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ABSTRACT The Industry 5.0 revolution has launched a new age of intelligent manufacturing equipment,
which is crucial to our society and economy. Industry 5.0 aims to enhance human potential by integrating
cutting-edge IT technology, Artificial Intelligence (Al), the Internet of Things (IoT), robots, and augmented
reality into everyday living, especially in smart industrial settings, to maximize human potential. Smart
Production Processes (SP2), accessible standards, and resource sharing on the web have increased network
vulnerabilities as enterprises adopt them. These vulnerabilities primarily target industry IoT systems,
threatening private data. Existing system issues include network vulnerabilities, production capability, and
data management. Traditional applications struggle with industrial data’s bulk and complexity, causing data
analysis, security, and privacy challenges. Modern industrial systems use Al and ML for big data analysis
and data processing to overcome these issues. Optimizing human-machine synergy minimizes costs and
equipment maintenance and boosts efficiency. An ML-assisted Smart Production Process (ML-SP2) and
Intrusion Detection System (ML-IDS) have been proposed to assess and address Industrial 5.0 concerns. Data
capture, predictive maintenance and optimization, transparent decision-making, and proactive maintenance
are integrated into the manufacturing process with the ML-SP2. The ML-IDS detects network vulnerabilities
using ensemble methods and manages distribution efficiently. The ML-IDS uses the variety of ML techniques
such as random forest, decision tree and support vector machines that identifies the intruder with maximum
prediction accuracy. In addition, the intruder activities are observed with the help of the convolution networks
that improve the overall intruder activities recognition. The smart industrial production phase’s effectiveness
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is measured by the RPL (0.9), maintenance cost (2500$), production performance (1.0), VDR (97.6%), FAR,
accuracy (99%), precision (94%)-recall (96%), and f1-measure (98%) compared to the existing methods such as

ML-RF-FLID, NRDD-DBSCAN, and OC-SVM.

INDEX TERMS Industry 5.0, network vulnerabilities, smart production process, machine learning, Internet of

Things, predictive maintenance.

I. INTRODUCTION

The notion “Industry 5.0” describes employees seeking the
usage of robots and sophisticated machines to complete
tasks and improve smart production. Industry 5.0 aims to
produce smart production solutions with effective network
safety measures and user-friendly resources by combining
the innovation of expert systems with accurate, intelligent,
and efficient machinery. Previous Industry 4.0 emphasizes
automated equipment efficiency, while more recent concept
of Industry 5.0 puts an accent on the effectiveness of optimiz-
ing manual input for cutting-edge technological innovation.
Based on the IoT infrastructure, data can now be analyzed
in real-time across the industry, uploaded in the cloud for
improved analysis, and used to upgrade ML models for
SP2 and network vulnerabilities. A focus is on generating
SP2 combining the AI with human expertise to make them
more flexible and collaborative. Numerous worries about
cyberattacks and data protection have arisen due to the pro-
liferation of smart gadgets and communication through the
IoT. ML algorithms are highly effective in dealing with
threats because of their exceptional anomaly recognition and
categorization abilities.

Industry 5.0 is intended for SP2 enhancement in addition
to network efficiency in the work area and communication
with consumers from a remote, emphasizing mostly the coor-
dination between geographically distributed machines and
human beings [1]. Identifying routine, consistent duties for
robots and machines while giving humans more complex,
thinking-intensive activities will help Industry 5.0 improve
performance [2]. The dire necessity to boost smart production
alienates employees, causing significant difficulties for the
global financial system [3]. As people become more inter-
connected, Industry 5.0 focuses on combining their creativity
and intellect with cognitive computing capabilities using
intelligent techniques in a coordinated manner [4]. Artifi-
cial Intelligence (AI) techniques have developed due to the
widespread production and accumulated the IoT sensed infor-
mation and online platforms, the internet, and smart gadgets
of industries. The information is then used for training the
ML model and data analysis. It relies on a centralized server
for training purposes, which causes data leakage in industrial
network scenarios [5].

The effects of Industry 5.0 on social and economic aspects,
concluding how moving to ‘““mass automation” at the smart
production level, handled through the creation of human
resources in conjunction with the Al, would enable successful
production re-emergence [6]. The ML algorithms and smart,
intelligent robots are very useful for remotely managing
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production systems in the industrial sector [7]. Human-cyber-
physical systems bring cognition intelligent-based CPSs
built by sensors with human intelligence and learned ML
systems [8]. Network vulnerabilities include RFID imper-
sonation, dynamic routing attacks, and blackmail attacks.
These attacks can be stopped by using a secure hash func-
tion and authentication though [9]. With the use of wireless
sensor networks for goal-controlling, the facilitation of the
incorporation of massive volumes of data, and the super-
vision and coordinated supervision of actual operations,
the cyber-physical production systems (CPPSs) are essen-
tial in improving the sustainable production IoT and smart
manufacturing [10], [11].

Smart-tailored goods are manufactured using the ML-SP2
in knowledge-intensive industrial unsupervised circum-
stances structured by the CPS-based production [12]. Smart
production and intelligence aid in reducing network traf-
fic, facilitating transactions, and protecting privacy, allowing
businesses to employ digital resources to share informa-
tion about industrial sectors [13]. A unique ML technique
called Dual Isolation Forest (DIF), which trains multiple
IFs, was used in the semi-supervised approach. Since the
test dataset only included information about cyberattacks of
industrial scenarios [14]. The Intrusion Detection System
(IDS) aids in spotting network vulnerabilities and takes the
appropriate safety precautions by using migration learning
to guarantee the IoT’s secure and dependable functioning
in Industry 5.0, which still shows the difficulty in lim-
ited communication capability [15]. Even though, several
learning approaches are utilized for managing the intruder
activities, the security and privacy should be managed while
analyzing the industrial data. The system should man-
age the vulnerable activities to ensure the network safety.
The traditional approaches are fails to process the com-
plex industrial patterns which increases the false acceptance
rate.

The motivation of this work involves the integration of the
ML-SP2 and big data-driven continuous production planning
automatically to maintain the vulnerabilities in the network
safely. During this process, several machine learning algo-
rithms such as random forest, decision tree, support vector
machine and convolution networks are incorporated to iden-
tify the intruder activities. This process ensures the trust and
minimize the security related issues.

The paper’s primary contribution can be summarized as
follows:

o Designing ML-SP2 for improving industrial produc-

tion efficiency using machine lifespan, performance,

152263



IEEE Access

V. Shkarupylo et al.: Exploring the Potential Network Vulnerabilities in the Smart Manufacturing Process

TABLE 1. List of abbreviation.

