

Faculty of Industrial and Manufacturing Technology and Engineering

**MODELING AND OPTIMIZATION OF THE END MILLING
PROCESS FOR ALUMINIUM ALLOY (AA6041) USING RESPONSE
SURFACE METHOD**

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Agus Sudianto

Doctor of Philosophy

2024

**MODELING AND OPTIMIZATION OF THE END MILLING
PROCESS FOR ALUMINIUM ALLOY (AA6041) USING RESPONSE
SURFACE METHOD**

AGUS SUDIANTO

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Industrial and Manufacturing Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DECLARATION

I declare that this thesis entitled “Modeling and Optimization of the End Milling Process for Aluminium Alloy (AA6041) using Response Surface Method” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature

Name

Date

Agus Sudianto
اوجس سدیانتو
21 October 2024
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature :

Supervisor Name : Prof. Dr. Zamberi Jamaludin

Date : 21 October 2024

جامعة تكنولوجيا ملاكا

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

This thesis is dedicated to

*my parents and my in-law parents, who always wait for the completion of my study session,
my beloved wife and children, who are never silent, never stop for themselves giving full
support in every way, stand by me when things look bleak and they huge hopes my thesis*

will be finished soon without any flaws.

اوپیزه میتی تکنیکل ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

End milling process is among the most widely used method in machining of components for industrial needs and purposes. Manufacturers are faced with greater demands for precision, quality, and efficiency of production process. This has raised the needs for establishing optimal machining process measured by the quality of the dependent responses such as the surface finishing quality, cutting temperature, and the generated cutting force. This thesis presented work on end milling process parameters modelling and optimization that considered the cutting speed, feed rate, depth of cut, width of cut and number of flute of high precision machining type tool on a 3-axes Computer Numerical Control (CNC) machining centre. The specific material of concerned was aluminium alloy AA6041 which made up the connecting rod of an automotive engine component. The screening phase applied the Minitab statistical tool using the Taguchi method with regression analysis for the surface roughness response that identified cutting speed, feed rate and depth of cut for final consideration of optimal end milling process parameters based on a coefficient p-value of less than 0.05. In the second phase, optimization and modelling were performed using Design Expert software with Response Surface Method (RSM). Results of the three optimal response values were analysed in ANOVA using the analysis of variance based on quadratic model with randomized Box-Behnken method that generated three regression equations whereby one optimization test and three validation tests were performed. Results were compared with Function Block and Python Program. The ANOVA analyses have identified optimal cutting speed, feed rate, and depth of cut at 155 m/min, 708.256 mm/min, 0.306 mm respectively. The predicted responses in the forms of surface roughness value (R_a), cutting temperature (T_c), and cutting force (F_c) were measured using Mitutoyo surface roughness tester, infrared thermometer sensor MLX90614 and a Kistler dynamometer respectively. The optimized cutting parameters produced predictive errors of 1.16%, 0.11%, and 8.12% while the validation machining process produced predicted error values of 4.168%, 0.819% and 11.171% for surface roughness, cutting temperature, and cutting force respectively. These findings will contribute toward improvements in machining efficiency of metal-based manufacturing process industries. In future, further analysis on impacts of other cutting parameter such as cutting tool geometry can be included and analysed using finite element method embedded with artificial intelligent elements.

