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1.Introduction 
The growing demand for electricity has placed 

significant stress on power systems, leading to higher 

power losses, voltage instability, and increased 

operational costs. Traditional centralized power 

generation models often lead to inefficiencies due to 

transmission constraints and distribution losses [1]. 

Distributed generation (DG) has emerged as a viable 

solution to alleviate these issues by integrating small-

scale, decentralized power sources such as solar 

photovoltaics (PV) and wind turbines (WT) within 

distribution networks. DG units enhance grid 

resilience, reduce transmission losses, improve 

voltage profiles, and contribute to a more sustainable 

and efficient power system [2–4].  
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However, the integration of DG requires careful 

consideration of factors such as optimal placement, 

sizing, and type selection to maximize its benefits 

while maintaining system stability and reliability [5]. 

 

Despite its advantages, DG implementation presents 

challenges related to system stability, power quality, 

and economic feasibility. Poorly planned DG 

placement and sizing can cause voltage fluctuations, 

increased losses, and undesirable power flow effects 

[6]. Identifying the optimal location, size, and type of 

DG is crucial to maximizing efficiency while 

minimizing power losses and operational costs [7]. 

Many existing methods lack a robust, 

computationally efficient solution that guarantees 

system-wide improvements [8]. Therefore, a more 

advanced optimization approach is necessary to 

address these challenges effectively. This paper aims 

to develop an optimization framework based on the 
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The salp swarm algorithm (SSA) was introduced as a method for efficiently selecting the optimal location, size, and type 

of distributed generation (DG) in a distribution system. SSA is a probabilistic algorithm that simulates the behavior of a 
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movements while maximizing their foraging efficiency. This study investigated three types of DG: photovoltaic (PV), 

wind, and diesel. The methodology distinguishes between different types of DG, determines their optimal placement, and 
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indicate that the proposed SSA approach successfully identifies the most suitable sites, sizes, and types of DG. A 
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programming (EP) approach. The results demonstrate that SSA outperforms EP in reducing power losses and improving 
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salp swarm algorithm (SSA) to determine the optimal 

placement, sizing, and type of DG units in a 

distribution network. SSA is easier to construct than 

most other evolutionary algorithms due to its 

uncomplicated design and minimum parameter 

tuning requirements [9]. This characteristic makes 

SSA a suitable choice for solving complex problems. 

The primary objective of this study is to improve 

voltage stability, reduce power losses, and enhance 

overall system efficiency. The key contributions of 

this paper include: 

• A novel application of the SSA for optimizing the 

placement, sizing, and selection of DG units to 

enhance power system performance. 

• A comparative analysis of the proposed method 

against existing optimization techniques to 

establish its effectiveness. 

• Performance evaluation of the SSA-based 

approach using standard test distribution networks. 

• A demonstration of the effects of optimal DG 

integration on power loss reduction and voltage 

profile improvement. 

 

The paper is structured as follows: Section 2 provides 

a comprehensive literature review of relevant studies. 

Section 3 details the methodology, including DG 

modeling, problem formulation, and the development 

of the SSA. Section 4 presents the results, followed 

by an in-depth discussion in Section 5. Finally, 

Section 6 concludes the study and offers 

recommendations for future research. 

 

2.Literature review 
Research indicates that improper placement and 

sizing of DG units can lead to increased system 

losses compared to systems without DG. Cortez et al. 

[10] presented a study that utilizes particle swarm 

optimization (PSO) to determine the most efficient 

positioning and sizing of hybrid solar-wind DG units 

in the IEEE 33-bus test system under three distinct 

scenarios. The findings indicate that system voltage 

improved and power losses were reduced when DG 

was installed at an optimal location and size. A 

similar trend is observed in [10], where optimal DG 

placement and sizing result in reduced power losses, 

improved voltage profiles, and enhanced system 

stability. The sizing and allocation of DGs were 

optimized by considering factors such as minimizing 

power losses, improving voltage profiles, and 

enhancing stability. 

 

A stability index was introduced in [11], utilizing 

Thevenin impedance within a distribution network. 

Various artificial intelligence techniques, including 

PSO [12], Fractional Lévy flight bat algorithm [13], 

dwarf mongoose optimization [14], whale 

optimization algorithm [15], improved wild horse 

optimization algorithm [16], and adaptive grey wolf 

optimizer [17], have been applied to determine the 

optimal placement and sizing of DG units. Heuristic 

algorithmic approaches have demonstrated their 

effectiveness in solving this problem, even when 

addressing multiple objectives. 

 

In the field of optimization, the SSA has recently 

emerged as a promising approach [18]. It mimics the 

collective behavior of salps as they search for food in 

water. The algorithm designates the leading salp in 

the chain as the leader, while the others act as 

followers. The SSA method has proven effective in 

solving multi-objective electric power load dispatch 

problems, outperforming other algorithms [19]. It 

maintains a balance between exploration and 

exploitation, making it suitable for numerical and 

engineering optimization problems. SSA has also 

been successfully applied to hybrid photovoltaic-

thermoelectric generator (PV-TEG) systems to 

optimize power extraction, achieving high-quality 

GMPP solutions even with poor initial conditions due 

to its robust and reliable search processes [20]. 

