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 Machine vision research began with a single-camera system, but these 

systems had various limitations from having just one point-of-view of the 

environment and no depth information, therefore stereo cameras were 

invented. This paper proposes a hybrid method of a stereo matching 

algorithm with the goal of generating an accurate disparity map critical for 

applications such as 3D surface reconstruction and robot navigation to name 

a few. Convolutional neural network (CNN) is utilised to generate the 

matching cost, which is then input into cost aggregation to increase accuracy 

with the help of a bilateral filter (BF). Winner-take-all (WTA) is used to 

generate the preliminary disparity map. An edge-preserving filter (EPF) is 

applied to that output based on a transform that defines an isometry between 

curves on the 2D image manifold in 5D and the real line to eliminate these 

artefacts. The transform warps the input signal adaptively to allow linear 1D 

filtering. Due to the filter's resistance to high contrast and brightness, it is 

effective in refining and removing noise from the output image. Based on 

experimental research employing a Middlebury standard validation 

benchmark, this approach gives high accuracy with an average non-occluded 

error of 6.71% comparable to other published methods. 
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1. INTRODUCTION 

Machine vision research started with one camera. Due to their single point-of-view, it had many 

limitations, hence stereo cameras were developed to rebuild a 3D environment and fix defects produced by a 

single camera without depth information. Vision or LiDAR are the main approaches to get depth data for 

terrain or surface reconstruction. LIDAR scans the world and creates 3D distinct surfaces. Despite its 

accuracy and vast field views, it is hard to provide the hardware and interfaces and uses a lot of power, hence 

stereo vision is used to overcome it. The overlap between the visual fields of the left and right eyes enables 

humans to analyse and extract depth from seeing objects using two eyes. Stereo vision algorithms replicate 

these complex visuals by modelling them using a number of mathematical approaches. Research on stereo 

vision focuses mostly on stereo matching, which is sometimes referred to as the stereo correspondence 

problem [1]; where incorrect matches between images of several sensors obtruse the actual matches. Stereo 

matching uses arithmetic to find pixels in 2D stereoscopic images that match a 3D scene. Normalised 

https://creativecommons.org/licenses/by-sa/4.0/
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epipolar geometry simplifies finding correspondences on the same epipolar line producing a disparity map as 

the output. Stereo vision allows robots to estimate distance, plan collision-free paths, grasp objects with 

precision, and operate independently in dynamic environments [2]-[5]. Self-driving cars can determine the 

relative position of lane markings and make accurate decisions for trajectory planning, ensuring smooth and 

safe navigation [6]-[9]. Other applications are 3D face recognition [10], surface regeneration [11]-[14], 

robotic surgery [15]-[19], virtual reality [20]-[23], and augmented reality [24]. Numerous research 

publications have been circulated in this topic, and substantial progress has been achieved. The number of 

journal papers and books published by ScienceDirect in the domain of stereo vision between 2000 and 2022 

is presented in Figure 1. Each year, new methods are derived, with a focus on i) accuracy and ii) time 

consumption. When deciding on a stereo method, these criteria should be carefully evaluated. 
 

 

 
 

Figure 1. The increasing number of articles in journals or books published by ScienceDirect corresponding to 

the search term "stereo vision" from 2000 until 2022 
 

 

The epipolar line is the result of projecting a line from the focus point of the left image onto the image 

plane of the right image [25]. This line denotes probable equivalent locations in the right image for a pixel in the 

left image. The locations and orientations of the cameras, together with other characteristics like focal length 

and field of vision are utilized to decide the orientations and positions of the epipolar lines. Rerectifying images 

along epipolar lines simplifies disparity candidates along a single x-axis [26], [27]. Common image rectification 

techniques may be broken down into three distinct transformation categories: projective, affine, and shearing. 

Stereo correspondence mechanism is then utilized to identify the pixels in the stereo images that are identical. 

Using the triangulation principle as shown in (1), the depth information is finally retrieved: 
 

𝑧 =
𝑓.𝑏

𝑥𝐿−𝑥𝑅
=

𝑓.𝑏

𝑑
 (1) 

 

where z is the depth, f is the camera focal length, b is the baseline space in the middle of cameras' optical 

centre, with d as disparity. In a given stereo arrangement with constant f and b, the disparity scope limits the 

depth range into [dmin, dmax]. Erronous pixels and other ambiguities in the input images will present an 

explicit influence on the quality of the output map. As illustrated in Figure 2, Scharstein and Szeliski [1] first 

suggested a common outline for stereo vision processes, which was executed by utilizing a sequenced  

multi-stage system. The framework receives the input image pair from a stereo camera that act as the stereo 

sensor. This framework relies on the assumption that the image pair input has been rectified. In the first 

stage, the cost function is computed to determine the degree of similarity among patches in the input image 

pair. Secondly, cost aggregation was conducted, followed by the use of filters to remove noise. The process 

was then replicated for the rest of the pixels in the left image. After that, disparity improvement is achieved 

by applying optical low-pass filter to refine it. Winner-take-all (WTA) strategy is then implemented where 

only the disparity with the lowest cost stays active while all other disparity candidates are shut down. 