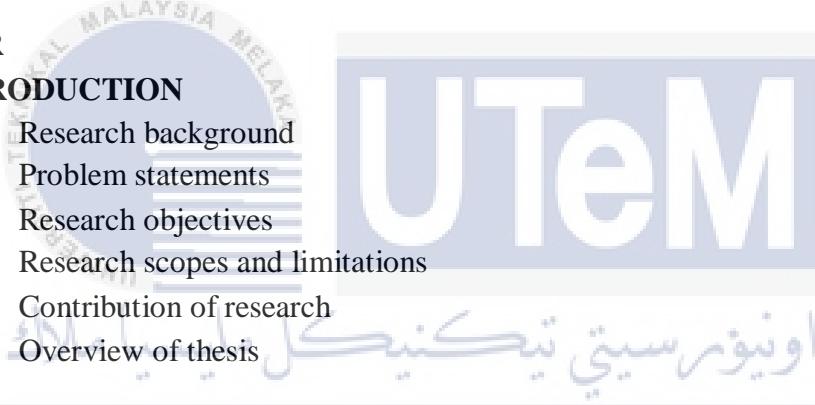
PEMODELAN DAN PENGOPTIMUMAN PROSES PENGISARAN AKHIR ALOI ALUMINIUM (AA6041) MENGGUNAKAN KAEDAH PERMUKAAN TINDAK BALAS

ABSTRAK

Proses pengisar hujung adalah salah satu kaedah pemesinan yang biasa digunakan bagi pembuatan komponen untuk keperluan dan tujuan industri. Pengeluar berhadapan dengan permintaan yang semakin tinggi terhadap ketepatan, kualiti, dan kecekapan proses pengeluaran. Ini telah membangkitkan keperluan untuk mewujudkan proses pemesinan optimum yang diukur dengan kualiti tindakbalas proses seperti kualiti kemasan permukaan, suhu pemotongan dan daya pemotongan yang dihasilkan. Tesis ini membentangkan hasil kerja berkaitan pengoptimuman dan pemodelan parameter proses pengisar hujung seperti kelajuan pemotongan, kadar suapan, lebar potongan dan bilangan seruling alat pemesinan berketepatan tinggi menggunakan mesin kawalan berangka (CNC) 3-paksi. Bahan khusus yang terlibat adalah aloy aluminium (AA6041) yang membentuk rod penyambung komponen enjin automotif. Fasa saringan awal menggunakan perisian statistik Minitab dengan kaedah Taguchi analisa regresi untuk tindak balas kekasaran permukaan yang mengenal pasti kelajuan pemotongan, kadar suapan dan kedalaman pemotongan sebagai pertimbangan akhir parameter proses pemesinan pengisar hujung yang optimum berdasarkan nilai pekali yang kurang dari 0.05. Pada fasa kedua, pengoptimuman dan pemodelan dilaksanakan menggunakan perisian Design Expert dengan kaedah permukaan tindak balas (RSM). Keputusan bagi tiga nilai tindak balas optimum melalui analisa varians ANOVA berdasarkan model kuadratik kaedah Box-Behnken rawak telah menghasilkan tiga persamaan regresi di mana satu ujian pengoptimuman dan tiga ujian validasi telah dilakukan. Keputusan telah dibandingkan dengan Blok Fungsi dan Pengaturcaraan Python. Analisa ANOVA telah mengenalpasti nilai optimum kelajuan pemotongan, kadar suapan, dan kedalaman pemotongan pada 155m/min, 708.256 mm/min, dan 0.306mm. Tindakbalas yang diramalkan untuk nilai kekasaran permukaan (R_a), suhu pemotongan (T_c), dan daya pemotongan (F_c) telah diukur menggunakan penguji kekasaran permukaan Mitutoyo, termometer inframerah MLX90614 dan dinamometer Kistler. Parameter pemotongan optimum tersebut menghasilkan ralat ramalan masing-masing sebanyak 1.16%, 0.11%, dan 8.12% manakala proses pemesinan pengesahan menghasilkan ralat ramalan masing-masing sebanyak 4.168%, 0.819%, dan 11.171% untuk kekasaran permukaan, suhu pemotongan dan daya pemotongan. Penemuan kajian ini akan menyumbang kepada industri proses pembuatan berteraskan logam dengan meningkatkan tahap kecekapan proses pemesinan. Adalah dicadangkan untuk dilaksanakan analisa lanjutan mengenai kesan parameter pemotongan lain seperti geometri alat pemotong dan analisa menggunakan kaedah unsur terhingga yang teradun dengan unsur kepintaran buatan.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful


First of all, I want to thank God Almighty, who has given me the blessings of faith, the blessings of Islam and for all the blessings I have received since the beginning of my life. I would like to express my sincere gratitude to my respected supervisor, Prof. DR. Zamberi bin Jamaludin for his continuous support and everything in my studies and research. On him for his extraordinary patience, motivation, enthusiasm and knowledge to guide me during my research and writing thesis in achieving this study. Also, I would like to thank my second supervisor, Ir. Dr.- Ing. Azrul Azwan bin Abdul Rahman, for his time, encouragement and effort to share knowledge with me.

