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1. INTRODUCTION

Machine vision research started with one camera. Due to their single point-of-view, it had many
limitations, hence stereo cameras were developed to rebuild a 3D environment and fix defects produced by a
single camera without depth information. Vision or LiDAR are the main approaches to get depth data for
terrain or surface reconstruction. LIDAR scans the world and creates 3D distinct surfaces. Despite its
accuracy and vast field views, it is hard to provide the hardware and interfaces and uses a lot of power, hence
stereo vision is used to overcome it. The overlap between the visual fields of the left and right eyes enables
humans to analyse and extract depth from seeing objects using two eyes. Stereo vision algorithms replicate
these complex visuals by modelling them using a number of mathematical approaches. Research on stereo
vision focuses mostly on stereo matching, which is sometimes referred to as the stereo correspondence
problem [1]; where incorrect matches between images of several sensors obtruse the actual matches. Stereo
matching uses arithmetic to find pixels in 2D stereoscopic images that match a 3D scene. Normalised
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epipolar geometry simplifies finding correspondences on the same epipolar line producing a disparity map as
the output. Stereo vision allows robots to estimate distance, plan collision-free paths, grasp objects with
precision, and operate independently in dynamic environments [2]-[5]. Self-driving cars can determine the
relative position of lane markings and make accurate decisions for trajectory planning, ensuring smooth and
safe navigation [6]-[9]. Other applications are 3D face recognition [10], surface regeneration [11]-[14],
robotic surgery [15]-[19], virtual reality [20]-[23], and augmented reality [24]. Numerous research
publications have been circulated in this topic, and substantial progress has been achieved. The number of
journal papers and books published by ScienceDirect in the domain of stereo vision between 2000 and 2022
is presented in Figure 1. Each year, new methods are derived, with a focus on i) accuracy and ii) time
consumption. When deciding on a stereo method, these criteria should be carefully evaluated.
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Figure 1. The increasing number of articles in journals or books published by ScienceDirect corresponding to
the search term "stereo vision™ from 2000 until 2022

The epipolar line is the result of projecting a line from the focus point of the left image onto the image
plane of the right image [25]. This line denotes probable equivalent locations in the right image for a pixel in the
left image. The locations and orientations of the cameras, together with other characteristics like focal length
and field of vision are utilized to decide the orientations and positions of the epipolar lines. Rerectifying images
along epipolar lines simplifies disparity candidates along a single x-axis [26], [27]. Common image rectification
techniques may be broken down into three distinct transformation categories: projective, affine, and shearing.
Stereo correspondence mechanism is then utilized to identify the pixels in the stereo images that are identical.
Using the triangulation principle as shown in (1), the depth information is finally retrieved:

z=L2 =2 (1)

XL—XR d

where z is the depth, f is the camera focal length, b is the baseline space in the middle of cameras' optical
centre, with d as disparity. In a given stereo arrangement with constant f and b, the disparity scope limits the
depth range into [dmin, dmax]. Erronous pixels and other ambiguities in the input images will present an
explicit influence on the quality of the output map. As illustrated in Figure 2, Scharstein and Szeliski [1] first
suggested a common outline for stereo vision processes, which was executed by utilizing a sequenced
multi-stage system. The framework receives the input image pair from a stereo camera that act as the stereo
sensor. This framework relies on the assumption that the image pair input has been rectified. In the first
stage, the cost function is computed to determine the degree of similarity among patches in the input image
pair. Secondly, cost aggregation was conducted, followed by the use of filters to remove noise. The process
was then replicated for the rest of the pixels in the left image. After that, disparity improvement is achieved
by applying optical low-pass filter to refine it. Winner-take-all (WTA) strategy is then implemented where
only the disparity with the lowest cost stays active while all other disparity candidates are shut down.

Stereo matching research can be categorized as a global or local optimization strategy based on how
the disparity is computed. Local methods utilise disparity depending on the connection between pixel
intensities (grayscale, RGB colours, texture patterns) inside a particular local support window. Sum of
absolute differences (SAD), sum of squared differences (SSD), and normalised cross-correlation (NCC) are
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some example of local methods. It estimates the disparity by comparing the surroundings of a pixel p in the
left image to the surroundings of a pixel g in the right image, where q has been translated across a candidate
disparity p as illustrated in Figure 3. Computation of this method is usually fast. However, the quality suffers,
especially in the depth discontinuity area [28], [29].
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Figure 2. A sequential multistage stereo vision model [1]
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Figure 3. Matching windows in matching cost computation [30]

Global optimization strategies approach the disparity question as a process of reducing a preset global
energy function. A number of solutions have been created by means of a markov random field (MRF). These
methods may either be categorised as graph cut (GC) or belief propagation (BP) methods. The BP method
lowers the energy function by continuously sending signals from the current node to nearby nodes in the MRF
network [31], [32]. Since [33]-[35]’s introduction of convolutional neural network (CNN) trained on tiny image
patch pairs with known actual disparity, attention to a deep learning-based stereo vision system has grown
significantly. CNN outperforms traditional approaches in terms of error rate and processing time, but it remains
challenging to identify optimal corresponding spots in fundamentally ill-posed areas, such as areas with
repetitive shapes, areas that are obscured, reflective planes, and texture-less areas. This study discusses a stereo
corresponding method that utilises a deep learning-based hybrid approach to generate stereo image features for
computing the matching cost and an EPF to construct the resulting disparity map. CNN is used to extract
features from the image pairs dataset and compute the corresponding cost, whereas BF and WTA aggregate
costs and refine discrepancies.

