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Abstract

The Type-II Diophantine neutrosophic interval valued soft set (Type-II DioNSIVSS) and related similarity
measure are presented in this study. An extension of the neutrosophic interval valued soft set (NSIVSS) and
the Diophantine fuzzy soft set is the Type-II DioNSIVSS. The suggested measure for Type-II DioNSIVSS
assessment. We support a method of solving the problem using the Type-II soft set model. To demonstrate
how they can be applied to successfully handle uncertainty-related challenges, illustrative examples are given.
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1 Introduction

Ever since Zadeh’s fuzzy set (FS) demonstration, they have been incredibly popular in almost every scientific
field. This suggests that while dealing with ambiguous situations, decision makers should consider member-
ship degree (MD) Y An intuitionistic fuzzy set (IFS) was defined by Atanassov.? An IFS can be identified by an
MD and non-membership degree (NMD) that satisfy the condition that the sum of their MD and NMD be less
than or equal to unity. On the other hand, we can have DM issues if the total of the MD and NMD for a given
feature is more than unity. The concept of Pythagorean FS (PFS) was introduced by Yager® The condition that
it not exceed unity indicates that the square summation of its MD and NMD has been extended from IFSs. FSs
and IFS extensions and the notion of picture fuzzy sets* Cuong generated image fuzzy sets in 2015. Fuzzy
picture sets could be helpful in managing human opinions with multiple possible responses, such accept, ab-
stain, refuse, and so on. Four types of voters exist in the human race: those who cast ballots for the candidate,
those who abstain, those who cast ballots against the candidate, and those who choose not to. Voting is but one
instance. Decision-makers have a greater range of options when assigning MD, NMD, and reluctance degrees
using these sets. Cuong et al. > the authors of image FS logic, used three points: positive, neutral, and negative
MD, with the total of these grades not going above 1. In the end, it is superior to IFS and PFS in a few specific
situations. Since there are several application-related issues with this collection.Neutosophy was founded by
Smarandache® in order to deal with the problem of unclear and conflicting information. Recently, NS logic
and sets, a completely new theory, was proposed. Neutosophy is the study of neutral cognition; the primary
difference between IFS and FS is this neutrality. The neutrosophic (NS) set, which spans [0, 1] in the NS set,
is an additional generalization of the FS and IFS. Philosophically, it is well known that a classical set, like FS,
IVFS, etc., can be generalized into an NS set. Jansi et al. have recently examined Pythagorean NS sets'Z The
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possibility of a fuzzy soft set, as proposed by Alkhazaleh and associates.” is a novel idea with useful applica-
tions. Palanikumar et al ?12 recently covered a wide range of algebraic structures and their applications.

The most significant contribution of Molodtsov!? was the theory of soft sets. Soft sets fit the objectivity and
complexity of decision-making in real-world circumstances better than earlier uncertain theories. Further-
more, it is imperative to conduct research on the integration of soft sets with other mathematical models. Maji
proposed the notions of intuitionistic fuzzy soft set (IFSSY* and fuzzy soft set (FSS).> Many different DM
problems are handled by these two ideas. In Yang1% the fuzzy soft set was covered. In recent years, Peng!’
has extended FSS to include Pythagorean fuzzy soft set. A set of MADM problems where the sum of the
squares is equal to or less than one but the sum of the MD and NMD is larger than one were handled using
this methodology. Covered in Majumdara'® transactions was generic FSS. We talked about the concept of a
generalized interval valued fuzzy soft set in Shawkat et al'® To demonstrate the feasibility of neutrosophic
soft sets. Karaaslan proposed a DM method? This article uses the soft set model to parameterize the Type-II
DioNSIVSS, extending the idea of IVFSSs. Next, using this soft set model as a foundation, we will construct
a similarity measure. After defining relations on Type-II DioNSIVS sets and examining their properties, an
application is addressed involving decision making. Several researchers have investigated practical uses of the
neutrosophic set 21422

The present study proposes at investigating the Type-II DioNSIVS set. The five sections listed below make
up the article. Introduction is dealt with in the first part[I] Section [2]presents the main concepts. The Type-II
DioNSIVESS is conceptualized in Section 3] Using the Type-II DioNSIVFES approach, the similarity measure
is set in Section[d] Give some numerical examples for the Type-II DioNSIVS set model in the scenario that
you are evaluating. Section [5]deals with the conclusion of the paper.

2 Preliminaries

The generalized fuzzy soft set and the Pythagorean neutrosophic set are two well-known ideas in literature that
are reviewed and briefly discussed in this section. Here, X be the universal set.