CPPS Cyber-physical production systems

IDS Intrusion Detection System

ML Machine Learning

DIF Dual Isolation Forest

CAD Computer-Aided Design

ARF Adaptive Random Forest

Al Artificial Intelligence

VDR Vulnerability Detection Rate

FAR False Alarm Rate

ROC Receiver Operating Characteristics

AUC Area Under Curve

LR Learning Rate

ML-RF- multi-view ensemble called Random

FLID Forest (RF) based Federated Learning
Intrusion Detection Method

NRDD- Noise Resilient Distributed Datasets

DBSCAN (RDDs)-Density-Based Spatial
Clustering (DBSCAN)

0OC-SVM One Class-Support Vector Machine

and maintenance cost reduction using predictive
maintenance and machine optimization model to reduce
maintenance cost.

o Implement ensembling techniques such as Auto Encoder
(AE), Decision Tree (DT), and Random Forest (RF) in
ML-IDS to detect invasions and vulnerability patterns in
the industry network to get continuous SP2.

o For efficient analysis, evaluate necessary metrics or
conditions like RPL, maintenance cost, performance,
accuracy, precision-recall, f1-measure, VDR, and FAR.
Then the efficiency of the system is compared
with existing methodologies such as ML-RF-FLID,
NRDD-DBSCAN, and OC-SVM.

The remainder of the work is arranged as follows:
Section II discusses the existing algorithms relevant to smart
production processes (SP2) and network vulnerabilities of
Industry 5.0. Section III covers the implementation analy-
sis of the ML-SP2-IDS algorithm based on AI and cloud
technologies in the current and emerging smart Industry 5.0.
Section IV identifies the baseline experimental analysis for
network safety issues and necessary solutions for smart pro-
duction requirements in Industry 5.0. Section V discusses the
suggested algorithms work and future directions of this work
and is finally concluded.
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Il. RELATED WORK
The most recent analysis of ML-based cutting-edge algo-
rithms related to smart Industry 5.0 is examined in this
section, and their key points of interest are discussed.
Sharma et al. established a smart method for collab-
orative design and clothing manufacturing by combining
several data-driven smart services, an Illustration of interac-
tive 3D clothing measurements, and a depth of knowledge
for development. The associated computations are carried
out for each consumer profile using ML algorithms such
as Adaptive Random Forest [ARF] algorithms and mining
rules for associating the results. By immediately integrating
the consumer’s perspective and expert designers’ expertise
into the outfit’s Computer-Aided Design (CAD) platform,
the complexity of the production process can be significantly
decreased and improved production efficiency. However the
effective and optimization techniques are requires to under-
stand the rules and relationship [16], [17]. Caiazzo et al.
presented a new design for smart manufacturing system mon-
itoring that makes use of the internet of things (IoT) and
the cloud. In order to detect and categorize abnormalities,
the architecture employs artificial intelligence. Using control
charts, autoencoders, LSTM, and FIS, the five-layer platform
can identify flaws and their causalities, according to Industry
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5.0 principles. Operators and company administrators are
provided with real-time status updates and risk levels via
the design, which has been experimentally proven on a solar
thermal high-vacuum flat panel. In order to avoid prod-
uct waste and identify causalities in complicated systems,
this method is essential [18], [19]. During the abnormality
identification, the system fails to explore the complex pat-
terns. Ding et al. proposed that Al-powered manufacturing
improves several areas, generating confined network produc-
tion from standards to supplies. In particular, industrial Al,
including contextual information, greatly improves produc-
tion tracking. Deep Neural networks, adversarial training,
and Transfer Learning (TL) are widely employed to assist
in the inspection and predictive maintenance of manufac-
turing units using DNN-TL. Production surveillance metrics
include defect identification, remaining usable life forecasts,
and industry acceptance testing [20], [21]. The deviation
between the outputs requires the fine-tune procedures which
takes the computation complexity. Ouda et al. suggested
a framework for predicting machine faults and optimizing
predictive/corrective maintenance schedules based on sensor
data. ML models are trained using previous data to fore-
cast five-day failure risks. The output of the ML models
is supplied into a model of optimizing, which then pro-
poses an optimum maintenance standard. It gives the highest
prediction accuracy and enhances system reliability, keep-
ing costs down. However, the ML model limited for data
availability [22], [23]. Menon et al. presented Novelty detec-
tion finds novel information in text datasets. To increase
interpretability, spectral graph-based approaches have been
researched, however there is a literature gap on merging
them with visualization tools. A innovative strategy that
combines spectral graph-based approaches with visualization
tools to discover novel documents in text data gathering yields
interpretable results. This technique may be used in many
text data novelty detection areas [24], [25]. The introduced
visualization process fails to maintain system scalability and
flexibility.

Franké et al. offered a complete review of ML techniques
used in Industrial IoT and Smart Manufacturing for diverse
objectives. Privacy and secured asset location, proactive man-
agement, and quality management are covered. Resource
placement is a subset of smart manufacturing in which
machine learning has been actively used. Maintenance appli-
cations include defect detection, monitoring, predictive, and
production optimization applications [26], [27]. Bagaa et al.
implemented an ML-based security architecture that adapts
Software Defined Networking(SDN)/Network Function Vir-
tualization (NFV) standards with One Class-Support Vector
Machine(OC-SVM) classification as a monitoring agent with
an Al-based reaction agent that analyses network patterns
of anomaly-based intrusion detection for Internet of Things
(IoT) devices. SVM was used in the framework to incor-
porate an IDS for anomaly detection in IoT sensor data,
and this technique increased detection accuracy to over 98%
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[28]. Samara et al. provided a survey covering fault detec-
tion implementation in IoT networks, highlighting anomaly
detection samples in industrial [ocT.ML systems can provide
a broader level of anomaly detection by employing statis-
tical, hybrid, unsupervised, and supervised approaches to
discover Exceptions or irregular activity in the network [29],
[30]. Ghallab et al. suggested Resilient Distributed Datasets
(RDDs) are used in addition to the Density-Based Spatial
Clustering of Application with Noise(DBSCAN) method
and N-dimensional RDD-DBSCAN to identify outliers that
compromise the network performance of IoT technologies
in industrial big data analytics. However, it handles only
linear data reduction techniques unsupported by non-linear
to detect outliers. The ground truth labels are necessary for
the V-measure, Homogeneity, Completeness, and Adjusted
Mutual Information [31]. Rodriguez et al. presented Indus-
trial Internet of Things (IloT) enables real-time, secure, and
autonomous production in Industry 4.0. However, diverse
technologies needed for IIoT systems provide incomplete,
unstructured, redundant, and loud data. Anomaly detec-
tion systems identify bad data and protect IIoT systems.
These systems are difficult to implement owing to method
selection, information processing, monitoring devices, and
algorithm execution. Automatic anomaly classification in
IIoT is an open research field, with minimal application
context information employed for anomaly detection, accord-
ing to a 99-article state-of-the-art review [32]. Attota et al.
developed a multi-view ensemble called Random Forest
(RF) based Federated Learning Intrusion Detection Method
(MV-RF-FLID) perspectives decentralized storage of IoT
application data to identify, categorize, and protect from
threats. The top-k selection-based gradient compression
scheme improves performance efficiency with minimum
communication overhead [33], [34], [35].