2. PROPOSED METHOD

Figure 4 is a representation of the suggested approach for the experiment. CNN is first employed to
obtain image pair information and determine the likeness measures. In cost aggregation, a BF that preserves
edges while eliminating raw noise is used. WTA technique is then used to compute disparity by substituting
minimal disparity value for minimum cost aggregation. Left and right image checking is performed to
identify acceptable and unacceptable pixels in the image. The process generates obstruction zones and
erroneous pixels, particularly in low-texture regions. By filling in, inaccurate disparity map image element
are replaced with acceptable values. In the last step, an EPF [36] is performed to remove any residual noise
created from the previous filling in procedure.

2.1. Matching cost computation

The convolution layer is a crucial component of CNN, comprising of a sequence of square-shaped
kernels. Despite their small size, these filters will accommodate the whole volume depth. As the convolution
layer is constructed, the quantity of layer depth will correspond to the number of filters employed in the layer
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immediately before it. Each kernel reads the input region, total up the dot product, and saves the output in an
activation layer. Next, the feature map layer is integrated to construct the input volume for the subsequent
network layer. Rectified linear unit (ReLU), a non-linear activation function, is added after each convolution
layer. ReLU keeps the dispensation required to operate a neural network from growing exponentially. The
computation cost of introducing new ReLU layers to a growing CNN increases linearly. Pooling layer gradually
decreases the dimension of the input, decreasing system parameters and processing, and aids in preventing
fitting problem. The cost of matching may therefore be easily determined based on the CNN output.
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Figure 4. Block diagram of the proposed method

2.2. Cost aggregation

Cost aggregation is designed to lower corresponding ambiguity by applying a filter to smooth out
the high noise at the preliminary raw matching cost. It is required because the information collected for a
single pixel when computing the matching cost is insufficient for accurate matching. Bitwise operations on
binary strings were utilised to construct the cost aggregate volume in [37]. This approach is quick since it
requires little computing, but its efficiency is low. It treats binary numbers that are comparable in different
regions of interest. Another method is by doing segmentation which was projected in [38] where segment
tree (ST) was utilised in which pixels were sorted by reference colour and intensity into distinct segments.
This approach yielded precise answers for the textured sections, but poor precision for the plain colour and
non-textured parts. BF is used to boost the precision at the object's edges and minimise the noise on the
insides of the edges. The BF kernel is represented by (2):

BF[I]p = WLques Gas(lp - ql)Gar(Ip - Iq)lq (2)

where Gos is ‘space’ parameter which determines the positive effect of faint pixels, Gor is ‘ranmge’
parameter which determines the impact of pixel g having a concentration amount varying from I,.

2.3. Disparity computation
Disparity computation determines the specific combination of disparities for which normalisation of
disparity values happens. In this stage, WTA is implemented which can be illustrated as in (3):

d, = argmingep C(p, d) 3)

where dp is the disparity with the least expensive cost, C(p,d) is the cumulative cost calculated in the second
stage, D is the set of all acceptable individual disparity, with the highest amount selected depending on the
true disparity map. Because local approaches accumulate support areas by adding or making an even
distribution of them, their precision is susceptible to noise and ambiguity areas.
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2.4. Disparity refinement

In the last stage, postprocessing and disparity refinement standard techniques were executed. Peng
et al. [39] implemented the integration of mean shift and superpixel with segmentation method (SEG). This
approach clusters the disparity map based on colour. The weighted median filter (WMF) is used in [40].
WMF combined box aggregation with a weighted median. This approach effectively removes noise from
outliers while preserving the edges. The median filter (MF) was utilised in [41], [42]. The precision was good
around the edges, but MF generates a significant amount of inaccuracy in places with poor texture. BF was
utilised to improve the edge qualities, although its processing time was longer in [43]. This proposed
technique finishes with several continuous processes, starting with occlusion management, incorrect pixel
management, and noise reduction. To remove artifacts, the kernel is applied with an EPF based on a
transform that specifies an isometry between curves on the 2D image manifold in 5D and the actual line,
which then performs high-quality edge-preserving filtering on images. The transform preserves the geodesic
distance between points on these curves, warping the input signal adaptively so that 1D filtering can be
carried out in linear time and efficiently.