Deﬁnltlon 2.1. “The Pythagorean neutrosophic interval valued (PyNSIVS) P in X is

P = {Rp(h),Sp(h),Bp(h)|h € X}, where Rp(h) = [Rp(h), Rp(h)] and Sp(h) = [Sp(h), Sp(R)] and
(3] p(ﬁ) (8 P(@ U'%(h)] represent the degree of truth, indeterminacy and falsity membership of P, respec-
tively. The map Rp : X — D[0,1], Sp : X — D[0,1],Bp : X — D[0,1]and 0 < (Rp(h))% + (Sp(h))? +
(©p(h)? < 2and 0 < (R ()2 + (Sp(0))? + (G())? < 2, where P = { (R, RE], [, Sp], [0, 5]
is called a Pythagorean neutrosophic interval valued number(PyNSIVN).

Definition 2.2. 7 Let 77 = (Ror, Sov, Usr), 72 = (Raz, Soz, Us3) and 53 = (R, Sy, Uss) are any three
PyNSIVNs over (X, E). Then

() of = (Usr, Sor, Rorp)

(i) 77 U7 = < max(Ror, Roy), min(Syr, Sog ), min(Uor, U@)>

(iii) 77 M3 = < min(Ryr, Rog ), min(Sor, Spz), max(Uar, U@)>
(IV) o1 X o9 if and only if %ﬁ = %@ and %ﬁ = 3@ and Uﬁ > U@

(v) o1 = 03 if and only if Rz = ey and Sa7 = V55 and Usr = Usspe

Definition 2.3. ® Let X = {hy,ha,....,h,} and E = {b1,ba,...,b,,} called the universal set and set of
parameter and (X, E) is called as soft universe. The map U : E — D(I)*X and ¢ be an interval-valued fuzzy
subset of E,ie. £: E — I = D[0,1]. Let U, : E — D(I)* x D(I) and U,(b) = (U(b)(R),L(b)) ,Vh € X.
Then U is called as generalized IVFSS (GIVFSS). For each parameter b?, U (b%) = (U(b")(h), £(v")) ,Vh €
X.

Definition 2.4. SLet X = {hy,hg, ..., hy,} and E = {b1,ba, ..., 0. } be the universe and set of parameter. Let
U:E—U(X) andébeanIVFsubsetofE ie. 0: E—=U(X). LetU; : E— U(X) x U(X) and defined
as Uy(b) = (U(b)(h),£(v)(h)),Vh € X. Then U is called a possibility IVESS (PIVFSS) on (X, E). For b’,

Ue(p") = (U O")(R), (") (R)).

=(U(p
Hence, U (b') = {( )(hl),Z(bi)(hl)),(%,Z(w)(@)),...,(W,Z(bi)(hn))}.
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3 Type-II DioNSIVFS set

The idea of Type-II Diophantine neutrosophic interval valued soft sets is being started.

Definition 3.1. Let X = {hy,ho,..., A} and E = {by,ba,...,b,,,} be the universal and set of parameter,
respectively and (X, E) is represent a soft universe. The map U : E — SU(X) and p is a interval-valued
neutrosophic subset of £ and p : E — DJ[0,1], SU(X) denotes the collection of all PyNSIV subsets of
X.IfU, : E — SU(X) x D[0,1] and defined as U,(») = (U(%)(h),p(b)) ,h € X, then U, is a Type-II
DioNSIVSS on (X, E). For each parameter e,

T, (%) :{ o P — }

P ) (?R(J(b)(h})v\‘U(b)(h1)1uu(>)(hl))a(Pval>Ul) (%U(ﬂ(hn)v\’(](b)(hn)vUU(b)(hn))v(ananan)
(P1(0%), P2 (), 3 (b))
Example 3.2. Let X = {hy, iz, A3} and E = {b1,bo,b3}. Consider U, : E — SU(X) x D0, 1] is defined as

([0.65,0.75],[0.35,0.40], [ 75,0.90]),(0.45,0.3,0.2)

Up(b1) = ([0-80,0.85],[0.35,0.45], [ 70075]) (0.5,0.4,0.1) ;
0.70,0.80], [0.70, 0.75], [0.40, 0.45])

([0.60,0.65],[0.50,0.55], [o 70 0.80]),(0.35,0.25,0.3) (I

1
([0.60,0.65],[0.40,0.45],[0.80,0.90]), (0.25,0.35,0.4)
h

Up(h2) = ([0.65,0.75]7[0.5070‘60],[8.70,0.80])7(0.370‘2,0.5) ;
h 0.50,0.60], [0.40, 0.50], [0.60, 0.70])