Mutaz Ryalat et al. [36] suggested Cyber-Physical Systems
and Internet of Things for Industry 4.0. An innovative smart
factory architecture for Industry 4.0 is outlined in this study,
together with the essential industrial, computer, information,
and communication technologies that make up a smart fac-
tory. It explains how to build an intelligent production system
by integrating a smart factory’s various elements (pillars).
A smart manufacturing case study, including a drilling pro-
cess, is used to show the simplified smart factory model,
and the practicality of the suggested technique is proved and
confirmed by tests.

Wenhao Yan et al. [37] proposed the Real-Time Fault Diag-
nosis Methods (RTFD) for Industrial Smart Manufacturing.
This study thoroughly examines recent RTFD developments
in the machine condition monitoring and industrial process
monitoring fields. The RTFD procedure is described in depth,
beginning with the first data collection stage. Techniques
based on “‘end-to-end” neural networks, techniques based
on qualitative knowledge reasoning from a fresh viewpoint,
and methods based on independent feature extraction make
up the current RTFD approaches. In addition, the study
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provides a reference for scholars in this area by discussing
the difficulties and possible future developments of RTFD.

Salam et al. [38] presented Industry 5.0’s use of IoT and
cyber-physical systems in production presents a cybersecu-
rity risk. This study suggests detecting web-based assaults
utilizing CNNs, RNNs, and transformer models using deep
learning. The transformer-based approach surpasses clas-
sic machine learning techniques in accuracy, precision, and
recall, proving deep learning can identify intrusions in
Industry 5.0 contexts.

Adel et al. [39] displayed with an emphasis on technolo-
gies like cyber-physical systems, renewable energy, cyber-
forensics, machine learning, deep learning, fog computing,
unmanned aerial vehicles, and cyber-physical systems, this
article investigates the ways in which Industry 5.0 might
influence the development of smart cities in the future. Data
management, intelligent automation [40], human-machine
cooperation, and improved cybersecurity are some of the
areas it focuses on. Additionally, the article assesses the
ways in which Industry 5.0 technologies could improve upon
current frameworks that are influencing smart city applica-
tions. Its stated goal is to help smart cities and their environs
overcome the technical obstacles they encounter.

The summary of the literature review work includes vari-
ous related algorithms applied for ML-based smart industrial
production and network vulnerabilities issues. The algo-
rithms ARF and GA-ANN using the dynamic concept,
DNN-TL, and DAE-DBC are reviewed for SP2. The net-
work vulnerabilities issues are resolved with earlier work like
SDN/NFV-based OC-SVM, NRDD-DBSCAN, and MV-RF-
FLID techniques. Still, there is a lack of solutions for smart
production and security issues. Compared to these methods,
the proposed approach uses the Machine learning approaches
that identifies the intruder activities in the network with min-
imum false acceptance rate and high detection accuracy. The
method uses the ML that ensures the adaptability, quality and
efficiency it also mitigate the security threats in the produc-
tion process. Thus the system ensures the robust framework
in the industry 5.0.

Ill. PROPOSED SOLUTION

Machines must be effective at doing intellectual labor and
even creating innovations for this type of manufacturing
to free humans from physically demanding tasks. There is
a critical need to understand if Cyber-Physical Production
Systems (CPPSs) are appropriate for flexibility in con-
figuring smart industries, given the emerging evidence of
ML-assisted SP2(ML-SP2). This study uses the machine
learning algorithm to cyber physical production system
because it can handle the imbalance data, identifying the
complex vulnerable patterns and provide the robust solu-
tions. Especially this study uses the Convolution Neural
Networks (CNN) that identifies the complex patterns from
large volume of manufacturing data. The extracted patterns
retrieve the relationship between the data that minimize the
vulnerability issues effectively. The traditional methods like
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autoencoder approach utilized in the unsupervised learning
process to detect the anomaly and unusual pattern which
represents that the network vulnerabilities. The other meth-
ods such as random forest, decision tree approaches also
able to analyze the numerical and categorical data for mak-
ing decisions regarding the intrusions. However, the neural
approach like Convolution Neural Networks(CNN) provides
the effective results while analyzing the large volume and
complex data in the industry 5.0 platform. This paper uses
the Convolutional Neural Networks (CNNs) in the context
of the ML-assisted Smart Production Process (ML-SP2) and
the Intrusion Detection System (ML-IDS). Even though, the
CNN network effectively utilized in the image processing
applications, it able to process the sequential data and identify
the complex network patterns to identify the network vul-
nerabilities. The integration of the ML-SP2 with CNN that
focuses on the deep learning concept to improve the overall
smart production environment. The CNN approach uses the
different layers that provides the transparency while making
decision-making in the industry 5.0. The effective data anal-
ysis process ensures robustness, security and provides the
effective SP2. The interoperability of IoT and CPP surveil-
lance standards was considered in this study to show that it
can determine how operations advance restoring a device to
its initial configuration with CPPSs. Whenever SP2 relates
to industrial automation, the goal of evaluating the obtained
information for improved overall performance by boosting
output while minimizing waste and consuming less energy.
Industry 5.0 gives the welfare of the workforce at the core of
SP2 to overcome the human difficulties of Industry 4.0. Fully
automated SP2 to change conditions and needs in the produc-
tion system, the delivery model, and consumer demands are
involved in the smart production process in Industry 5.0. Fully
automated, intelligent machines will take over the arduous
task of managing every step of the production process in
Industry 5.0. The SP2 ends up being tailored to fit the needs
of client-focused industries. Each good from all those indus-
tries will be personalized following the clients’ preferences,
increasing consumer satisfaction and ease of use, decreasing
cancellations, and increasing the value of produced goods.
Robotic WSN and big data analytics in Industrial 5.0 for
cyber-physical monitoring networks will be integrated into
smart networked industries to improve them. IoT security
issues have been incorporated into these systems because of
the rapid rise in IoT device usage and deployment across all

industries.
=2
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FIGURE 1. Proposed ML-SP2-IDS model for effective Industrial 5.0.