I would also like to say thank you very much to the School of Graduate Studies (SPS), Faculty of Industrial and Manufacturing Technology and Engineering (FTKIP) and Universiti Teknikal Malaysia Melaka (UTeM) for the facilities provided in conducting research within using machines and laboratory equipment to support the running and the success of my research and studies.

I would like to extend a huge thank you to my lab. mates from Control Systems at Machine Tools Research Group, Associate Prof. Dr. Ir. Lokman bin Abdullah, Dr. Madihah binti Haji Maharof, Dr. Muhammad Azri bin Othman, Mis. W. Noor Fatihah binti W. Mohamad who always provides comments, opinions and ideas about my research. I say thank you very much to Prof. Dr. Mohd Shahir bin Kasim, Mrs. Suraya binti Laily, Mrs. Nurhernida binti Abdullah Sani, Mr. Mohd Remy bin Ab Karim and Mr. Hanafiah from Lab. CNC, who always support and motivate me during this research.

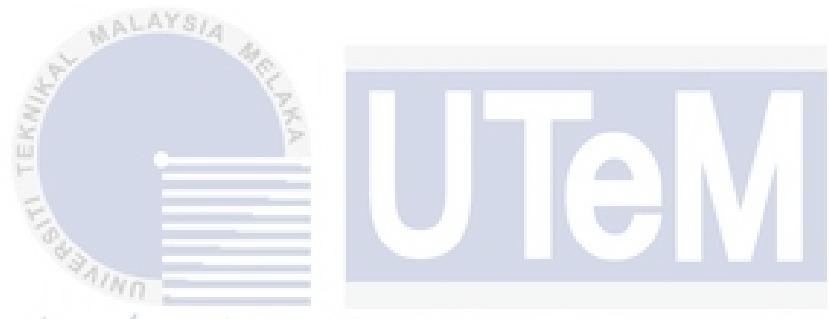
A special thanks to my parents, in-laws and family for their prayers, love, care and support. May they get a reward for all their kindness and sacrifice from Allah SWT. Finally, and most importantly, a special thanks to a very special person, my wife, Uum Marpuah, Amd. Keb and my children, for their endless and unfailing love, support and understanding during my study.

TABLE OF CONTENTS

	PAGE
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	xi
LIST OF APPENDICES	xvi
LIST OF SYMBOLS	xviii
LIST OF ABBREVIATIONS	xx
LIST OF PUBLICATIONS	xxii
 CHAPTER	
1. INTRODUCTION	1
1.1 Research background	1
1.2 Problem statements	7
1.3 Research objectives	10
1.4 Research scopes and limitations	10
1.5 Contribution of research	11
1.6 Overview of thesis	13
<hr style="border-top: 1px solid black;"/>	
2. LITERATURE REVIEW	15
2.1 Introduction	15
2.2 Computer numerical control (CNC) machine	18
2.2.1 CNC milling machining	18
2.2.2 High speed CNC milling machining (HSM)	19
2.3 End milling process performance parameters	21
2.3.1 Tool geometry	22
2.3.2 Cutting speed	24
2.3.3 Feed rate	24
2.3.4 Depth of cut	25
2.3.5 Width of cut	26
2.3.6 Flute	26
2.3.7 Material removal rate (MRR)	27
2.3.8 Cutting time	28
2.4 Surface finish	28
2.4.1 Surface quality	29
2.4.2 Surface integrity	30