(10.60,0.70],[0.40,0.50], [8 75,0.90]),(0.6,0.2,0.2) (I

([0-35,0.40],[0.60,0.65], [o 80,0.90]),(0.4,0.4,0.2)

Up(l’S) = ([0.45,0.50],[0.70,0.75], [ 5,0.70]),(0.65,0.25,0.1)
([0.35,0.40],[0.45,0.55], [o 75,0.80]),(0.4,0.4,0.2) ([0.55,0.70], [0.50, 0.60], [0.60, 0.70])

Definition 3.3. Let U, and V, be the Type-II DioNSIVS sets on (X, E). Now U, is a subset of V, if and
only if

M) UG)(h) TV (0)(h) if Ry, (h) = Ry (B), Sty () = Sy (R), By (B) = Uiy (),

(i) p(b) X q(b), Vb e Eanth €eX.

4 Finding new type of similarity measure

This section provides the process for determining the similarity measure between Type-1I DioNSIVS sets.

Definition 4.1. Let P, and @, be the Type-II DioNSIVS sets on (X, E). The similarity measure between
two Type-II DioNSIVS sets P, and Q,, is defined as Sim(Pp, Q,) = ¢(P,Q) - ¥(p,q), where ¢(P,Q) =

mln{TI( ()W), QB)(W)) , T3 (P()(H), Q()(7)) , §' (P(b)(hj),Q(b)(hj))},

1’ Z] L
max{ﬂ (PO)(#), Q)W) T3 (P()(R), Q) (W) , S (P(b)(ﬁj),Q(b)(hj))}

and _
T1 (PO)(W), Q0) (1)) =
Zi= (plgﬁPW ) - e 40 <hj)> Zi- (plmpw (W) - 2R ) Ulj)) :|
N 1<1 ﬂl (o2t o)) - (1- <p2>2%2’<w)<hﬂ‘>)> ;‘;1(1 ﬂl ooz o)) - (1= (22 >)>
T2( (b)(W) Qb)(r")) =
(@292 0 ) - (e2?8% . (D) i (007938, ) - @2)?9%, ) ]
L(l \/(1 (enttl ) - (1-Ge)ta <h]’>)> :’:1<1 \/(1 (ensat, 00)) - (1-Geiot (ﬁf)))

S(PO)(), Qb)) =

n 27520 2u J n 2u 21 J
[1_ ' [ N PN R CRE AR N AN IR CE SN ] H

b .
;L11+(a§02u (w)(o22e2e ) TS 1+(a%0g(m<m><az>2ug(m<hﬂ>)

i=1
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where 7 =1,2,....m

and (5, 7) = 1 — z:;;lmin{[plw'),q’(bf)]} z:;;lmax{[p”(w),q”w)]}
iy (Pr () +au (b)) 7 i (PHb)+al (6D))

Theorem 4.2. Let P, @q and R, be the any three Type-1I DioNSIVS sets over (X, E). Prove that P, C
@q C R, = Sim(Py,R,) = Sim(@q,ﬁ,.).

Proof. Forj =1,2,....m

)

?p E@q - [plé}%l P(b%) (), pﬁR"W } [’OQWQW (1), pQ%ZW (hj)}
g%, (W), a9, (hf)} [92 S, (1), 0280 (hj)]

l u j l u j

1UP( )(hj) 1UP(b (hj)} = [UZUQO’U(R) 20Q(b‘)(hj)}

P00 < [o <w>7qu<w>]
? C R = [pl%l P(b?) (h]) pléRuw (hj)} {pﬂ%ia(w (hj) pg?R“W (hj)}
a8 (W), 0% ()] < (a8 (W), 0a80, ()]

l u j l u j
oL (). 010 ()] = o3 (), 050 ()]
P00, 09)] = [0, 709
QuC R = [poR | (W).pa | (W] < [sL | (W), st ()]
=Q2%<w)(hj)’Q2gg<w>(h])} = Qg%i%(»i)(hj) 03 R(M(hj)}

l j u j l u j
UgUQW‘)(hj)’UQUQ(w)(h])} i_{a‘?UR(b’)(h) U3UR<H)(W)}
¢'69).4*0")] = [ (9.0
Clearly,

[(m%iﬂwmj) 'p?’%lfc(bi)(hj)) ’ (pl%;m(hj) 'p3%1;<bi)(hj)>]

(P W) s, (09)) (oo (W) - s (09) ]

<

Q(b*)

1

implies that

I

(plﬂ?iaw) (W) .p3%;(bi)(m)) 7

M-

N
Il
_

(pl%zwi)(h]) 'p?’%q;(w)(hj))]

(pa, (W) - pse )(W))] (1)

i=1

'M=

[ ] [ j
(paR, (W) ps® (1)), ‘o .