VOLUME 12, 2024



V. Shkarupylo et al.: Exploring the Potential Network Vulnerabilities in the Smart Manufacturing Process

IEEE Access

From Figure 1, the implementation of Industry 5.0 for SP2
is given in a detailed manner. Two datasets are used in this
manuscript for SP2 to maintain a smooth production process
and IDS to identify network vulnerabilities. Initially, data is
gathered from necessary devices for pre-processing, followed
by predictive maintenance and optimization control for iden-
tifying the machine status and working state of the equipment
in the production phase, thereby reducing the overall cost
for repair maintenance and improving the production quality.
Implementing ML-SP2 for training the model to calculate the
RPL of a machine and forward it to make decisions clearly
to the industrial process. Then proactive maintenance is used
with the help of ML-IDS by ensembling three ML algorithms,
and results are optimized to classify the malicious and reg-
ular activity. The final production phase involves intelligent
delivery management using supply chain logistics. Various
key performance indicators are analyzed to enhance the smart
production phase performance efficiency.

A. DATA ACQUISITION FOR ANALYZING SMART
PRODUCTION PROCESSES (SP2)
Data is generated from several intelligent sensors to moni-
tor important production equipment due to Instrumentation,
data management, networking transmission, and other tech-
nological innovations that are rapidly evolving. With the
human touch information, maintaining SP2 is the objective
of Industry 5.0. By storing data documents on a cloud with
strict access controls and distributing the design flow of
produced things. Initially, information has been collected
from machinery-sensed data where the devices implemented
with smart IoT sensors enabled for production phases. Both
user and product data are collected from IoT sensors imple-
mented in machines that collect machinery arm handles
data, acceleration sensor data, Data from vibration sen-
sors, video images from greater cameras, and moisture and
temperature data at the product level. Online machine and
environment monitoring is done using the sensor data. Real-
time data enabling collaboration mingled with the big data
analytics storage access for smart production capacities.
The system production paradigm enables the integration of
production capabilities with services to deliver appropriate
solutions to customers. By incorporating service components
into the production process, the industrial sector hopes to
increase production efficiency, financial returns, and share
price through technology innovation. Cloud is a networked
system used for production resources and a distributed system
for machinery analysis. The virtual setting, known as the
“industrial cloud storage,” offers a supportive atmosphere
for smart production in industrial applications like IoT mon-
itoring tools produced by service providers and used for
online access. With the development of ML techniques, they
can locate and remove quality defects from the production
process by using slightly elevated webcams mounted on the
robotic arms to track the movement of things in real-time.
The smart production method in Industry 5.0 offers the
technological advantage of allowing a small team of highly
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skilled people to quickly generate high-quality smart prod-
ucts in the market. This paradigm offers a contemporary
framework for producing intelligent products through smart
production techniques based on ML algorithms. Initially,
it aspires to produce smart items more rapidly and with higher
quality using an SP2. Second, the cost of the product and
how much energy it uses will determine how popular and in
demand it is in the current market. According to this view-
point, demand is influenced by retail cost and resource usage.
As a result, the highest revenue and product demand are
attained by reflecting the lowest selling price and energy con-
sumption. Increased innovation, process efficiency, capacity
management, and production quality improvement are among
the most important advantages of adopting ML in smart
industrial sectors.

First, new technologies such as Cloud computing, inter-
net big data analytics, and cybersecurity technologies make
this possible for collecting, transmitting, storing, and man-
aging, hence expediting the development of huge amounts
of data for smart industrial maintenance. As a result, big
data analytics serves as the cornerstone of industrial intelli-
gence. IoT technology uses integrated sensors, algorithms,
and physical devices to gather and transfer data produced
by their use and environment. Using an IoT platform or
gateway, it exchanges this data. Usually, data is transmitted
to the cloud for analysis and storage. Filing data into the Big
Data database; data analysis using powerful and sophisticated
analytical platforms, like Hadoop. Data sets are produced
by IoT very quickly, frequently in real-time analytics, and
require machine-driven tools like deep learning, machine
learning, and artificial intelligence. Second, Al methods like
machine learning, reinforcement learning, and learning tech-
niques have emerged. Experienced significant progress in
recent decades. Production surveillance is essential in the
manufacturing cycle, including defect detection, remaining
usable life forecasts, and quality assurance.

B. PREDICTIVE MAINTENANCE ALGORITHM AND
OPTIMIZATION MODEL FOR MAINTAINING SP2
Because of the fast evolution of big data [41], cloud plat-
forms, and ML innovations, information-related models have
become widely used in predictive maintenance, prediction
algorithms, and performance outcomes, which aids in reduc-
ing costs, includes production effectiveness, and enhances
the standards and security of industrial production, and
anticipates cumulative system performance. Safety is a key
necessity in industrial production since anomalous actions of
machinery or production processes can significantly decline
product quality, accidents, and casualties. Based on equip-
ment and manufacturing process monitoring data [42], the
collaboration Throughout industrial processes and the tar-
geted metrics for the whole process of production are
improved.

Pausing a production process for repairs would cost time
and impact the reliant assembly lines. So, by minimizing
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failures during production, which leads to savings, rec-
ognizing the fault beforehand using the proper sensors
would support industrial production. Prediction is critical for
increasing industrial output.

B

Preprocess data Identify
Condition
indicators

&=

Acquire data
from loT
sensors

using CNN Estimating
RPL

Sy _l
Train model é‘“'@ mamc‘i's](ance

oblm = @@‘
it o=

o) Ak Integrate and Delivery

cloud big data analytics storage

FIGURE 2. Predictive maintenance algorithm and optimization model.

As a result, IoT devices are utilized frequently to cap-
ture surveillance stored information for SP2, end product
in photos, videos, and time series input in Figure 2. The
Convolutional Neural Network (CNN) is used to train
the model, and its implementation requires considerable
pre-processing before it can use raw and processed input.
It can be applied, for instance, to solve the objects detection
problem [43]. Data quality is a key factor in a machine
learning algorithm’s performance. Pre-processing is neces-
sary to properly use any ML algorithm and get acceptable
accuracy performance if the data contain outliers and unnec-
essary information. The gathered data is pre-processed to
remove noise, and necessary features, called Condition Indi-
cators (CI), are extracted. The normalization of the feature
is the initial phase, which is used to downscale the modifi-
cation of the characteristics to prevent an extreme disparity.
The extracted features are stored and analyzed in a cloud
big data analytics and then passed to the ML model for
implementation.