Stereo matching research can be categorized as a global or local optimization strategy based on how 

the disparity is computed. Local methods utilise disparity depending on the connection between pixel 

intensities (grayscale, RGB colours, texture patterns) inside a particular local support window. Sum of 

absolute differences (SAD), sum of squared differences (SSD), and normalised cross-correlation (NCC) are 
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some example of local methods. It estimates the disparity by comparing the surroundings of a pixel p in the 

left image to the surroundings of a pixel q in the right image, where q has been translated across a candidate 

disparity p as illustrated in Figure 3. Computation of this method is usually fast. However, the quality suffers, 

especially in the depth discontinuity area [28], [29]. 
 

 

 
 

Figure 2. A sequential multistage stereo vision model [1] 
 

 

 
 

Figure 3. Matching windows in matching cost computation [30] 
 
 

Global optimization strategies approach the disparity question as a process of reducing a preset global 

energy function. A number of solutions have been created by means of a markov random field (MRF). These 

methods may either be categorised as graph cut (GC) or belief propagation (BP) methods. The BP method 

lowers the energy function by continuously sending signals from the current node to nearby nodes in the MRF 

network [31], [32]. Since [33]-[35]’s introduction of convolutional neural network (CNN) trained on tiny image 

patch pairs with known actual disparity, attention to a deep learning-based stereo vision system has grown 

significantly. CNN outperforms traditional approaches in terms of error rate and processing time, but it remains 

challenging to identify optimal corresponding spots in fundamentally ill-posed areas, such as areas with 

repetitive shapes, areas that are obscured, reflective planes, and texture-less areas. This study discusses a stereo 

corresponding method that utilises a deep learning-based hybrid approach to generate stereo image features for 

computing the matching cost and an EPF to construct the resulting disparity map. CNN is used to extract 

features from the image pairs dataset and compute the corresponding cost, whereas BF and WTA aggregate 

costs and refine discrepancies. 

 

 

2. PROPOSED METHOD 

Figure 4 is a representation of the suggested approach for the experiment. CNN is first employed to 

obtain image pair information and determine the likeness measures. In cost aggregation, a BF that preserves 

edges while eliminating raw noise is used. WTA technique is then used to compute disparity by substituting 

minimal disparity value for minimum cost aggregation. Left and right image checking is performed to 

identify acceptable and unacceptable pixels in the image. The process generates obstruction zones and 

erroneous pixels, particularly in low-texture regions. By filling in, inaccurate disparity map image element 

are replaced with acceptable values. In the last step, an EPF [36] is performed to remove any residual noise 

created from the previous filling in procedure. 

 

2.1.  Matching cost computation 

The convolution layer is a crucial component of CNN, comprising of a sequence of square-shaped 

kernels. Despite their small size, these filters will accommodate the whole volume depth. As the convolution 

layer is constructed, the quantity of layer depth will correspond to the number of filters employed in the layer 
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immediately before it. Each kernel reads the input region, total up the dot product, and saves the output in an 

activation layer. Next, the feature map layer is integrated to construct the input volume for the subsequent 

network layer. Rectified linear unit (ReLU), a non-linear activation function, is added after each convolution 

layer. ReLU keeps the dispensation required to operate a neural network from growing exponentially. The 

computation cost of introducing new ReLU layers to a growing CNN increases linearly. Pooling layer gradually 

decreases the dimension of the input, decreasing system parameters and processing, and aids in preventing 

fitting problem. The cost of matching may therefore be easily determined based on the CNN output. 
 
 

 
 

Figure 4. Block diagram of the proposed method 

 

 

2.2.  Cost aggregation 

Cost aggregation is designed to lower corresponding ambiguity by applying a filter to smooth out 

the high noise at the preliminary raw matching cost. It is required because the information collected for a 

single pixel when computing the matching cost is insufficient for accurate matching. Bitwise operations on 

binary strings were utilised to construct the cost aggregate volume in [37]. This approach is quick since it 

requires little computing, but its efficiency is low. It treats binary numbers that are comparable in different 

regions of interest. Another method is by doing segmentation which was projected in [38] where segment 

tree (ST) was utilised in which pixels were sorted by reference colour and intensity into distinct segments. 