A
| —|

s
I
—

=1

forj=1,2,.
Clearly,

ey

Q)

[@1)2%11“)(7107 <m>2%i’fbi><hj>] < [(m)z’@‘%iw)(hj» (p2) 02" <hﬂ‘>] < [<p3>2%iim<hj>, <p3>2%i?m<hj>]
implies that

Q(b*)

[— (o) (), —<m>2%i’(bi)<hﬂ‘>] - [— ()R (1), ~(p)* R ( f’)]

R(b%)

= l— (p3)*R2" (W), —(P3)2mil(bi)(hj)]
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and
[1 ()92 (W), 1= (p )%fjj)(ﬁj)]>l1 ()92 (W), 1= (p m‘g;b)(f‘)]
- [1( 3R (W), 1<p3>2m1%;i)<hﬂ‘>]
and
(1 P, 000 (1= 2, 00)). (1= o, 00) - (1 G, 09)
= (-t 00) - (1=, ). (1=, 00) - (1= 00)|
and
\/ (1= o2m2 | ) - (1= ()22 (w))), \/((1(/)1)23?1@1-( ) (1= (oa)2R2e (8 )))]
= -\/((1_(02)23[%0»)( )) (1_('()3)2%12;&)(71”))’ \/((1_(@)2%21)( )) (1_(p3)2%iq<lb>( )>>]
and
- [\/((1_@1)2%3}@)( ‘)) (1_ P Q%ilw \/ L=(m 23%3(1) l)> (1_(p3)2%21<‘v>(hj)))]
i 1‘W (1= o 00) - (1= o, 00)) (1= R, ) - (1= e, ‘>)>]
and

[1 \/ (1= ooz () - (1= (p0)202e, (19))). 1—\/ (1= o2z () - (1= (o082 ( ')))]

— (1= (2R (1)) - (1= (pa)2R2e (1)), 1= \/ ((1= (o2t (1)) - (1—<p3>2%21,,><m>))_

5~ (1- 4 (1 - o2R2u W‘)) : (1 ~ (p3)2R2u__ W'))) oy (1 ((1 — ()22 (nh) ~ (1 ~ (p3)2R2! (m)>) ]

[El < (( - P(b?) r3 R(b?) 1',;1 o1 P(bt) o3 R(b?)
< [ (1= ((r- wo2wze <rﬂ'>) : (1—( $)2R2u <rﬂ'>)) SRR ((1—( 2)2R2! (hJ')) : (1—( $)2R2! (hJ'))) <%>
[; < (( P2 a0 P8 TRty P P2 00 P Rty

Equations|[T]and 2]

[2?:1 (m%’mi)mh ELAR ) B~ S (UL SO RVEL )}
[z;’%:l (17 ((1—@1)2%;“(”)@1)) : (1—<p3>2%2uw. w))) s 1—4((1 (2wl (N)) (1 (oa)2m2l (N))) )]

PO ( »! (nd) - pgR! (hd)
["*1 7270 1)

[Z{Ll <1 - ((1 - (92)2%2“(“)(“0 : (1 (93)2%2(“)(”)>> )

implies that

=

v\_/ \_/v

(
<
Zl‘zl<p2%; (h9) - pg®Y ))]
O (R ) B)

1 ] l g n u u J
> 1(p1mp(b )(" )-p3R R(bS )(f ))] , [21:1 (pﬁRP(b )(" i)-p3® (b )(f ))]
[2751<17 ((1 @1)2%213(“)(“)) ( @3)2%%@0(“))) )] [2?11<17 ((17(‘)1)%?@@')(%) ( ‘”3’2*2%“‘“)) )]
?R FL7 E}? hJ n_ RY hJ R hJ
[Z (ﬁz ( )P3 R(bi )( ))] 7 [21,1<92 Q(b)( )-p3 R(vi )( ))}
[E?:1<17 (( (’32)2%3(”)(”)) ( (pS)ng(m(m))) )] {Z?ﬂ(l* ((17(')2)2%2%1'>(h'7)) < Wspwﬁbi)(m))) ﬂ
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Therefore
Ty (P(O) (W), ROb) (W) = T1 (Q) (W), R(b) (1)) 3)
Clearly,
[(@1)2011 ) (0292 (1)) (0092 (W) - (09)°9% )(hﬂ))]