A Principal Component Analysis (PCA) was also per-
formed on collected attributes to standardize the data number
of attributes. There are several numbers of components that
can be supplied to each method, ranging from O to 10. The
value has now been changed in the parameter estimation
of each method to understand better whether applying PCA
to the dataset can alter the algorithm’s accuracy. The fea-
tures are processed in this section so they may be sent to
the machine learning algorithms. Then, identified features
are trained using an ML algorithm for production process
maintenance. ML, DL, and other Al approaches are employed
with massive data to enable smart diagnosis of abnormalities
SP2 in the industry. These problems are commonly tack-
led using grouping and categorization techniques. Problems,
either supervised or unsupervised. CNN technique is used
for developing a model for making predictions by analyzing
greyscale images. The input vector is designated as a convo-
lution one to filter frames of 2D data. Data are sent from this
layer to a pooling and Rectified Linear Unit (ReL.U)activation
function that applies a non-linear concept. This layer’s output
is a sequential process of the input. The data is then flat-
tened using a Flatten layer before input to a Dense layer,
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where each input is linked to each outcome by a weighted
score. Ultimately, the output is returned following another
Activation layer.

Both monitoring data and empirical deterioration infor-
mation are utilized in predictive maintenance to anticipate
the RPL of industrial equipment and increase production
capacity by enabling efficient maintenance plans for opti-
mized supply chains with the best staff selection. Both
surveillance data and quantitative degradation information
are utilized in predictive maintenance to anticipate the
Remaining Productive Lifespan (RPL) of machines, which
drives the development of efficient maintenance plans. It is
anticipated to be replaced by human shift maintenance, max-
imize system performance, and reduce cost by RPL. As a
result, RPL estimation is a key focus in predictive mainte-
nance programs. The manufacturer estimates demand based
on previous monitoring data from the manufacturing line
to manage defects and eliminate wastage. Finally, qualified
prediction is frequently used. The quality of the product is
anticipated by analyzing measurements and the production
process output and operational status. The manufacturing
then improved to prevent the manufacture of damaged
products.

Optimization, divided into machine-level optimization
and general system, is the main strategy for enhancing
productivity in Industrial 5.0. The use of Al algorithms
for online process parameter enhancement is critical for
enhancing the performance and effectiveness of industrial
operations. A production procedure includes a variety of
industrial machinery, whereas an assembly line comprises
many production systems. From this, the maintenance cost
of equipment can be reduced or optimized. Costs are divided
into various components, including maintenance, renewal,
or replacement personnel expenses. The expenses vary
depending on the machine’s state.

C. TRANSPARENT DECISION-MAKING FOR SP2

A significant quantity of data is likely generated every
second due to the development of Al and ML, sensor-
based input, IoT-connected systems, virtual communities,
and digital tools, necessitating real-time analysis to forecast
outcomes and make quicker decisions. Big data analyt-
ics is a sophisticated analytical technique used consistently
to find hidden patterns in data and link them to spe-
cific actions that aid decision-making. It supports real-time
linkage to customer demand and gives transparent smart
production phase order tracking. The key to ending the
sequence of industrial production is decision-making, which
is related to optimizing industrial processes and equipment
maintenance.

Decision-making considers production factors like real
economic information, production environments, implemen-
tation variables, processing guidelines, monitoring specifi-
cations, and operating machinery using robots to achieve
enterprise objectives through efficiency and planning.
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Algorithm 1 Reducing Maintenance Cost Using an Opti-
mization Model
Input : repair costs (RC), replacement costs (ReC), maintenance
schedules (MS), equipment lifetimes (EL), etc.
Output : optimal maintenance plan
Step 1: Define objective function to minimize total maintenance
costs (TotalCost):
TotalCost = ¥ [RC * Number_of_Repairs + ReC * Replace-
ment_Decision]
Step 2: Initialize optimization variables:
Maintenance intervals for each equipment type (MI)
Number of repairs = type (NumRepairs)
Step 3: Define constraints:
(i)Maintenance intervals must be within
specified ranges:
MI_min <= MI <= MI_max
(ii)Number of repairs cannot exceed maximum
for each equipment type:
NumRepairs <= MaxRepairs
Step 4: Run optimization to find values of decision variables that
minimize objective function while satisfying constraints:
OptimalValues
= minimize(TotalCost, subject to MI_min <= MI <
= MI_max, NumRepairs <= MaxRepairs, . ..)
Step 5: Output optimal maintenance plan with intervals and
repair/replace decisions for each equipment type:
OptimalMaintenancePlan = {
EquipmentTypel :
{Maintenancelnterval : OptimalValues
[MI_EquipmentTypel],
NumRepairs : OptimalValues
[NumRepairs_EquipmentTypel]},
EquipmentType? :
{Maintenancelnterval : OptimalValues
[MI_EquipmentType2],
NumRepairs : OptimalValues
[NumRepairs_EquipmentType2]}, ..}
Step 6: Integrate optimization model with condition monitoring
data to update maintenance decisions in real time:
Mlupdated =
f(MI, ConditionMonitoringData)
NumRepairs_updated
= g(NumRepairs, RepairHistoryData)
Step 7: Deliver optimized maintenance plan to
maintenance team for execution
Step 8: Continuously monitor costs and equipment
performance to refine optimization model and
improve results over time

D. PROACTIVE MAINTENANCE FOR IDENTIFYING
NETWORK VULNERABILITIES IN THE PRODUCTION PHASE
It involves real-time safety monitoring of machinery products
in the smart industry using an ML-based predictive anomaly
detection system. The most dangerous element of a network
vulnerabilities are malicious activity identified by hackers for
detecting spyware, espionage, keyloggers, Rootkits, worms,
and other harmful programs on industrial endpoints and other
IoT devices linked to the system. Figure 3 illustrates ML-IDS
implementation using ensembling techniques for resolving
network vulnerabilities issues.

The network assault can be carried out by an attacker even
if they are far away from the network. While good system
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FIGURE 3. Identification of network vulnerabilities using ML-assisted IDS.

design, implementation, and deployment are required for a
secure and safe industrial IoT system, ML-based solutions are
extensively employed to provide extra security and safety.

The resilience of smart industrial systems also raises
threats to sensitive information. The long-term challenge is
to address the security threats associated with IoT devices
in smart industries by implementing the following security
architecture. The best approach to using this technology to
acquire intelligence is using sensors, machinery devices, and
IoT systems as information sources in an SP2. In the indus-
trial realm, sensors are integrated into machinery to track and
manage resources. Other factors, such as heat, moisture, and
stress, can be used to identify occurrences and set off the
appropriate signals.

The Manufacturing Internet of Things (MIoT), which anal-
yses big industrial data in real time, is another scenario
to maintain data security. Data screening and feature engi-
neering are introduced in the first part. Optimizing ML
algorithms’ model parameters modifies the anomaly detec-
tion system. The analysis of anomalies found is the primary
focus of the final segment.