2.4.3	Surface roughness	30
2.4.3.1	Effect of cutting speed	36
2.4.3.2	Effect of feed rate	36
2.4.3.3	Effect of depth of cut	37
2.4.4	Cutting temperature	37
2.4.4.1	Effect of cutting speed	38
2.4.4.2	Effect of feed rate	39
2.4.4.3	Effect of depth of cut	39
2.4.5	Cutting force	39
2.4.5.1	Effect of cutting speed	40
2.4.5.2	Effect of feed rate	41
2.4.5.3	Effect of depth of cut	41
2.5	Materials	42
2.5.1	Aluminium alloy	42
2.5.2	Aluminium alloy 6041 (AA6041)	43
2.5.3	Cutting tool for aluminium alloy	45
2.6	Conditions on machining aluminium alloy	46
2.7	Experimental design and analysis	48
2.7.1	Design of experiment	48
2.7.1.1	Taguchi method	48
2.7.1.2	Response surface method (RSM)	52
2.7.2	Design analysis	54
2.7.2.1	Parameter design	54
2.7.2.2	Statistical test	55
2.7.2.3	Predictive model development	55
2.7.2.4	Regression analysis	57
2.7.2.5	Analysis of variant (ANOVA)	58
2.8	Model optimization	60
2.9	Model validation	61
2.10	Critical review – gap analysis	62
3.	METHODOLOGY	67
3.1	Introduction	67
3.2	Stage 1 – material	69
3.2.1	Specimen identification	69
3.2.2	Workpiece preparation	71
3.3	Machine and measurement equipment	73
3.3.1	CNC machine	73
3.3.2	Cutting tool	73
3.3.3	Measurement equipment	74
3.3.3.1	Roughness tester	75
3.3.3.2	Infrared temperature sensor (Arduino uno-linked)	77

3.3.3.3 Force sensor - dynamometer (Kistler)	78
3.3.3.4 Microstructure measurement and analysis	79
(i). Step 1- sample preparation	80
(ii). Step 2 - lapping process	81
(iii). Step 3 - polishing	82
(iv). Step 4 - sputter machine	83
(v). Step 5 - scanning electron microscopy (SEM) machine	83
3.4 Experimental design	85
3.4.1 Phase 1 - screening stage	86
3.4.2 Phase 2 - models development and validation	89
3.5 Response surface method	91
3.6 Optimization	93
3.8 Validation	93
4. RESULTS AND DISCUSSION	94
4.1 Results of experiment-phase 1	95
4.1.1 Screening result	96
4.1.2 Regression analysis	98
4.2 Results of experiment-phase 2	99
4.2.1 Machining test	100
4.2.2 Summary design	103
4.2.2.1 Build information	103
4.2.2.2 Factor and responses	104
4.2.3 Models evaluation	105
4.2.3.1 Evaluation results - data	106
(i) Model term	106
(ii) Degree of freedom	107
(iii) Leverage	108
(iv) Correlation matrix	109
(v) Pearson's matrix	110
(vi) Matrix measures	111
4.2.3.2 Evaluation results - graphs	111
(i) Fraction of design space	111
(ii) Perturbation	113
(iii) One factor	114
(iv) Interaction	115
(v) Contour	116
(vi) Surface	117
(vii) Cube	118