This approach yielded precise answers for the textured sections, but poor precision for the plain colour and 

non-textured parts. BF is used to boost the precision at the object's edges and minimise the noise on the 

insides of the edges. The BF kernel is represented by (2): 
 

𝐵𝐹[𝐼]𝑝 =
1

𝑊𝑝
∑ 𝐺𝜎𝑠(|𝑝 − 𝑞|)𝐺𝜎𝑟(𝐼𝑝 − 𝐼𝑞)𝐼𝑞𝑞∈𝑠  (2) 

 

where Gσs is ‘space’ parameter which determines the positive effect of faint pixels, Gσr is ‘ranmge’ 

parameter which determines the impact of pixel q having a concentration amount varying from Ip.  

 

2.3.  Disparity computation 

Disparity computation determines the specific combination of disparities for which normalisation of 

disparity values happens. In this stage, WTA is implemented which can be illustrated as in (3): 
 

𝑑𝑝 = argmin𝑑∈𝐷 𝐶(𝑝, 𝑑) (3) 
 

where dp is the disparity with the least expensive cost, C(p,d) is the cumulative cost calculated in the second 

stage, D is the set of all acceptable individual disparity, with the highest amount selected depending on the 

true disparity map. Because local approaches accumulate support areas by adding or making an even 

distribution of them, their precision is susceptible to noise and ambiguity areas.  
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2.4.  Disparity refinement 

In the last stage, postprocessing and disparity refinement standard techniques were executed. Peng 

et al. [39] implemented the integration of mean shift and superpixel with segmentation method (SEG). This 

approach clusters the disparity map based on colour. The weighted median filter (WMF) is used in [40]. 

WMF combined box aggregation with a weighted median. This approach effectively removes noise from 

outliers while preserving the edges. The median filter (MF) was utilised in [41], [42]. The precision was good 

around the edges, but MF generates a significant amount of inaccuracy in places with poor texture. BF was 

utilised to improve the edge qualities, although its processing time was longer in [43]. This proposed 

technique finishes with several continuous processes, starting with occlusion management, incorrect pixel 

management, and noise reduction. To remove artifacts, the kernel is applied with an EPF based on a 

transform that specifies an isometry between curves on the 2D image manifold in 5D and the actual line, 

which then performs high-quality edge-preserving filtering on images. The transform preserves the geodesic 

distance between points on these curves, warping the input signal adaptively so that 1D filtering can be 

carried out in linear time and efficiently. 

 

 

3. RESULTS AND DISCUSSION 

This experiment is done using a Windows 10 with Intel Xeon 2.80GHz CPU, an Nvidia Quadro 

P1000 GPU with 8GB DDR4 RAM. The accuracy is assessed utilising Middlebury v3 benchmarking system 

where training images are assessed on the percentage of erroneous pixels in both occluded and non-occluded 

(NON-OCC) pixels. The deep learning component retains the parameters as in the experiment by [34]. We 

explored different approaches, including bitwise operations on binary strings and segmentation-based 

methods, such as ST to smoothen the matching cost and enhance precision. By considering support zones and 

utilizing techniques like BF [44], we improved the matching results, especially at object edges and textured 

regions. We employed cumulative cost calculations and selected the disparity with the lowest cost for each 

pixel. While local approaches is susceptible to noise and ambiguity, our method accounted for these 

limitations by considering neighboring pixel information and achieving substantial improvements in the final 

disparity map accuracy. Table 1 illustrates the ground truth from Middlebury compared with the output 

disparity map from the proposed system along with the error rate.  

 

 

Table 1. The ground truth of Middlebury v3 dataset compared to our algorithm output 
Image Adiron ArtL Jadepl Motor MotorE 

