A. Arenas, Comparing community structure
identification, J. Stat. Mech. Theory Exp. 2005 (09) (Sep. 2005) P09008, https://
doi.org/10.1088/1742-5468/2005/09/P09008.

[84] W.M. Rand, Objective criteria for the evaluation of clustering methods, J. Am. Stat.
Assoc. 66 (336) (Dec. 1971) 846, https://doi.org/10.2307/2284239.

[85] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, B.L. Tseng, “Facetnet,”. in Proceedings of the
17th international conference on World Wide Web, ACM, New York, NY, USA, Apr.
2008, pp. 685–694, https://doi.org/10.1145/1367497.1367590.

[86] D. Greene, D. Doyle, P. Cunningham, Tracking the Evolution of Communities in
Dynamic Social Networks. 2010 International Conference on Advances in Social
Networks Analysis and Mining, IEEE, Aug. 2010, pp. 176–183, https://doi.org/
10.1109/ASONAM.2010.17.

[87] N.X. Vinh, J. Epps, J. Bailey, Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance,
J. Mach. Learn. Res. 11 (2010) 2837–2854.

[88] S. Souravlas, S.D. Anastasiadou, T. Economides, S. Katsavounis, Probabilistic
community detection in social networks, IEEE Access 11 (January) (2023)
25629–25641, https://doi.org/10.1109/ACCESS.2023.3257021.

[89] L. Hubert, P. Arabie, Comparing partitions, J. Classif. 2 (1) (Dec. 1985) 193–218,
https://doi.org/10.1007/BF01908075.

[90] A. Lancichinetti, S. Fortunato, Community detection algorithms: A comparative
analysis, Phys. Rev. E 80 (5) (Nov. 2009) 056117, https://doi.org/10.1103/
PhysRevE.80.056117.

[91] N.P. Nguyen, T.N. Dinh, Y. Shen, M.T. Thai, Dynamic social community detection
and its applications, PLoS One 9 (4) (Apr. 2014) e91431, https://doi.org/10.1371/
journal.pone.0091431.

S.H.H. Anuar et al. Alexandria Engineering Journal 112 (2025) 177–208

208

https://doi.org/10.1142/S0129183120500941
https://doi.org/10.1142/S0129183120500941
https://doi.org/10.3390/e22040425
https://doi.org/10.1016/j.physa.2022.127315
https://doi.org/10.1016/j.physa.2022.127315
https://doi.org/10.1016/j.ast.2022.107882
https://doi.org/10.1016/j.ast.2022.107882
https://doi.org/10.3390/sym13010049
https://doi.org/10.1016/j.jaa.2023.101511
https://doi.org/10.1016/j.jaa.2023.101511
https://doi.org/10.4308/hjb.26.4.179
https://doi.org/10.1109/SIS.2011.5952580
https://doi.org/10.1038/s41598-023-37570-7
https://doi.org/10.1038/s41598-023-37570-7
https://doi.org/10.1007/s10618-020-00716-6
https://doi.org/10.1007/s10618-020-00716-6
https://doi.org/10.1007/S00442-021-05023-5/METRICS
https://doi.org/10.1007/S00442-021-05023-5/METRICS
http://arxiv.org/abs/1912.00168
http://arxiv.org/abs/1912.00168
http://refhub.elsevier.com/S1110-0168(24)01262-6/sbref77
http://refhub.elsevier.com/S1110-0168(24)01262-6/sbref77
https://doi.org/10.1140/epjb/e2009-00335-8
https://doi.org/10.1140/epjb/e2009-00335-8
https://doi.org/10.1109/INFCOM.2011.5935045
https://doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.2307/2284239
https://doi.org/10.1145/1367497.1367590
https://doi.org/10.1109/ASONAM.2010.17
https://doi.org/10.1109/ASONAM.2010.17
http://refhub.elsevier.com/S1110-0168(24)01262-6/sbref84
http://refhub.elsevier.com/S1110-0168(24)01262-6/sbref84
http://refhub.elsevier.com/S1110-0168(24)01262-6/sbref84
https://doi.org/10.1109/ACCESS.2023.3257021
https://doi.org/10.1007/BF01908075
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1371/journal.pone.0091431
https://doi.org/10.1371/journal.pone.0091431

	Bird flock effect-based dynamic community detection: Unravelling network patterns over time
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Basic idea
	3.2 Relevant definitions
	3.3 Bird flock effect model
	3.4 DCDBFE framework
	3.5 DCDBFE algorithm

	4 Experiments
	4.1 Data description
	4.2 Evaluation metrics
	4.3 Performance evaluation

	5 Results and discussion
	5.1 Results on synthetics networks
	5.2 Results on real-world networks
	5.3 Limitation and challenges
	5.4 Future research

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