Q(bY) R(b?) Q(bY) R(b*)

= [(<@2>28”.<hj>~<93>2sﬂ () ((e2)28% (W) - (09)°3% (hj))]

implies that

(10, 090, ). 3 (1, ), )

P(b “) R(b*)

Q(b*) R(b*)

‘IM: &Mﬁ

(e (n)- <93>2%2“.<hj>)] @

forj=1,2,....m

Clearly,
[(@n“‘;; (), (o) ﬁﬂ)] < [@2)4“‘;; (1), (o)t )W)] < [@3)4“;1; (), (et )mﬂ)]
implies that
[ (0)'S™ (W), —<m>4%;tﬁbi><hj>] [ (02)*S3, (W), —<@2>4%2im<hj>]
- [— (03)'32 (1), —(93)4%il(bi)(hj)]
and

[1—@1)4%?%%3'),1—<Q1>4°4“ <hﬂ>] [1—(92>4%§MW>,1 <Q2>4“i§t><hj>]

- [1 - (93)4%i?(bi)(hj), 1—(03)'S1" (hj)]

R(b%)
and
((1 B (91)4Sil<w)(hj)) . (1 B (93)4%15(”)(}13'))) ’ ((1 B (91)4Ogb >(hj)) ( B (93)40?;: >(h])))1
= (0t ) (1 st 00) . (1= et 09) - (1= st )]
and

V(G o) (g, w).
. \/((1 - (92)4%él(bi)(hj)) ' (1 _ (93)4gi;<bi)(hj)))7 \/((1 - (92)4%%;“)(;;]')) : (1 — (e3)*a .)(m)))]

and

- [YC i, @) s o) (6w, m) (1w, o)
< 1- l\/((l (02)402121( )(hj)) . (1 — (93)4%ié(bi)(hﬂ'))>, \/<<1 (92)40418’ )(hj)) . (1 _ (93)4%?&)(77;)))1
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and
4C\4u j (1= 4Cedu j 1— 1— 4Cx4l j (1= 44l j
[ \/ PW)(W)) ( (e) R(“)(hﬂ))), \/(( (01)*S Pw)(h’]) (03)*3 R<w>(h’7)
)Agu i) . _ 4c¢du j _ _ 4gy4l V) . _ 44l j
[ \/ Qw)(h’?)) (1 (03) R(M(h’])))’ ! \/((1 (02) Q(nﬂ)(h )) (1 (0s) \ymw)(h )>>
and
- 1454 j 454 j - 454l j 4441 j
_ _ sdu iy . (1 - sdu (i _ _ 5 ). (1 s J
L; <1 J((l e S iy )) (1 (e8)7S iy ))) ) i; (1 M(l e iy )) (1 (e8)S L iy ))) )]
n n
_ _ 4G4 iv) . (11— 1G4 j ) _ _ 4G4l (riy) . (1-— ag4l (i
=< [El (1 J((l (02) Q“W.)(Fﬂ)> (1 (e3) szw)(m)» ) p) (1 J((l (e2) QW)W)) (1 (e3) RW)W))) ><%>
Equations [ and [5]
n 2g21 i 22l \J n 242u Y 252u i
{21:1 ((gn FORNCORIC SN >) LI ((m By () - (e)Pa ))]
[z’:zl (1 - ((1 - <91>4°;“ )(N)) (1 - <g3>4°4u W) ) poLa < ((1 - (gl>4°4l(bi)<m‘>> . (1 - <g3>4%‘§(bi)<m>>) )]
n 221 i 22l g n 252u J 242u L
- {21:1 ((92) Qi )(f ) - (e3) R(vi) (n? )) Yie1 <(92) ot )(f )+ (e3) RS )(" ))]
[z’:zl (1 - ((1 - ‘92)4%45"(“)(“)) (1 - (g3>4°4“bi ) ) =, ( ((1 - <92>4°g(m<m>) : (1 - <93)4%g(m<m‘>)) )]