3. RESULTS AND DISCUSSION

This experiment is done using a Windows 10 with Intel Xeon 2.80GHz CPU, an Nvidia Quadro
P1000 GPU with 8GB DDR4 RAM. The accuracy is assessed utilising Middlebury v3 benchmarking system
where training images are assessed on the percentage of erroneous pixels in both occluded and non-occluded
(NON-OCC) pixels. The deep learning component retains the parameters as in the experiment by [34]. We
explored different approaches, including bitwise operations on binary strings and segmentation-based
methods, such as ST to smoothen the matching cost and enhance precision. By considering support zones and
utilizing techniques like BF [44], we improved the matching results, especially at object edges and textured
regions. We employed cumulative cost calculations and selected the disparity with the lowest cost for each
pixel. While local approaches is susceptible to noise and ambiguity, our method accounted for these
limitations by considering neighboring pixel information and achieving substantial improvements in the final
disparity map accuracy. Table 1 illustrates the ground truth from Middlebury compared with the output
disparity map from the proposed system along with the error rate.

Table 1. The ground truth of Middlebury v3 dataset compared to our algorithm output
Image Adiron Motor MotorE
Ground truth 3

Ours

NON-OCC
Image
Ground truth

Ours

NON-OCC . . 8.14%
Image ) Shelvs
Ground truth

Ours

=
5

u-g

NON-OCC . . 12.10%
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The quantitative evaluation results are shown in Table 2 for NON-OCC error and Table 3 for all
error. The proposed method achieves the lowest error for NON-OCC error in Table 2 for the recycle bin and
teddy bear photos, with 2.93% and 3.16% errors, respectively. Complicated images, such as jadeplant and
shelves exhibit the worst accuracy at 22.10% and 12.10% owing to the system's incapacity to identify
repetitive shapes, such as the tiny leaf bundles in the jadeplant image. Other areas that are difficult to match
include textureless objects and shadows, such as ArtL and recycle images. These regions contain similar
pixel values, and the likelihood of a mismatch is high. The technique proposed in this article, on the other
hand, pinpointed the exact location of the difference. However, the proposed technique can reconstruct a
nearly exact disparity map with distinctive discontinuities. The disparity level is applied exactly when the
distance contours are clearly distinguished. The suggested approach reduces salt-and-pepper noise while
preserving the dividing lines on the margins. Tables 2 and 3 present several published techniques to
demonstrate the performance of the proposed work. The Middlebury evaluation shows that the proposed
stereo corresponding approach can produce accurate results with an average NON-OCC error of 6.71%. It
demonstrates that the suggested approach is comparable to recently published techniques and can be
implemented as a comprehensive algorithm.

Table 2. Comparative results for NON-OCC error using Middlebury v3 evaluation platform

Method Avg Adi Art Jad Mo Pia Pipes Play Playt PlaytP Recy Shelv Tedd Vintg
Err ron L epl tor no m c S y e

SGM 5.29 1.85 425 1460 276 3.61 5.63 4.24 15.70 2.67 231 7.78 150 13.90

[45]

Ours 6.71 4.04 8.05 2210 443 4.22 8.14 5.53 5.02 4.49 293 1210 3.16 6.88

ELAS 7.65 5.66 315 2910 3.15 441 6.07 6.37 16.90 2.70 582 10.70 224 16.70

[46]

PSMNet 9.60 7.32 969 4450 555 501 986 733 440 443 373 1110 344 807
_ROB

EB:%A 134 727 1140 3050 6.67 1080 1050 1250 2440 1280 7.42 1640 488 3280
Table 3. Comparative results for ALL error using Middlebury v3 evaluation platform

Method AE\;? 'rAOdni ALrt iﬁ ':g? I:]i: Pipes PrI;y Playt PlaytP Ricy Shselv Teydd Vigtg

SGM 851 246 783 321 517 512 113 615 185 359 284 835 253 155

EE]AS 109 668 53 512 536 499 111 897 187 356 643 111 299 171

gll?I!S 125 808 1310 5340 9.00 556 1620 892 950 747 576 1330 479 10.00

PSMNet 133 883 139 684 826 589 144 938 554 552 498 116 387  9.66
_ROB
[47]
BSM 235 127 287 587 148 16 245 294 31 202 121 192 143  39.3
[37]

4. CONCLUSION

Our research in stereo vision has led to the development of a comprehensive method that
incorporates matching cost computation using CNN, cost aggregation to reduce ambiguity, disparity
computation through WTA optimization, and an EPF as a post-processing technique for refinement. Our
method achieved accurate disparity estimation by effectively addressing noise, occlusion, and texture-related
challenges. Comparative evaluations demonstrated its competitive performance, with an average NON-OCC
error of 6.71% on the Middlebury benchmark. Future research efforts should focus on addressing the
limitations associated with repetitive shapes, textureless regions, and improving the robustness of disparity
estimation in challenging scenarios. By continuing to refine the proposed method, we can contribute to the
ongoing progress in stereo vision and its applications, ultimately enhancing our understanding and utilization
of 3D perception.
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