

DESIGN AND 3D PRINTING OF ORIGAMI STRUCTURE

SHAJAHAN MAIDIN
JUFRI HANINI HASAN

DESIGN AND 3D PRINTING OF ORIGAMI STRUCTURE

This book introduces folding techniques from origami to evolve from flat material to the additive manufacturing application's deployed state. This book explores the design of various origami structures from different folding techniques, understands their underlying mechanisms, and creates physical models and simulations to demonstrate and compare their feasibility. Mountain and valley folds have been identified among other folding techniques and origami shapes. All these concepts were applied in the design of the origami structure. Seven origami ideas were developed to determine the structural abilities of origami on folding. The model was developed using CAD tools (SolidWorks, Origa, and Origami Simulator). Three analyses on three folding ideas have demonstrated the outcomes of design deformation using strain analysis. The research revealed that the change in the strain at the fold has a safe value for folding many times. The difference in strain values between the valley and mountain folds on folds with holes (maximum strain is $7.917E-03$, maximum strain when folding occurs is $5.9387E-03$) is lower than on folds without holes (maximum strain is $5.957E-03$, maximum strain when folding occurs is $5.957E-03$), proving that folds with holes in the centre point are stronger and safer. Lastly, The FDM 3D Printer was used to test the origami structure's viability on PETG materials. The result demonstrates that an FDM 3D printer can create origami structures with a variety of design origami.

SHAJAHAN MAIDIN is an Associate Professor and has served 19 years in academic and research at the Faculty of Industrial and Manufacturing Technology and Engineering, Universiti Teknikal Malaysia Melaka (UTeM). He received his BEng (Hons) in Manufacturing System Engineering from the University of Portsmouth, United Kingdom. MSc. in Manufacturing System Engineering from the University of Warwick, United Kingdom. Ph.D. in Manufacturing Engineering from Loughborough University, United Kingdom. He is a certified Chartered Engineer (Institution of Mechanical Engineers, United Kingdom) and a Professional Technologist (Malaysia Board of Technologists) as well as a Professional Engineer (Board of Engineers Malaysia). He is a certified professional for Autodesk AutoCAD. His current research and publication interest is mainly in additive manufacturing.

JUFRI HANINI HASAN received his Bachelor of Engineering (Hons) in Manufacturing Engineering, majoring in Manufacturing Design from Universiti Teknikal Malaysia Melaka. On a worldwide scale, he has aspired to develop origami in FDM. He won the best project award in the automation diploma, was elected as a student leader, and was awarded the maal-hijrah honour in 2012. His area of interest includes additive manufacturing, simulation, process optimization, and origami features.

PENERBIT
UTeM
Press

Website : www.utem.edu.my/penerbit
Books Online : utembooks.utem.edu.my
Email : penerbit@utem.edu.my

ISBN 978-629-7658-24-7

9 786297 658247

© Universiti Teknikal Malaysia Melaka

ISBN: 978-629-7658-24-7

FIRST PUBLISHED 2025

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, electronic, mechanical photocopying, recording or otherwise, without the prior permission of the Penerbit UTeM Press,
Universiti Teknikal Malaysia Melaka.

Member of the Malaysian Scholarly Publishing Council (MAPIM)

Member of Malaysian Book Publishers Association (MABOPA)

Member of Clarivate Analytics

Editor and Proof Reader:

Mohd Rizal Alkahari

Manuscript Editor:

Rahizah Abdul Rahman

Book Cover Designer and Typesetter:

A.S. Jaffar

Published and Printed in Malaysia by:

Penerbit UTeM Press

Universiti Teknikal Malaysia Melaka

Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.

Tel: +606 270 1241 Fax: +606 270 1038

Cataloguing-in-Publication Data

Perpustakaan Negara Malaysia

A catalogue record for this book is available
from the National Library of Malaysia

ISBN 978-629-7658-24-7

TABLE OF CONTENTS

Preface	ix
Abbreviations	xi
List of Symbols	xiii
CHAPTER 1 ADDITIVE MANUFACTURING	1
Filament Manufacturing Process	4
Evolution of CAD to AM and its Influence on Manufacturing	7
Application of AM	8
Advantages of AM	15
Disadvantages of AM	17
Environmental Impact in Additive Manufacturing	18
Role of Additive Manufacturing Applications in Improving Environmental	30
Transformative Potentials of AM	34
Fused Deposition Modeling	36
FDM Process Parameters	39
Application of FDM	40
Advantages of FDM	41
Disadvantages of FDM	42
CHAPTER 2 ORIGAMI DESIGN	45
Origami model	46
Crease pattern	46
Yoshimura pattern (diamond pattern)	48
Diagonal pattern	49
Miura ori pattern (herringbone pattern)	50

Design Optimization of Origami and Kirigami Structures	51
Self-folding origami	52
Thick folding techniques	54
Applying Origami in Engineering	58
Origami-Based Design Procedures	65
Material Selection	66
Acrylonitrile Butadiene Styrene (ABS)	67
Polylactic acid (PLA)	67
Polyethylene terephthalate (PET)	69
Polyethylene terephthalate glycol (PETG)	70
Computer and Computer-Aided Design (CAD)	71
Process Parameters of 3D Printing	72
Extrusion Temperature	73
Printing Speed	73
Layer thickness	74
Raster angle	74
Orientation	75
SUMMARY	77
 CHAPTER 3 UNDERSTAND ORIGAMI STRUCTURE AND FOLDING TECHNIQUE	
Design Origami Structure	79
Sketches	79
CAD Design	80
Material Selection	83
FDM Process	83
Overview process FDM	84
Steps of the FDM printing process	86
 CHAPTER 4 DISCOVERY OF ORIGAMI STRUCTURE IN THE FDM SYSTEM	
Sample Description	89
Element of Product	91
Concept 1	92
Concept 2	92
Concept 3	93
Concept 4	94
Concept 5	94
Concept 6	95
Concept 7	96
Simulation	97

Analysis 1	97
Analysis 2	98
Analysis 3	100
Comparative Analysis	102
Printed Samples	102
CHAPTER 5 CHALLENGES AND FUTURE PERSPECTIVE	105
Future Perspective	106
References	109
Index	123