Furthermore, SSA improves power flow efficiency 

by reducing fuel costs, power losses, and voltage 

fluctuations while ensuring voltage stability in 

electric power systems [21]. In this study, SSA is 

chosen for solving the DG allocation problem due to 

its demonstrated superiority in addressing various 

optimization challenges. 

 

Most previous studies have focused on a single type 

of DG, with only a few exploring multiple DG types. 

Yehia et al. [22] introduced a hybrid fuzzy-

metaheuristic approach to determine the optimal 

sizing and placement of various DG types. The study 

considered three scenarios: (1) a DG system with a 

power factor of unity, (2) a DG system supplying 

active and reactive power at a constant power factor 

of 0.866 p.u., and (3) multiple DG systems injecting 

active and reactive power at a variable power factor. 

Although the proposed algorithm improved system 

performance, the results did not specify the optimal 

DG type. 

 

The key challenge highlighted in the literature is the 

complexity of optimizing DG placement, sizing, and 

selection while ensuring system stability, reducing 

power losses, and improving the voltage profile. 

Incorrect DG placement can increase losses, and 

integrating DG affects power quality and stability. 
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Balancing multiple objectives requires advanced 

optimization algorithms, but their efficiency varies. 

Most studies focus on a single DG type, with limited 

research on multi-DG integration and optimal DG 

selection.  

 

3.Methodology 
The selection of the most suitable location, size, and 

type of DG are determined by minimizing power 

losses. Furthermore, the impact of DG 

implementation on the enhancement of the voltage 

profile is also assessed. A comparison is made 

between the performance of SSA and that achieved 

through the utilization of the evolutionary 

programming (EP) technique. 

 

3.1Active power losses minimization 

In this study, one of the primary requirements for 

achieving an efficient operation of the distribution 

network was the minimization of active power losses. 

The specified criterion is presented in Equation 1. 

𝑃𝑙𝑜𝑠𝑠𝑒𝑠 = ∑ ∑ 𝑅𝑖𝑗 × 𝐼𝑖𝑗
2𝑁

𝑗=𝑖+1
𝑁
𝑖=1   (1) 

 

Where: Rij denotes the resistance of the branch at 

position (i,j), Iij represents the current flowing 

through the branch at position (i,j), and N denotes the 

total number of nodes in the system. 

 

3.2Voltage profiles 

Voltage profile improvement in a distribution system 

involves adjusting the system's operating conditions 

to ensure that the voltages at various nodes or buses 

are within acceptable limits. A common objective 

function for voltage profile improvement is to 

minimize the sum of squared voltage deviations as 

per Equation 2: 

𝑉𝑚𝑖𝑛 = ∑ (𝑉𝑗
𝑚
𝑗=1 − 𝑉𝑑𝑒𝑠𝑖𝑟𝑒𝑑)2  (2) 

 

Where Vj is the voltage at bus j and Vdesired is the 

desired voltage. 

 

3.3Type of DG 

DG is an essential component of modern power 

systems, providing a decentralized approach to 

electricity generation. This project focuses on three 

types of DG sources: PV with a power factor of 1, 

WT with a power factor of 0.95, and a diesel 

generator with a power factor of 0.93. This aims to 

optimize the integration of these diverse DG sources 

into the distribution system while taking into account 

their distinct power factors. 

 

The variation in power factors among the DG sources 

poses challenges in maintaining a balanced and 

efficient power system. The project aims to analyze 

the impact of this mismatch on the distribution 

system's performance. Determining the optimal size 

and location for each DG type, considering their 

power factors, is a complex optimization problem. It 

involves minimizing power losses, improving voltage 

profiles, and ensuring reliable power supply. 

Addressing power factor variation in DG sources is 

crucial for achieving a balanced and sustainable 

distribution system. The paper's findings contribute to 

developing guidelines for efficiently integrating 

diverse DG sources, paving the way for a resilient 

and optimized power distribution infrastructure. 

 

3.4Salp swarm algorithm (SSA) 

Salps are members of the Salpidae family and have 

bodies that are barrel-shaped and transparent, 

resembling jellyfish in appearance. Like jellyfish, 

salps pump water through their bodies to propel 

themselves. While the study of salps is still in its early 

stages, they exhibit fascinating behaviors, such as 

swarming. In deep waters, salps form structures 

known as salp chains. The reason behind their 

collective behavior remains unclear, but it is 

suggested that it enhances locomotion efficiency by 

coordinating movement and foraging [19, 23]. 

Studying salps is challenging due to the difficulty of 

accessing their natural habitat and the complexities of 

maintaining them in laboratory conditions [19, 23]. 

The notion of the SSA is derived from the observed 

coordinated movement and feeding patterns 

demonstrated by salps in marine environments. 