implies that

[z;;l((mzs;l(bi)<hf>»<93>2%2;(bi)(hi))] ’ [Zl;l((u)zs;“(bi)<hf>»<93>2%;fzbi)(hi))]
[2?11(17 ((17(91)4%43(%)(hj))(l*(%)%g(w)m”)) )] [2?11(17 ((17(“)4%%0<m>>'(17(93)4s%i>mﬂ)) )]
) [z;;l((.92)2%’2‘;(“)<nﬂ'>.<g3>%ij(bi)<rﬂ'>ﬂ , [27:1<<92>2“2in (nd)- <93>2°;f‘(bi)<hﬂ>>]
Gt o) e @) ] [t (e, o) Gy o) )
Therefore
T (P(o) (), R(b)(W)) = T2 (Q() (W), R(b) (1)) (6)
Clearly,
21 j 2752u j 27121 2u j 21 j 2u j
[ WP ()0 Gw)(r#)} = [m) G (), (02)P0% (W >]z (03)°5% (W), (09) 0% (W >]
and
aiv? | (W), ai02 (hj)] - [(03)2611(w)(hj),(03)2612;(‘”@]')]
21 7 2u j _ 2702l J 272U J
= (022052 (W), (02)5%" (W >] (09)°02 (), (073202 ( )]
implies
Uff@ (W), 7T j)} — l(o—g)%iﬁm(ﬁj),(03)26111)(7#)1‘
- [(02)2021(“)(713‘),(ag)mf;bi)(hj)] — l(os)%iim(hj),(os)QUf;jm(hj)]’
and
GO (1) = ()20 (W), o3 (W) — (o )U?j(w(j)H
29521 2u j 2u j 21 j
- [@) 2 (W) = ()20 (W), (02)°0% (W)~ (o )stMH
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Hence
[_ (o302 () — (a5 (1)) | _ (o302 ()~ (o >2wiﬂbi><m>)H
- [i((o PO (1) = (09)0% (W) i(w P2 (1) — (03)207 >)H )
Also, - -
—(a%UffM(hf) (03)°0% (1)), (o302 () (03)2?511(;)(53))]
= -<(02)QUZZW)W) (09)20% (W), ((02)202 (W) (03)05%"( J))]

implies that

)
VS
)
Lol V)
I
—
<
=
—
R
w
S~—
[\v)
c
I
—
2.
=
N——
/\
C}
[\v)
=
—
3&
S~—
A

73702, (W) ] \

‘_(wg)%ﬂ (1) - (03)057 i)<hj>),(<oz>202“;<hj> (o) 202 <h'>)H

R(b?)

Y

‘ lz L (a0, ) o5, 1) 3 1 (o2, 00 52, ) ] |

- H?:I”<(”2>2“?fw><hj>'<03>201im<hj>)72“(<02>2621:m<hﬂ'> (o wiz,)(hj))u&

forj=1,2,....m
Equations[7]and[8] we get

P(bi) R(b%) P(bi)

HZL( B (W) = (03)0% (W), Yy (o302 (W)~ (o >6§1W<J'>)H

HZLH( 22 (W) - (0g)205

P(bt) R(b?

>(hj)> i1+ (U%Ui?m(m) (03)2Ui?bz>(m)> ] ‘

Hz::l (o220 | () = (@202 (1)) S0y ((02)202 (W) — (o >U2im<hj>)H

QGY) R(b%) QGY)

=

‘ [2?1 b ((02)22521(“)(}3,7') (03)21511(“)(57')) iz 1+ ((UQ)QUZ%)(M) (03)2617“)(77,7))] ‘
implies that

(ot -t wh) s (ofe )| o))
| S i (o e, ) S 1 (o0 (09020 ()
|| ey, e -eers, w0) | 2?:1(<02>2ug‘<'bi)<hf> (0’52 ()
S (00 e ) S (02 )02 )
and
i 21 J o 2u J 2u J o 21 J
(ot - o) (ot - o))
(o ez, o) S (e e o)
i (02?0, -0 00) S (k| 09)-@ | 09)
t R(b%) , R(b?)
\I ;?':11+(<a2)202(; (W)-(oa)202 (1) ) ;‘:11+<(az)215§;(m(ﬁf)<(os)2152‘(bi)(ﬁj))
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and
= (AN CORCREE AN CO) IS o Y (AN (D RTCRES N CD)
\ _Ez;l 1+ <J§U2u (hi)- (03)202%7)(&])) >r 14 (gfuil(m(m).(oa)zzs;fw)(m)>
i n 1 u u J . i J
e S (2?02 ()= (e o)) T N ORI RC )
S (o, o), (mzuzjb @) s, 1+(<og>2ug(bi) (W)-(o)202 (1))
Therefore

S(P() (A7), RO)(W)) = S (QE)(W), R(>)(h)) ©)
Equations 3] [§and [0} for each j = 1,2, ...,m

¢(P,R) = »(Q,R) (10)