Ground truth 

     
Ours 

     
NON-OCC  4.04% 8.05% 22.10% 4.43% 4.43% 

Image Piano PianoL Pipes Playrm Playt 

Ground truth 

     
Ours 

     
NON-OCC  4.22% 6.23% 8.14% 5.53% 5.02% 

Image PlaytP Recyc Shelvs Teddy Vintge 

Ground truth 

     
Ours 

     
NON-OCC  4.49% 2.93% 12.10% 3.16% 6.88% 
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The quantitative evaluation results are shown in Table 2 for NON-OCC error and Table 3 for all 

error. The proposed method achieves the lowest error for NON-OCC error in Table 2 for the recycle bin and 

teddy bear photos, with 2.93% and 3.16% errors, respectively. Complicated images, such as jadeplant and 

shelves exhibit the worst accuracy at 22.10% and 12.10% owing to the system's incapacity to identify 

repetitive shapes, such as the tiny leaf bundles in the jadeplant image. Other areas that are difficult to match 

include textureless objects and shadows, such as ArtL and recycle images. These regions contain similar 

pixel values, and the likelihood of a mismatch is high. The technique proposed in this article, on the other 

hand, pinpointed the exact location of the difference. However, the proposed technique can reconstruct a 

nearly exact disparity map with distinctive discontinuities. The disparity level is applied exactly when the 

distance contours are clearly distinguished. The suggested approach reduces salt-and-pepper noise while 

preserving the dividing lines on the margins. Tables 2 and 3 present several published techniques to 

demonstrate the performance of the proposed work. The Middlebury evaluation shows that the proposed 

stereo corresponding approach can produce accurate results with an average NON-OCC error of 6.71%. It 

demonstrates that the suggested approach is comparable to recently published techniques and can be 

implemented as a comprehensive algorithm. 
 

 

Table 2. Comparative results for NON-OCC error using Middlebury v3 evaluation platform 

Method 
Avg

Err 

Adi 

ron 

Art 

L 

Jad 

epl 

Mo 

tor 

Pia 

no 
Pipes 

Play 

rm 
Playt PlaytP 

Recy

c 

Shelv

s 

Tedd

y 

Vintg

e 

SGM 

[45] 

5.29 1.85 4.25 14.60 2.76 3.61 5.63 4.24 15.70 2.67 2.31 7.78 1.50 13.90 

Ours 6.71 4.04 8.05 22.10 4.43 4.22 8.14 5.53 5.02 4.49 2.93 12.10 3.16 6.88 
ELAS 

[46] 

7.65 5.66 3.15 29.10 3.15 4.41 6.07 6.37 16.90 2.70 5.82 10.70 2.24 16.70 

PSMNet
_ROB 

[47] 

9.60 7.32 9.69 44.50 5.55 5.01 9.86 7.33 4.40 4.43 3.73 11.10 3.44 8.07 

BSM 
[37] 

13.4 7.27 11.40 30.50 6.67 10.80 10.50 12.50 24.40 12.80 7.42 16.40 4.88 32.80 

 

 

Table 3. Comparative results for ALL error using Middlebury v3 evaluation platform 

Method 
Avg
Err 

Adi 
ron 

Art 
L 

Jad 
epl 

Mo 
tor 

Pia 
no 

Pipes 
Play 
rm 

Playt PlaytP 
Recy

c 
Shelv

s 
Tedd

y 
Vintg

e 

SGM 

[45] 

8.51 2.46 7.83 32.1 5.17 5.12 11.3 6.15 18.5 3.59 2.84 8.35 2.53 15.5 

ELAS 

[46] 

10.9 6.68 5.3 51.2 5.36 4.99 11.1 8.97 18.7 3.56 6.43 11.1 2.99 17.1 

Ours 12.5 8.08 13.10 53.40 9.00 5.56 16.20 8.92 9.50 7.47 5.76 13.30 4.79 10.00 
PSMNet

_ROB 

[47] 

13.3 8.83 13.9 68.4 8.26 5.89 14.4 9.38 5.54 5.52 4.98 11.6 3.87 9.66 

BSM 

[37] 

23.5 12.7 28.7 58.7 14.8 16 24.5 29.4 31 20.2 12.1 19.2 14.3 39.3 

 

 

4. CONCLUSION 

Our research in stereo vision has led to the development of a comprehensive method that 

incorporates matching cost computation using CNN, cost aggregation to reduce ambiguity, disparity 

computation through WTA optimization, and an EPF as a post-processing technique for refinement. Our 

method achieved accurate disparity estimation by effectively addressing noise, occlusion, and texture-related 

challenges. Comparative evaluations demonstrated its competitive performance, with an average NON-OCC 

error of 6.71% on the Middlebury benchmark. Future research efforts should focus on addressing the 

limitations associated with repetitive shapes, textureless regions, and improving the robustness of disparity 

estimation in challenging scenarios. By continuing to refine the proposed method, we can contribute to the 

ongoing progress in stereo vision and its applications, ultimately enhancing our understanding and utilization 

of 3D perception. 
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