Marine invertebrates, known as salps, propel 

themselves by contracting and relaxing their body, 

resulting in the formation of a water jet. Moreover, 

they exhibit a distinctive behavior characterized by 

the formation of chains and the synchronized 

swimming of groups. The SSA algorithm splits the 

population into two groups: leaders, who guide the 

swarm, and followers, who track the leaders either 

directly or indirectly [24]. 

 

The population of salp chains is divided into two 

distinct types: namely leaders and followers, in order 

to construct a mathematical model. The leader stands 

at the front of the chain, while the rest are considered 

followers. As the name suggests, the leader guides the 

group, while followers stay connected to each other 

and the leader, either directly or indirectly. Salp 

positions in swarm-based approaches are determined 

within an n-dimensional search space, where n 

represents the number of problem variables. A two-

dimensional matrix, x, stores the positions of all salps. 

The primary goal of the swarm is to locate a food 
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supply denoted as "F," which is presumed to be 

located within the search space [24]. Equation 3 for 

updating the leader's position is given as follows: 

𝑥𝑗
1 = {

𝐹𝑗+𝑐1

𝐹𝑗−𝑐1

((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)

((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)
}

𝑐3 ≥ 0
𝑐3 < 0

 (3) 

 

In this formula, 𝑥𝑗
1 denotes the position of the initial 

salp (the leader) in the jth dimension, whereas 𝐹𝑗 

indicates the location of the food source in that 

dimension. The values 𝑢𝑏𝑗 and 𝑙𝑏𝑗 represent the upper 

and lower limits for the jth dimension. Furthermore, 

the variables c1, c2, and c3 are stochastic values 

employed in the computation. Equation 3indicates that 

the leader just adjusts its location in relation to the 

food supply. Parameter c1 is essential in SSA as it 

facilitates the equilibrium between exploration and 

exploitation. The definition is as shown in Equation 4: 

𝑐1 = 2𝑒
−(

4𝑙

𝑇
)

2

      (4) 

 

The parameters c2 and c3 are determined through a 

random generation process that produces values 

between 0 and 1. These numbers determine the 

trajectory of the subsequent location in the jth 

dimension, indicating whether it proceeds towards 

positive or negative infinity, together with the 

magnitude of the step size. The position of the 

followers is determined using the following equation 

derived from Newton's law of motion (Equation 5). 

𝑥𝑗
𝑖 1

2
𝑎𝑡2 + 𝑣0𝑡,    (5) 

 

where 𝑖 ≥ 2, 𝑥𝑗
𝑖 denotes the position of the ith follower 

salp in the jth dimension, t represents time, 𝑣0 signifies 

the starting velocity, and a indicates the ratio of final 

velocity to beginning velocity. In optimization, time is 

measured in iterations. The difference between each 

iteration is equal to 1. Assuming 𝑣₀ = 0, Equation 6 

can be represented as follows: 

𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1)   (6) 

 

where i ≥ 2 and 𝑥𝑗
𝑖  denotes the position of ith follower 

salp in jth dimension. The salp chains can be 

simulated using Equation 3 and 6.  

 

Figure 1 illustrates the flowchart of the SSA. 

According to Figure 1, the SSA parameters must be 

configured, encompassing the upper bound, lower 

bound, and maximum iterations, as required. The first 

salp population is thereafter generated with random 

places and velocities. 

 

 

The quantity of variables is contingent upon the 

amount of DG types, either ten (for a singular kind of 

DG) or fifteen (for numerous types of DG). The 

variables evaluated for different forms of DG are L1, 

L2, L3, L4, L5, P1, P2, P3, P4, P5, pf1, pf2, pf3, pf4, 

and pf5. L1 - L5 denotes the location of DG, P1 - P5 

indicates DG sizing, and pf1 - pf5 signifies three 

categories of DG. Furthermore, the fitness function is 

established to assess the performance of each salp. 

Then, the quality of each solution is assessed based on 

its ability to minimize power loss and improve the 

voltage profile in the system. 

 

This involves applying the solutions to a model of the 

69-bus system and evaluating the resulting power loss 

and voltage levels. The solution that has the best 

fitness value so far has been identified. After that, the 

parameter c1, which helps balance exploration and 

exploitation, is updated. Furthermore, the position of 

the leading salp (the one at the front of the chain), 

representing the current best solution, is updated. This 

typically involves movement towards the food source 

(the optimal solution). Then, the positions of the 

follower salps are updated based on their current 

positions and the position of the leading salp. This 

simulates the chain-like movement of salps in nature. 

Next, the upper and lower bounds are checked to 

ensure that the updated positions of the salps still fall 

within the allowed variable bounds. Lastly, the 

algorithm is terminated if the maximum number of 

iterations has been reached. Otherwise, it returns to 

step 2 for another round of fitness evaluation and 

position updates. 

 

3.5Evolutionary programming (EP) 

To evaluate the effectiveness of SSA, its outcomes are 

compared with those of a well-known technique, EP. 