Clearly

and

[ min {67101 . 3 e {69, 7))
i=1 =1
< [Zn: min {[¢'(+'), 7' (5")]}, zn: max {[g"(>"), 7 (")} (11)
Plso,
[EOD 4 6D) (0D +r09) | 2 [ (460 +1'6) (66" + (") |
[ﬁiWwﬁ+wmyﬁx 0%) + (') |
< [ 6+ r109) . 3 (@6 +6h) 12)
i=1 i=1
Equations [[T]and T2} we get

[ min { [ (7). 7 04)] }, S0y e { [0, 7 (59)] }]
[T @60 +1(6) . S0, (060 + )|

_ [ iy min{ g0, (0] }, iy max { [q*(0%), r(5%)]
- [0y (@ 6) + 71 6%), S0y (407 + 7 (07) |

implies that

s 1min{[ Loty rt (o) } pOU 1mEX{ P (1), (b) }]

iy (pe(b)+ru (b)) ’ (PG +rt(b7))
- Zylmin{[q(b)rl(b)} 71max{q(b)r“(b)}
e (@u () +ru (b)) ’ 1 (@' ) +rt(b7))
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Thus,
| | S, min { [ 7).t (09)] } S| max { [p" (0F),r %)) }
iz (P (b)) 47 (b?)) ’ N CUCOET(D)
= 1 |Xiymin { [ql@i)wl(“)]} $7, max { [q“(b%“(bi)]}
iz (@ () +re (7)) ’ i (@ () +rt(b?))
Hence
Y(p,T) = Y(q,T). (13)
Equations [T0]and

Hence Sim(Py, R,) = Sim(Q,, R).

Example 4.3. Determine the similarity between the two Type-II DioNSIVS sets, namely P, and ;. We
choose X = {1, ha, hig} and parameter E = {by,bo,b3} can be defined below:

(b) b1 bg
PO)(hy) [0.85,0.9] [0.8,0.9] [0.75,0.8], (0.4,0.35,0.25) _ [0.8,0.85] [0.85, 0.9] [0.85,0.9], (0.5, 0.25,0.2)
P®)(hy)  [0.9,0.95] [0.5,0.55) [07 0.8],(0.2,0.4,0.2)  [0.75,0.85] [0.25,0.3] [0.65,0.7], (0.25,0.45, 0.25)
P(b)(h3)  [0.75,0.8] [0.8,0.85] [0.3,0.5], (0.35,0.3,0.2) [0.8,0.85] [0.85,0.9] [0.4,0.55], (0.3,0.3,0.4)
ple) ([0.5,0.55], [0.5,0.6], [0.55,0.6]) (10.4,0.55], [0.6,0.65], [0.35, 0.5])
5(0) b3
PO)(hy) [0.9,0.95] [0.7,0.75] [0.9,0.95], (0.35, 0.25, 0.35)
P(b)(hy)  [0.7,0.75] [0.3,0.5] [0.6,0.65], (0.5,0.4,0.1)
P(b)(hs)  [0.75,0.8] [0.9,0.95] [0.5,0.6], (0.45, 0.4, 0.15)
ple) (10.6,0.65], [0.45,0.55], [0.25,0.4])
Qy(0) b1 ba
Q0)(h1)  [0.7,0.85] [0.75,0.8] [0.9,0.95], (0.3,0.5,0.1)  [0.85,0.9] [0.7,0.8] [0.85, 0.9], (0.25, 0.3, 0.4)
Q) (hy)  [0.65,0.7] [0.4,0.5] [0.65,0.7], (0.45,0.35,0.1)  [0.7,0.75] [0.55,0.7] [0.55,0.6], (0.4,0.45,0.1)
Q(b)(hs) [0.65,0.7] [0.8,0.85] [0.15,0.2], (0.5,0.25,0.25)  [0.75,0.85] [0.75,0.8] [0.3,0.35], (0.3,0.5,0.2)
qe) (10.45,0.55], [0.55, 0.75], [0.45, 0.55]) (10.55,0.6], [0.35,0.6], [0.65, 0.7])
Qq(0) b3
Q0)(hy) [0.9,0.95] [0.6,0.65] [0.7,0.8], (0.35, 0.25,0.2)
Q) (hy) [0.85,0.9] [0.5,0.65] [0.7,0.75], (0.2,0.3,0.25)
Q(b)(hs)  [0.8,0.9] [0.7,0.8] [0.3,0.4], (0.35,0.45,0.1)
qe) (10.65,0.7], [0.45,0.65], [0.55, 0.6])
Pp(b) b1 bQ
PO)(hy)  [0.34,0.36],[0.28,0.315],[0.19, 0.2] [0.4,0.425],[0.2125, 0.225], [0.17, 0.18]
P(b)(hy)  [0.18,0.19],[0.2,0.22],[0.14,0.16]  [0.188,0.2125], [0.1125,0.135], [0.16,0.175]
P(b)(hs) [0.263,0.28],[0.24,0.255], [0.06,0.1] [0.24,0.255],[0.255,0.27], [0.16, 0.22]
p(e) ([0.5,0.55], [0.5, 0.6], [0.55, 0.6]) ([0.4,0.55], [0.6, 0.65], [0.35, 0.5])
B () bs
P(b)(hy) [0.315,0.3325], [0.175, 0.1875], [0.32, 0.333]
P(b)(hy) 0.35,0.375], [0.12,0.2], [0.06, 0.065]
P(b)(his) 0.338,0.36], [0.36,0.38], [0.08, 0.09]
ple) ([0.6,0.65], [0.45,0.55], [0.25, 0.4])
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Qq(b) b1 b2
Q(0)(h1)  [0.21,0.255],[0.375,0.4],[0.09,0.095]  [0.213,0.225], [0.21, 0.24], [0.34, 0.36]
Q()(hy)  [0.293,0.315],[0.14,0.175],0.07,0.07]  [0.28,0.3],[0.2475, 0.315], [0.06, 0.06]
Q()(hs)  [0.325,0.35],[0.2,0.2125],0.04,0.05]  [0.225,0.255], [0.375, 0.4], [0.06, 0.07]
qle) ([0.45,0.55], [0.55, 0.75], [0.45, 0.55]) ([0.55,0.6],[0.35,0.6], [0.65,0.7])
Qq(b) bs
Q(b)(hl) [0.315,0.3325], [0.15, 0.1625], [0.14, 0.16]
Q0)(hs)  [0.17,0.18],[0.15,0.195],[0.18, 0.188]
Q0)(hs)  [0.28,0.315],[0.315,0.36], [0.03, 0.04]
ale) (10.65,0.7], [0.45, 0.65], [0.55, 0.6])