E. INITIAL PROCESSING OF DATA

Thus, data are often recorded in diverse forms and have miss-
ing values. Thus, a crucial step in developing an ML model is
data processing. Integrated data analysis collects, preserves,
and analyzes consumer insights to provide smart produc-
tion with analyzed data. Data is gathered in the first stage
from various cybersecurity sensors in various smart indus-
trial sectors for monitoring network vulnerabilities among
numerous locations. Each industry uses a different source;
data is gathered from various sources and stored in cloud big
data storage. Data is collected from smart IoT devices, email
logs, network logs, sensors, database access logs, and activity
logs of users, followed by feature selection and extraction,
deletion of duplicates and erroneous records, data analy-
sis, and standardization. The pre-processed data is divided
into training and testing sets for each class, 80% and 20%,
respectively. After this procedure, the test dataset is saved on
cloud big data storage, while the training data is delivered
to the model training layer. After pre-processing, the data
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is delivered via the MapReduce process implemented in a
cloud big data analytics storage. The cloud server’s robust
computation and storage capabilities make it the best choice
for model training.

The infrastructure of a cloud server is well-equipped,
with a wealth of data processing tools, ML algorithms, and
visualization libraries, enabling Al-enabled data processing
services. MapReduce in the Hadoop framework serves as the
processing model for data analysis. ML-assisted ensembling
techniques for model training and classification algorithms
have been used by combining three algorithms. Ensemble
learning refers to techniques that produce many models and
integrate them to make predictions, whether for classification
or regression. The i) Auto Encoder (AE), ii) Decision Tree
(DT), and iii) Random Forest (RF) analyze the intrusion in the
network using bagging, boosting, and stacking approaches.
Tracking time-series monitoring data on the smart indus-
trial environment that various sensor kinds and businesses
have gathered is vital yet challenging. In addition, the
operating environment’s data privacy must be safeguarded.
AE decreases the dimensionality by classifying the model
parameters and data through a weighted average distribu-
tion. It has identical proportions to the source vector from
this tight space. This procedure’s reconstruction error iden-
tifies a potential anomaly. The Decision Tree (DT) classifier
uses a model of decisions and their potential consequences
that resembles a tree. This work’s target is a binary vari-
able encompassing attack and normal scenarios. Typically,
a DT classifier is employed for discrete category targets.
Many tree classifiers are combined in the RF algorithm.
By adding randomization to the data selection process, this
classifier aims to increase variance while minimizing bias by
deepening the trees to their maximum extent. The ensemble
classifiers receive instruction on the train set using k-fold
Cross-Validation (CV). The k-value, in this case, is 10. The
test set is also subjected to these ensemble classifiers to
forecast the class’s malicious or normal. A digitally effi-
cient logistics network in Industry 5.0 is built on real-time
decision-making and excellent visualization.

F. DELIVERY MANAGEMENT

Delivery management enables inventory management and
logistics optimization scenarios of production capacities.
Intelligent supply chain management and smart transporta-
tion are two new technical advancements enabling smart
logistics operations. The delivery of the product mainly
depends on the production performance. The equipment’s
performance efficiency needs to be calculated to identify
production efficiency. A measurement of how successfully
a production process uses its resources, installations, work-
force, and equipment throughout the planned operating times
is identified in equations (1) and (2).

Equipment Efficiency
(A) total pdt wt — scrap — rework wt
*

B total pdt wt
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* (performance), (1)
performance = (total pdt wt/A)/R, 2)

where “‘fotal pdt wt” is the period that the equipment is
operational at the fixed time given by A, ¢ the number of hours
available less any “‘not designated time”” equals the number
of hours scheduled is given as B. The successful running rate
of the machine during production is given as R.

G. EVALUATION METRICS

The efficiency of the system is evaluated using the
https://www.nasa.gov/intelligent-systems division turbofan
dataset information. The dataset information is collected in
the real-time, the system designed according to the inputs.
The inputs are processed by ML techniques that are trained
by passing various inputs. The frequent training procedure
improves the overall system efficiency that used to implement
the system in the real-time applications.

Parameters like accuracy, precision, recall, False Alarm
Rate (FAR), the Receiver Operating Characteristics (ROC)
for Area Under Curve (AUC), Learning Rate (LR), Vulner-
ability Detection Rate (VDR), and F1-score were used for
performance evaluation for detecting anomalies in [oT appli-
cations of SP2. Finding True Positive prediction (TP), False
Positive prediction (FP), True Negative prediction (TN), and
False Negative prediction (FN) is necessary before comput-
ing. The True Positive Rate (TPR) is the count of relevant
occurrences the model correctly classified as relevant. The
False Positive Rate (FPR) is the count of events the model
mistakenly thought were significant but irrelevant. The quan-
tity of cases that were relevant but were mistakenly labeled
as irrelevant by the model is known as the false negative rate.

Learning Timeout (LT).

Indicates how long it took to train the entire dataset and
find the best-fitting training algorithm for learning timeout is
calculated in equation (3).

LT = Final learning time — Initial training. 3)

Vulnerability Detection Rate.

Equation (4) measures the Vulnerability Detection Rate
(VDR) measures the proportion of abnormal data points accu-
rately identified as anomalies using the learning algorithm

VDR = Final testing time — Initial testing time. (4)

False Alarm Rate (FAR).

The False Alarm Rate (FAR) is the proportion of standard
data wrongly classified as anomalies. Using the Receiver
Operating Characteristic (ROC) curve, the 2D graph that
illustrates the comparison between the VDR and the FAR
is another way to assess the performance of an anomaly
identification. The most effective method is one with a wide
Area Under the Curve (AUC) based on ROC and a relatively
minimum rate of false alarms. A high ROC value implies a
model’s ability to identify attacks, but a low number shows
inefficiency. IDS may also be assessed based on how well
they manage their time. The time performance reflects the
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time the IDS requires to find an incursion. This period is made
up of the dissemination and processing times. The processing
period refers to the period the IDS needs to process the data
to find an attack. Real-time intrusion processing requires
the IDS to process data as quickly as possible; otherwise,
it is impractical. The dissemination duration is the duration
needed to spread information.

Accuracy prediction.

The positive class represents the attacks that have been
identified. The negative class has no attacks in the network.
Accuracy is one of the effectively organized SP2 in an indus-
trial environment, and intrusion occurrence is analyzed as the
original value to determine the right output, which is how
detection accuracy is defined in equation (5). False Positive
(FP) is given as an incorrect prediction of the positive class
(attack), False Negative (FN) is given as an incorrect predic-
tion of the negative class (no attack), True Negative gives the
correctly predicted negative class (no attack), True Positive
gives correctly predicts the positive class (attack).