EP is chosen for its capability to explore complex 

solution spaces and optimize DG placement and 

sizing [25]. It is a stochastic optimization approach 

similar to the genetic algorithm (GA), focusing on the 

behavioral relationship between parents and offspring. 

The number of variables and their range are set 

similarly to SSA. During initialization, constraints are 

applied to ensure that EP generates random numbers 

meeting predefined criteria, such as a specific power 

factor value and a minimum bus voltage of 0.90 p.u. 

Offspring are generated through mutation applied to 

random integers. Figure 2 presents the flowchart of 

EP. 
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Figure 1 Flowchart of SSA 

 

3.6 Test System 

DG is generally implemented in a distribution 

system. Consequently, the evaluated approaches were 

tested using the IEEE 69-bus distribution test system, 

comprising 69 buses, seven laterals, and 68 branches. 

The system features a radial architecture and operates 

at a voltage level of 12.66 kV. The total active and 

reactive loads are 3.8 MW and 2.69 Mvar, 

respectively. Under standard conditions, the system 

loses 223.1 kW of active power. The voltage range is 

0.95 to 1.05 per unit (p.u). Figure 3 illustrates the 

IEEE-69-bus system.  

 
Figure 2 Flowchart of evolutionary programming 

 

 
Figure 3 IEEE 69-bus distribution test system 
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4.Results  
To evaluate the effectiveness of the proposed method 

for optimizing the sizing of five DG units using SSA, 

the results were divided into four cases and compared 

with EP. The following four case studies were 

considered: 

Case 1: PV as DG with a power factor of 1 

Case 2: WT as DG with a power factor of 0.95 

Case 3: Diesel generator as DG with a power factor 

of 0.93 

Case 4: Multiple types of DGs 

 

The proposed SSA algorithm was implemented in 

MATLAB R2021b on a system equipped with an 

Intel Core i5-5287U CPU running at 2.90 GHz. Both 

SSA and EP simulations were conducted under 

identical settings, including the maximum iteration 

count and the number of search agents. The number 

of iterations and search agents was set to 200 and 20, 

respectively. 

 

4.1Case 1: photovoltaic as DG  

In this case study, a unity power factor is assigned to 

the PV as DG. Table 1 presents the optimal DG 

results obtained using SSA and compares them with 

those from the EP method. As shown in Table 1, SSA 

achieved the most favorable outcome, with a power 

loss of 0.0642 megawatts (MW) and a minimum 

voltage of 0.9899 p.u. In contrast, EP resulted in a 

power loss of 0.0924 MW and a minimum voltage of 

0.9527 p.u. Figure 4 illustrates the convergence curve 

of SSA, which converged at the 140th iteration. 

 

In the Table 1, PDG (MW) and QDG megavolt-

amperes reactive (MVar) represent the real and 

reactive power outputs of distributed generation (DG) 

units, respectively. In this study, all QDG values are 

zero, indicating that the DG units operate at a unity 

power factor, meaning they generate only real power 

(PDG) without contributing reactive power (QDG = 

0). Table 1 presents a comparison of SSA and EP in 

terms of DG placement and performance. The 

location column indicates the bus number in the IEEE 

69-bus system where the DG unit is installed. The 

PDG (MW) column provides the real power output at 

each DG location, while the QDG (MVar) column 

shows the reactive power output, which remains zero 

due to the unity power factor. The power loss (MW) 

column represents the total power loss in the system 

after DG placement, and the Vmin (p.u.) column 

records the minimum voltage observed in the system. 

From the observations, SSA outperforms EP, 

achieving a lower power loss (0.0642 MW) and a 

higher minimum voltage (0.9899 p.u.) compared to 

EP, which results in a power loss of 0.0924 MW and a 

minimum voltage of 0.9527 p.u. Additionally, SSA 

distributes DG units more effectively across different 

locations, leading to improved system performance. 

The results demonstrate the superiority of SSA over 

EP in optimizing DG placement and sizing, thereby 

reducing power losses and enhancing voltage stability 

within the distribution network. 

 

 
Figure 4 Convergence curve of SSA for case 1 

 

Table 1 Result for SSA and EP for case 1 
 Location PDG (MW) QDG (MVar) Power loss (MW) Vmin (p.u) 

SSA 

50 0.5917 0 

0.0642 0.9899 

18 0.4035 0 

66 0.4013 0 

64 0.3106 0 

61 1.3593 0 

EP 

12 0.1842 0 

0.0924 0.9527 

65 0.3244 0 

29 0.1419 0 

11 0.7307 0 

61 0.5060 0 
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4.2Case 2: WT as DG  

For Case 2, the analysis considers the placement of 

five WT units, each operating at a power factor of 

0.95. The findings for this case are summarized in 

Table 2. Based on the tabulated data, the SSA 

approach achieves the lowest power loss of 0.068 

MW, along with a corresponding minimum voltage 

of 0.979 p.u. The optimal DG placement is identified 

at buses 2, 11, 50, 17, and 61. The best sizing values 

for the DG units are 1.9368, 0.3035, 0.5618, 0.3149, 

and 1.3056 MW, respectively. The convergence 

curve for Case 2, obtained using SSA, is illustrated in 

Figure 5. The overall analysis indicates that SSA 

outperforms EP in optimizing DG placement and 

sizing. SSA achieves a lower power loss of 0.068 

MW and a higher minimum voltage of 0.979 p.u., 

compared to EP, which results in 0.0794 MW power 

loss and 0.964 p.u. minimum voltage. Additionally, 

SSA distributes DG units more effectively, leading to 

better system stability and efficiency. 