UsingDeﬁnition T (PO) (), Q) () = {0.899496,0.912756],% (P(b) (), Q) (1)) = {0.87304,0.910389
and S (P(0) (7)), Q(b) (7)) = [0.88513470.982285].

Now,
min {Tf (P(0)(h1), Q) (1)), T3 (P(5)(h1), Q) (A1), S* (P(b)(7n), Q(b)(h1)) }
= [0.873040.982285]
max {Tf (P(O)(7), Q) (h)), T3 (P(b)(h1), Q) (7)) , S™ (P(5) (1), Q(0) (M) }

Similarly, Ty (P(5)(hi2), Q(0)(Fi2)) = [0.851939, 0.852511],

Ty (P(5)(hs), Q(b)(hs)) = [0.56949,0.582262] and S (P(b)(ha), Q(b)(ha)) = [0.913257,0.955468].
Now,

min {Tf (P(b)(h2), Q(b)(h2)) , T3 (P(b)(h2), Q(b) (h2)) , S' (P(0)(h2), Q(b)(2)) }7

- [0.56949,04955468].

max {Tf‘ (P()(h2), Q(b)(h2)) , Ta' (P (b)(h2), Q(b)(h2)) , 5™ (P(b)(h2), Q(b)(h2)) }

Similarly, Ty (P(5)(hi3), Q(b)(Fis)) = [0‘982832, 0.986218],
Ty (P()(s), Q) (hi3)) = [0.873791,0.889109] and S (P(b)(hs), Q(b) (hs)) = [0.857883,0.907223].
Now,
min {Tll (P(b)(h3), Q(b)(h3)) , Ts (P(b)(ha), Q(b)(h3)) , S* (P(b)(ha), Q(b)(hs)) }7
= [0.857883,0.986218].

max {Tf (P(0)(h3), Q(0)(hs)) , T5' (P(b)(hs), Q(D)(h3)) , 5™ (P(b)(hs), Q(D)(h3)) }
Thus, (P, Q) = [0.766804, 0.974657].
Also, (5, ) = [0 353488, 0655367}
(Pr,Q,) = [0.264265870.630127].

Hence, Sim

5 Conclusion

This work’s main goal is to present a Type-II DioNSIVSS and examine some of its characteristics. Exam-
ined is the application of the similarity metric between two Type-II DioNSIVSS. In the future, the theory of
generalized neutrosophic cubic soft sets and generalized bipolar neutrosophic fuzzy soft sets will be used.
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