IN +TP
TN + TP + FN + FP

Recall or sensitivity calculation.

Recall, often known as “sensitivity,” is the percentage of
retrieved instances across all pertinent instances calculated in
equation (6). Precision and recall of a perfect classifier are
both equal to one.

Accuracy =

100. 5)

TP
Recall =———. (6)
(TP + FN)

Precision.

The percentage of genuine positives to the overall quantity
of good patterns can be used to define precision. It can be
calculated by equation (7).

TP

Precision = — — . (7
(TP prediction 4+ FP prediction)

F1-score.

An ML evaluation metric called the F1 score combines pre-
cision and recall ratings. To properly test model correctness,
learning when and how to apply it is given in equation (8).

Two * precision * recall
F1 — score = — . (8)
precision + recall

The summary of the proposed ML-SP2-IDS model enables
the Industry 5.0 development into a new phase. Applying
predictive maintenance and optimization for SP2 enhances
the performance efficiency of the production phase compared
to previously implemented algorithms. The ML-IDS imple-
mented for network vulnerabilities issue is resolved using an
ensembling concept by combining three ML algorithms, AE,
RF, and DT, to accurately classify the intrusion as malicious.

IV. EXPERIMENTAL RESULTS

During the training and validation phases, most ML tech-
niques for industrial IoT, like anomaly diagnosis, require
some data. Moreover, sensor data is typically collected over
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an extended period and at various sampling frequencies in
industrial IoT systems, which results in high dimensional
dataset analysis.

The data source for SP2 is gathered from [27], in which
the turbojet drum production using a smart production phase
with various attributes like rotator arm, machine lifetime, and
others are taken as input sources for the production phase.
Network vulnerabilities in the production phase might affect
the smart production performance efficiency. Suricata can
serve as the foundation for building the ML-IDS, integrating
with the machine learning models to enhance threat detection
and response. The collected data is spilt into 80% testing
and 20% training that used to measure the efficiency of the
system. Hence, the production phase in the network domain
needs to be monitored for vulnerabilities. Hence, an ML-IDS
approach has been implemented with the data source men-
tioned in [28], comprising the advanced IIoT structure, the
behavior of modern machines, and numerous attack kinds of
malicious procedures. It includes multi-view features, net-
work activity, host assets, logs, and warnings and provides
an attack classification.

The proposed IDS in the network is implemented by
utilizing the X-IIoTID, which represents the Extended Indus-
trial IoT Intrusion Detection and gives data for identifying
network vulnerabilities using three ensembling ML algo-
rithms. X-IIoT is a comprehensive Industrial IoT-based
attack data source encompassing the variability of net-
work activity and system operations generated by diversi-
fied IoT devices. It includes nine intrusions: surveillance,
weaponization, lateral movement, Command Control, Trans-
fer information, virtual currency, Ransom Denial of Ser-
vice (RDoS), and altering. It contains 820,834 cases with
68 features and two categories (421,417 as regular and
399,417 as malicious). Various data sources are used to
collect and produce the attributes in the X-IIoTID dataset.
It has 68 attributes, including network congestion-related
features.

Eighty percent of the resource is used for training, while
twenty percent is used for testing. Each smart industrial
module receives an equal share of the training component,
which they utilize to prepare the learning algorithm. Due to
the great flexibility of smart manufacturing and data privacy
concerns, it may not be possible to train these models using
diverse, impartial, and comprehensive datasets in distributed
and remote facilities.

Figure 4 shows that the interpolation procedure depicts
the turbo deterioration’s trend line for predicting machine
life using ML techniques in the predictive maintenance
algorithm phase. With minimal training, the matching trend
line accurately predicts the RPL.

The input attributes taken from [27] give the decision
variable information based on several cycles in terms of the
remaining working days of the identified smart machine to
replace the machine. In contrast, the vertical axis represents
the Conditional indicator of the machine’s health, whether
faulty or normal. The machine is at the normal range when

152271



IEEE Access

V. Shkarupylo et al.: Exploring the Potential Network Vulnerabilities in the Smart Manufacturing Process

L R

@ S [ —=— RPL measure|
£ 0.8 Sm,
5 .y
E L]
5 L N
5 0.6 s
] e
E ™
5 0.4 %
5 3
5 ™
(&)

0.2 \

N
L |
0.0 . . T T

T T T T )
0 20 40 60 80 100 120 140 160 180
No. of cycles (days)

FIGURE 4. RPL prediction using predictive maintenance algorithm for
calculating the life of industrial machines.
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FIGURE 6. Maintenance cost reduction using predictive maintenance
algorithm and optimization model in SP2.

with the same production line is given as Z,,,. The amount of
equipment maintenance must be maintained from various CI
values and calculated.
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FIGURE 5. Performance efficiency of the production process in an
industry.

The performance efficiency of the production line is
analyzed from above in Figure 5, where the proposed ML-
SP2-IDS model is compared with other existing models,
GA-ANN, ARF, and DAE-DBC.

The input attributes of several cycles representing the
machine’s working condition in a day are taken from [27].
The performance analysis is identified from the implemented
CNN algorithm for training the model with ReLu and nec-
essary parameters. The information features like machine
uptime, downtime, and scheduled period are extracted using
the PCA technique. The performance efficiency of algorithms
increased when the number of the working capacity of the
equipment improved.

In Figure 6 above, the graph shows that with SP2’s predic-
tive maintenance algorithm, maintenance costs are reduced
with the help of RPL measures calculated for the machine’s
longevity. The probability of working days of machinery with
necessary CI conditional features is taken from p (CI). The
minimum cost maintenance of equipment is calculated from
the optimized model parameter minimum(MnC). The number
of machines presented in a given CI concerning the total
serving days compared to the total lifetime of other machines
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FIGURE 7. The trade-off between VDR and FAR.

Figure 7 shows that the trade-off between the network vul-
nerabilities detection rate using equation 3 and the FAR rate
is represented using an ROC curve. Since the proportions of
attack detection and false alarms are sometimes at odds with
one another for evaluation comparison, Receiver Operating
Characteristics (ROC) analysis is also used to evaluate IDS.

The proposed ML-SP2-IDS model outperforms all exist-
ing models, ML-RF-FLID, NRDD-DBSCAN, and OC-SVM.
From the above Figure 8, the input attributes categorized
as reconnaissance, weaponization, and Ransom Denial of
Service (RDoS) are taken for performance analysis from [28]
for identifying vulnerabilities in the industrial network for
safe and better production process with metrics such as accu-
rateness, precision-recall, and F-measurement score in all
scenarios, by using the suggested model for varying numbers
of ensembled ML techniques like AE, RF, and DT with
bagging, boosting and stacking concepts to analyze network
vulnerabilities. The detection accuracy performed well and
classified the outcome as malicious or normal behavior based
on the implemented techniques.