 

Table 2 Result for SSA and EP for case 2 
 Location PDG(MW) QDG (MVar) Power Loss (MW) Vmin (p.u) 

SSA 

2 1.9368 0.9380 

0.068 0.9790 

11 0.3035 0.1470 

50 0.5618 0.2721 

17 0.3149 0.1525 

61 1.3056 0.6323 

EP 

12 0.1842 0.0892 

0.0794 0.9640 

65 0.3244 0.1571 

29 0.1419 0.06087 

11 0.7307 0.3539 

61 0.5060 0.2451 

 

 
Figure 5 Convergence curve of SSA for case 2 

 

4.3Case 3: diesel generator as DG 

In Case 3, the diesel generator is designated as DG. 

Typically, the power factor of a diesel generator falls 

between the range of 0.90 to 0.95 [26]. Thus, this 

study examines a diesel generator with a power factor 

of 0.93 on average. Table 3 presents the ideal 

parameters achieved using the proposed method for 

the diesel generator. The system has a minimal power 

loss of 0.0665 kW and a minimum voltage of 0.9788 

p.u. The most suitable position for DG is determined 

to be at buses 16, 49, 63, 61, and 47 with 

corresponding DG size values of 0.382, 0.775, 0.437, 

0.788, and 0.695 MW. The convergence graph for 

Case 3 is depicted in Figure 6. For Case 3, SSA 

demonstrates superior performance compared to EP, 

achieving a lower power loss of 0.0665 MW and a 

higher minimum voltage of 0.9788 p.u., whereas EP 

results in 0.0779 MW power loss and 0.9662 p.u. 

minimum voltage. SSA also provides a more 

effective DG distribution, ensuring better system 

efficiency and voltage stability. 

 

4.4Case 4: Multiple types of DGs  

In case 4, DGs are randomly picked from diverse 

categories. Table 4 summarizes the findings of case 

4, which examines the ideal placement, type, and size 

of DG units, taking into account various DG types 

(PV, WT, and Diesel). Two optimization strategies, 

the SSA and EP, were utilized for comparison 

analysis. The primary criteria evaluated are the 

reduction of power loss and the preservation of 

voltage levels within acceptable thresholds. The 

optimal DG locations discovered by SSA were buses 

23, 48, 33, and 61. The relative DG sizes were 0.0882 

MW, 0.983 MW, 0.0218 MW, and 1.715 MW. SSA 

designated WT for buses 23 and 61, whereas buses 

48 and 33 were assigned PV systems. The cumulative 

power loss recorded was 0.0677 MW. The lowest 

voltage (Vmin) was 0.9812 p.u., signifying the 

system's voltage stability. The optimal DG locations 

indicated by EP were buses 39, 62, 44, 58, and 13. 

The relative DG sizes were 0.4252 MW, 1.4289 MW, 

0.2604 MW, 0.1817 MW, and 0.5489 MW. EP 
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designated WT at buses 39 and 58, whilst PV 

systems were assigned to buses 62, 44, and 13. The 

cumulative power loss recorded was 0.075 MW. The 

minimum voltage was 0.9789 p.u. 

 

Table 3 Result of SSA and EP for Case 3 
 Location PDG(MW) QDG(MVar) Power loss (MW) Vmin (p.u) 

SSA 

16 0.3817 0.1849 

0.0665 0.9788 

49 0.7746 0.3751 

63 0.4374 0.2119 

61 0.7879 0.3816 

47 0.6954 0.3368 

EP 

12 0.1842 0.0726 

0.0779 0.9662 

65 0.3244 0.128 

29 0.1419 0.0558 

11 0.7307 0.2886 

61 0.506 0.1998 

 

Table 4 Result of SSA and EP for Case 4 
 Location PDG(MW) QDG(MVar) DG Type Power Loss 

(MW) 
Vmin (p.u) 

SSA 

23 0.0882 0.0268 Wind  

0.0677 0.9812 

48 0.983 0 PV 

33 0.0218 0 PV 

61 1.715 0.1189 Wind  

22 0.2683 0 PV 

EP 

39 0.4252 0.1111 Wind  

0.075 0.9789 

62 1.4289 0 PV 

44 0.2604 0 PV 

58 0.1817 0.979 Wind  

13 0.5489 0 PV 

 

 
Figure 6 Convergence curve of SSA for case 3 

 

5.Discussion  
Based on the results presented in Table 1, it can be 

concluded that SSA is a superior method compared to 

EP for solving optimal location and sizing of PV. 

Figure 4 demonstrates the effectiveness of the 

algorithm in Significantly reducing power loss over 

200 iterations. Initially, the best score starts at 

approximately 0.13, showing a steep drop in the first 

50 iterations to around 0.08, indicating rapid 

exploration and identification of promising solutions 

early in the optimization process. Beyond this point, 

the rate of improvement slows down, with more 

incremental changes observed until the algorithm 

converges at a best score of about 0.07 after around 

140 iterations. This convergence suggests that the 

SSA has effectively fine-tuned the placement and 

sizing of PV systems, achieving minimal power loss. 

The results confirm that the SSA is a suitable and 

robust approach for tackling the complex optimization 

problem of integrating PV systems into power grids, 

ensuring efficient energy distribution with minimized 

losses. From the results tabulated in Table 2, it can be 

seen that the optimal placement and sizing of DG for 

case 2 determined via SSA outperforms the findings 

provided by EP in terms of reducing power loss and 

improving voltage. The convergence graph for Case 2 

in Figure 5, which optimizes the location and sizing 

of WT using the SSA, shows a steady improvement in 

minimizing power loss. The score drops quickly from 

around 0.085 to 0.075 in the first 50 iterations, 

indicating the algorithm's effectiveness in finding 

good solutions early. The score continues to improve 

gradually, stabilizing at around 0.07 after 100 
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iterations. When compared to the optimization for PV 

systems, the WT results show a similar convergence 

trend, with both cases reaching a final score of about 

0.07. The SSA algorithm reaches convergence after 

154 iterations. This consistency suggests that the SSA 

is equally effective in optimizing both WT and PV 

systems, achieving similar levels of power loss 

reduction in both scenarios. In Case 3, the power loss 

achieved by the use of SSA is considerably lower 

compared to EP, resulting in a power loss of 0.0779 

MW as indicated in Table 3. In addition, the SSA also 

achieves a greater voltage enhancement, with a 

minimum voltage of 0.9788 per unit, as compared to 

EP. According to the convergence curve depicted in 

Figure 7, the SSA algorithm achieved convergence 

after 95 iterations. The convergence graph for Case 3, 

shows a steady reduction in power loss, starting from 

0.11 and dropping to around 0.075 after 100 

iterations. This mirrors the trend seen in the PV and 

WT cases, where the SSA effectively identifies 

optimal solutions early on and gradually refines them. 

Despite initially having a slightly higher power loss, 

all three cases converge to a similar final value 

between 0.07 and 0.075 MW, demonstrating the 

robustness and effectiveness of SSA across different 

DG types in minimizing power loss and improving 

system performance. 

 

The findings from Case 4, concerning the ideal 

placement, type, and size of DG units, provide 

significant insights into the efficacy of various 

optimization methodologies. The two optimization 

strategies employed (SSA and EP) were evaluated for 

their efficacy in minimizing power losses and 

sustaining voltage levels within permissible 

thresholds. Both SSA and EP designated distinct 

groups of buses for DG installation. The SSA-based 

approach proposed placement at buses 23, 48, 33, and 

61, whereas EP's optimal solution focused on buses 

39, 62, 44, 58, and 13. These disparities illustrate the 

intrinsic characteristics of the optimization strategies. 

SSA often converges on solutions that emphasize the 

optimal combination of DG types and placements to 

minimize power loss, while EP investigates a wider 

array of alternatives, possibly leading to more diverse 

DG placement solutions. 

The DG type assignments varied across the two 

methodologies. The SSA allocated WT to buses 23 

and 61; however, the EP positioned WT at buses 39 

and 58. This mismatch highlights the significance of 

the optimization algorithm in identifying the optimal 

sites for each DG type, predicated on power loss 

mitigation and voltage stability. The SSA technique 

allocated PV systems to buses 48 and 33, but the EP 

method positioned PV systems at buses 62, 44, and 

13. These disparities indicate that EP may favor a 

more equitable distribution of DG installations, 

whereas SSA seeks to maximize locations that yield 

the greatest enhancement in system performance. The 

dimensions of the DG units deployed in the network 

differed between the two optimization approaches. 

The DG sizes for SSA were comparatively smaller, 

with a maximum capacity of 1.715 MW at bus 61, 

while the EP results indicated a greater cumulative 

power loss associated with bigger DG sizes at 

multiple buses. The total power loss using SSA was 

measured at 0.0677 MW, while EP recorded a slightly 

higher power loss of 0.075 MW. This difference 

suggests that SSA more effectively reduces power 

loss through optimal DG placement and sizing. The 

lower power loss achieved by SSA can be attributed 

to its ability to strategically identify locations with the 

highest potential for loss reduction, utilizing a targeted 

optimization approach. 