Figure 9 depicts the implemented ML-IDS model for net-
work vulnerabilities for different epoch sizes for incremental
iterations. The train test split function validates the imple-
mented ensembling ML algorithms for various production
phases in the network of Industry 5.0. The input attributes
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FIGURE 9. Accuracy prediction of ML-IDS based on various iterations for
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TABLE 2. Computation time analysis.

Methods Computation Time (s)
ML-SP2-IDS 9.87

SDN/NFV 13.49
NRDD-DBSCAN 15.97

MV-RF-FLID 18.23

are taken from [28] for various attribute types of attack types
with model-train and model-test to solve the bias-variance
trade-off. In addition, the computation time for the proposed
ML-SP2-IDS is computed to measure how much time the
proposed approach takes to run the industrial information.
The computation time measures the starting and running time
for entire task. Then the obtained computation time is shown
in the table 2.

From the table 2 it clearly shows that introduced ML-SP2-
IDS approach attains minimum computation time (9.87s)
compared to other methods such as SND/NFV (13.49s),
NRDD-DBSCAN (15.97s) and MV-RF-FLID (18.23s). from
the analysis it clearly shows that proposed algorithm effec-
tively utilizes the hardware component that influences
the computation time. In addition, the proposed method
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TABLE 3. Comparative analysis.

Criteria Proposed Model SDN/NFV- NRDD- MYV-RF-FLID
based OC- DBSCAN
SVM
Performance High accuracy, Moderate High High accuracy,
Metrics low false positives accuracy, accuracy, strong ensemble
potential false effective in performance
positives anomaly
detection
Architecture Deep learning- One-Class Density- Federated learning
based CNN with SVM in based with Random
feature extraction SDN/NFV clustering Forest ensemble
environment with
redundancy
removal
Computationa Moderate to high High Lower Moderate
1 Efficiency (dependent on efficiency, but efficiency efficiency,
hardware) lower due to computationally
complexity clustering intensive due to
and ensemble and
redundancy distributed nature
processing
Scalability High scalability High Moderate High scalability
with potential scalability in scalability, with federated
parallel processing SDN/NFV limited by learning, but
environments clustering requires robust
complexity infrastructure
Data Capable of Effective in Best for Handles
Handling handling large, network traffic clustering distributed data
high-dimensional analysis spatial data, effectively, good
data may for federated
struggle setups
with large-
scale data
Model High complexity Low to Moderate High complexity
Complexity due to CNN d i due to bl
architecture complexity with and federated
DBSCAN learning
enhanceme
nts
A ili High ili Limited Moderate High adaptability,
to New through ini ptability, ili ining across
Threats CNNs requires model with nodes improves
retraining clustering model
adjustments generalization
Real-time Suitable for real- Highly suitable | May Suitable, but may
Application time detection with | for real-time struggle in face latency in
optimized due to real-time federated learning
implementation SDN/NFV due to communication
integration clustering
overhead
Infrastructure Requires Moderate, Higher High, needs a
Requirements GPUs/TPUs for leverages computatio robust federated
optimal existing nal learning
performance SDN/NFV resources infrastructure
infrastructure for
clustering
Strengths Strong pattern Efficient in Effective in High accuracy,
recognition, robust network-based identifying privacy-preserving
against complex environments non- with federated
threats redundant learning
patterns
Weaknesses Higher May miss Computatio Complexity and
computational subtle nally infrastructure
cost, complex anomalies, intensive, demands may limit
architecture requires precise scalability deployment in
fi ion S
constrained

effectively works on the large dataset by effectively utilizes
the machine learning techniques. The convolution neural
networks and training process reduces the complexity while
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exploring the large data. Finally, the method attains the high
scalability in the industrial applications.

From the above analysis, network vulnerability of industry
5.0 is detected with the help of the Convolutional Neu-
ral Networks (CNNSs) in the context of the ML-assisted
Smart Production Process (ML-SP2). During the analysis,
the ROC-AUC curve analysis is incorporated with the other
metrics such as accuracy, F1-score etc. The ROC-AUC met-
rics identifies the model identifies the difference between the
class with different thresholds. The metric effectively iden-
tifies the imbalanced dataset network security concerns. The
described metrics provides the effective evaluation and used
to justify the system robustness while analyzing the imbal-
anced data in the industry 5.0 real-time applications. The
results summarized all the implemented graphs performed
well for the proposed ML-SP2-IDS model and outperformed
other existing algorithms using intelligent ML algorithms in
the smart industrial production phase. In addition, the excel-
lence of the ML-SP2-IDS system is compared with existing
approaches and the obtained comparison is shown in Table 3.

V. CONCLUSION

For decades, industrial smart production process enhance-
ment goals have been improving production efficiency,
boosting worker productivity, reducing scrap waste, and pro-
longing network lifetime by ensuring security and integrity.
The fact that the new ML solution makes it easier to increase
industrial operators’ knowledge and simplify the production
process environment using the platform’s knowledge is a
major point. The ML-SP2-IDS model achieves it by imple-
menting ML algorithms in smart industries using predictive
maintenance and optimization and ensembling techniques
sorted by bagging and boosting the production performance.
During the analysis, different machine learning algorithms
are incorporated that reduce the intermediate activities and
identifies the abnormal activities with maximum recognition
accuracy. In addition, the system uses the convolution net-
work that fine-tune and train the networks that reduce the
false acceptance rate.

The ML-SP2-IDS algorithm has added advantages such
as equipment safety, increased reliability, and cost reduc-
tion. The smart industrial production phase’s effectiveness
is measured by the RPL (0.9), maintenance cost (2500%),
production performance (1.0), VDR (97.6%), FAR, accuracy
(99%), precision (94%)-recall (96%), and f1-measure (98%)
compared to the existing methods such as ML-RF-FLID,
NRDD-DBSCAN, and OC-SVM. Yes, it has limitations
related to data protection, cost intensity, scalability, opera-
tional and the complexity of the smart transformation for
robots in Industry 5.0. Limitations of the ML models used,
such as overfitting or sensitivity to data quality. Possible
socio-economic impacts, such as job displacement due to
increased automation. Further work will include present-
ing novel ML-assisted ensembling techniques for IDS to
prevent Industry 5.0 from adversarial and classic intrusion
diagnosis with minimal computational overhead. In addition,
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encryption methodologies like AES, DES and block chain
approaches are utilized for ensuring the data security and
privacy.
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