 

Both optimization procedures yielded voltage levels 

within acceptable parameters, with SSA attaining a 

Vmin of 0.9812 p.u. and EP achieving a Vmin of 

0.9789 p.u. The voltage levels are around the nominal 

voltage of 1.0 p.u., indicating that both solutions 

preserved sufficient voltage stability. The minor 

discrepancy in voltage stability between the two 

strategies indicates that the SSA-based solution may 

have more efficiently reconciled power loss reduction 

with voltage regulation. Both technologies effectively 

maintain voltage stability throughout the system, 

which is essential for dependable operation in 

practical power systems. The comparison between 

SSA and EP highlights the strengths and limitations of 

each algorithm, providing a clear understanding of 

their respective merits and drawbacks. SSA exhibited 

enhanced efficacy in power loss mitigation, with the 

lowest aggregate power loss (0.0677 MW) and a 

superior minimum voltage (0.9812 p.u.). This 

indicates that SSA may be more effective in 

identifying the ideal arrangement for minimizing 

power loss and regulating voltage. Conversely, EP 

provided a more varied array of solutions, featuring 

distinct DG locations and sizes, suggesting its 

capacity to investigate a wider search field. 

Nevertheless, EP's elevated power loss (0.075 MW) 

and marginally reduced voltage stability indicate a 

greater susceptibility to suboptimal solutions relative 

to SSA in this scenario. 

In practical applications, the outcomes of both 

optimization algorithms yield valuable insights for the 

best placement of DG units in distribution networks. 

The findings demonstrate that both SSA and EP may 
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efficiently diminish power losses and uphold voltage 

stability; however, SSA may provide a more optimum 

solution with reduced losses and superior voltage 

regulation. The various DG placements and types 

designated by each approach highlight the 

significance of choosing the appropriate optimization 

method according to the unique objectives and 

limitations of the power system. Furthermore, 

although both methodologies employed a 

straightforward distribution test system, subsequent 

research may explore the application of these methods 

to more intricate and realistic networks to assess their 

scalability and performance across varied operational 

situations. 

 

In summary, the findings indicate that SSA is a more 

effective approach for reducing power loss and 

ensuring voltage stability in the analyzed network, 

although EP offers a wider array of potential options, 

which may be advantageous in more intricate systems 

or varying operational conditions. 

 

Figure 7 and Table 5 demonstrate the comparative 

efficacy of the SSA and EP in reducing power loss 

(Ploss) across four scenarios: PV, WT, diesel 

generator, and multiple types of DG systems. The 

current system has a power loss of 0.2246 MW, 

indicating its inefficiency. Optimization yielded 

substantial reductions in all instances. SSA 

demonstrates exceptional performance, achieving 

power loss reductions of 71.42%, 69.72%, 70.39%, 

and 69.87% in Cases 1, 2, 3, and 4, respectively, 

bringing the power loss down to 0.0642 MW, 0.068 

MW, 0.0665 MW, and 0.0677 MW. In contrast, EP 

also enhances performance but with slightly lower 

reductions, achieving 58.86%, 64.63%, 65.30%, and 

66.61% in the corresponding cases. Figure 7 

graphically supports this trend, showing that SSA 

consistently outperforms EP across all DG systems 

(PV, WT, diesel generator, and multiple DG types) by 

yielding the lowest power loss values. Although EP 

improves the existing system, its power loss reduction 

is marginally lower than that of SSA. The findings 

confirm that SSA is a superior optimization technique, 

delivering greater percentage reductions in power 

loss, significant energy savings, improved system 

efficiency, and enhanced reliability—establishing it as 

an optimal method for loss reduction in modern power 

systems. 

 

 
Figure 7 Comparison of power loss for all cases 

 

Table 5 Percentage of power loss reduction for all cases 

Cases Item SSA EP 

Existing  Ploss (MW) 0.2246 MW 

Case 1 % Ploss reduction  71.42% 58.86% 

Case 2 % Ploss reduction  69.72% 64.63% 

Case 3 % Ploss reduction  70.39% 65.30% 

Case 4 % Ploss reduction  69.87% 66.61% 

 

Figure 8 illustrates the minimum voltage levels 

attained across several DG scenarios within a grid 

system. The scenarios examined encompass the 

current system, a system with PV integration, a 

system with WT integration, a system with diesel 

generator integration, and a system incorporating a 
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mixture of these (multiple DG types). The minimum 

voltage is a crucial characteristic that directly affects 

the stability and reliability of the grid. The current 

system demonstrates the lowest minimum voltage, 

suggesting possible voltage stability concerns. This 

indicates that the current infrastructure may be 

insufficient to accommodate the rising electricity 

demand. The incorporation of solar PV results in a 

marginal enhancement of the minimum voltage 

relative to the current system. This is probably 

attributable to the decentralized structure of PV 

generation, which mitigates voltage decreases at the 

load locations. Similar to PV integration, the 

incorporation of WT also results in a slight 

improvement in the minimum voltage. This is 

ascribed to the augmented power generation 

capability and the potential for reactive power 

assistance from WT. The incorporation of diesel 

generators results in a notable enhancement in the 

minimum voltage. This is mainly attributable to the 

synchronous characteristics of diesel generators, 

enabling them to deliver reactive power support and 

uphold voltage stability. The multiple DG types 

scenario, which integrates PV, WT, and diesel 

generation, achieves the highest minimum voltage 

values. This suggests that a varied combination of 

generation sources can significantly improve voltage 

stability and overall system reliability. Figure 8 

highlights the need for strategic DG planning and 

integration for enhancing voltage stability and 

reliability in smart grids. The selection of DG 

technology, along with its ideal placement and 

dimensions, is essential for attaining these goals. The 

results also illustrate the potential advantages of DG 

integration for improving voltage stability and 

reliability in smart grids. Through meticulous 

planning and the integration of DG resources, it is 

feasible to establish more resilient and sustainable 

power systems. 

 

 
Figure 8 Comparison of minimum voltage for all 

cases 

Figure 9 illustrates the voltage profiles of a power 

supply across several conditions. For the initial load 

flow analysis, the voltage profile of the system is 

assessed without any DG implemented. It probably 

indicates voltage reductions across the system, 

particularly near the end of the feeder (higher bus 

numbers), which is customary due to line impedances 

and load requirements. The voltage profile after the 

integration of multiple types of DG via the SSA for 

optimization demonstrates considerable enhancement 

in voltage levels relative to the initial load flow 

analysis. The voltage profile is more uniform and 

nearer to the nominal voltage (1.0 p.u.), signifying 

improved voltage regulation. The voltage profile 

following DG integration via the EP method 

resembles that of the SSA, demonstrating a 

significant enhancement in voltage levels relative to 

the initial load flow. The profile is predominantly 

level and sustains a voltage close to the nominal 

value. The incorporation of DG via both SSA and EP 

positively influences the voltage profile. The voltage 

levels have markedly enhanced, particularly in 

regions with elevated load demand (near the terminus 

of the feeder). This illustrates the efficacy of DG in 

enhancing voltage regulation and mitigating voltage 

dips. Both SSA and EP algorithms demonstrate 

efficacy in optimizing the placement and sizing of 

DG for voltage enhancement. The voltage profiles 

derived from both algorithms are analogous, 

indicating that both optimization methods can yield 

comparable outcomes. The higher voltage profiles 

signify improved voltage stability within the system. 

Ensuring voltage remains within acceptable 

parameters is essential for the dependable functioning 

of electrical apparatus and the general stability of the 

power system. 

 

 
Figure 9 Voltage profile for Initial and Case 4 
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Limitations 

This study has several limitations. DG is represented 

as a negative load, implying that the generated power 

directly offsets the network's demand. The power 

factor of the DG is determined by the type of 

generator used, without accounting for potential 

fluctuations under varying operational conditions. 

Additionally, the simulation is confined to steady-

state conditions, excluding transient events and 

dynamic system behavior during disturbances or 

faults. Furthermore, the study utilizes the widely 

adopted IEEE 69-bus test system, considering only a 

single load variation. A complete list of abbreviations 

is listed in Appendix I. 

 

6.Conclusion and future work 
The SSA is a highly efficient method for optimizing 

DG selection in distribution systems. By simulating 

salps' foraging behavior, SSA effectively determines 

the optimal locations, sizes, and types of DG. This 

study analyzed three types of DG—PV, WT, and 

diesel—within the IEEE 69-bus system. The results 

demonstrate that SSA outperforms EP in reducing 

power loss and improving voltage profiles, 

highlighting its effectiveness in enhancing 

distribution system performance and efficiency. This 

underscores SSA’s potential for sustainable energy 

integration and management. 

 

Based on the study’s findings, practitioners and 

researchers are encouraged to adopt SSA for DG 

optimization in distribution systems. SSA’s ability to 

efficiently identify optimal DG placement, sizing, 

and selection offers significant promise for 

improving system performance. Given SSA’s 

superior performance over EP, future research could 

explore its applicability in larger-scale distribution 

networks and diverse operating conditions. 

Additionally, refining and enhancing SSA could 

further enhance its potential for sustainable energy 

integration and management. Economic feasibility 

assessments of different DG integration scenarios are 

essential to identify the most cost-effective approach, 

while environmental impact evaluations are crucial to 

ensure a sustainable and eco-friendly microgrid.  
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Appendix I 
S. No. Abbreviation Description 

1 DG Distributed Generation 

2 EP Evolutionary Programming 

3 GA Genetic Algorithm 

4 MVar megavolt-Amperes Reactive 

5 PSO Particle Swarm Optimization 

6 PV Photovoltaic 

7 PV-TEG Photovoltaic-Thermoelectric 

Generator 

8 SSA Salp Swarm Algorithm 

9 WT Wind Turbine 

 

 

 

 

 

 
 

 