4.2.4	RSM analysis	119
4.2.4.1	Mathematical model for surface roughness	120
4.2.4.2	Mathematical model for cutting temperature	126
4.2.4.3	Mathematical model for cutting force	131
4.2.5	Optimization of response models	137
4.2.5.1	Numerical optimization	137
4.2.5.2	Graphical optimization	139
4.2.6	Tests of optimization responses	140
4.2.6.1	Surface roughness response	141
4.2.6.2	Cutting temperature response	142
4.2.6.3	Cutting force response	143
4.2.7	Validation of Optimized results	145
4.2.7.1	Validation measurements of surface roughness	148
4.2.7.2	Validation measurements of cutting temperature	148
4.2.7.3	Validation measurements of cutting force	149
4.2.7.4	Prediction of validation using python	151
4.2.7.5	Prediction of validation using function block	151
4.3	Discussions	152
4.3.1	Effects of end milling operation parameters on surface roughness	156
4.3.2	Effects of end milling operation parameter on cutting temperature	157
4.3.3	Effects of end milling operation parameters on cutting force	158
4.3.4	Quality of product	160
4.3.5	Impact on machine efficiency	160
4.3.6	Analysis of microstructure material	165
4.4	Summary	165
5.	CONCLUSIONS AND FUTURE RECOMMENDATIONS	167
5.1	Overview	167
5.2	Significant findings	168
5.3	Future recommendation	170
REFERENCES		172
APPENDICES		195

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Milling parameters	66
3.1	Chemical composition of aluminium alloy	71
3.2	Technical details of smart CNC milling machine	73
3.3	Range of machining parameters for experiments-phase 1	87
3.4	Design summary of Minitab 19	88
3.5	Coefficients of regression analysis with regression equation of R_a	88
3.6	Machining parameters for experiment-phase 2	91
3.7	Build Information of design expert	91
4.1	Taguchi design	97
4.2	Analysis of variance	98
4.3	Box-Behnken design	99
4.4	Measurement results in response surface design (actual)	102
4.5	Information box-Behnken design by RSM	103
4.6	Factors of end milling parameters	104
4.7	Responses of end milling parameters	105
4.8	Evaluation model with polynomial quadratic	106
4.9	Model terms	107

4.10	Degrees of freedom	108
4.11	Leverage in evaluation result	109
4.12	Matrix measures in the model option	111
4.13	Result of FDS	113
4.14	Model summary statistics	121
4.15	ANOVA results for linear model in RSM	121
4.16	Surface roughness analysis report in RSM	123
4.17	Sequential model sum of squares of cutting temperature	126
4.18	ANOVA results for Linear model of cutting temperature	127
4.19	Results of the cutting temperature modelling	129
4.20	Sequential model sum of squares of cutting force	131
4.21	ANOVA for quadratic model of cutting force	132
4.22	Cutting force analysis report	134
4.23	Optimization analysis in prediction by ANOVA and measurement	145
4.24	Summary of validation results	150
4.25	Validation results in prediction the responses by python	151
4.26	Validation results in prediction the responses by function block	152
4.27	Design expert specification and parameters	152
4.28	Result of measurement and prediction by ANOVA	153
4.29	Summarized prediction response analysis between ANOVA, python and function block	154
4.30	Error value of optimized responses using ANOVA	154

4.31	Error value for ANOVA of validation responses in end milling parameters	155
4.32	Error value of validation responses using python	155
4.33	Error value of validation responses using function block	155

اوپیزمه مهندسی تکنیکال ملیسیا ملاک

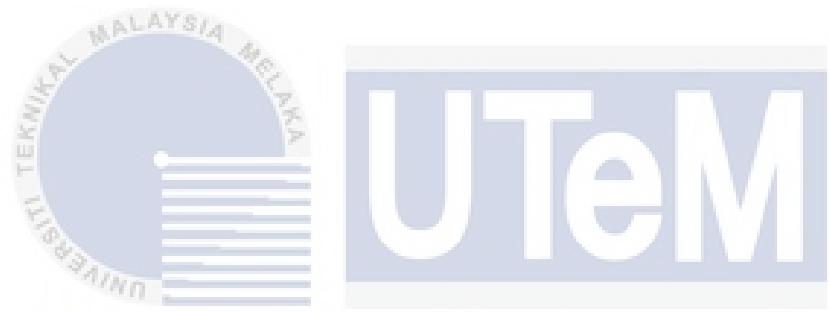
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	CNC milling machine	18
2.2	Three-dimensional model of straight-side end milling process	22
2.3	A general end mill tool geometry	22
2.4	Illustration of depth of cut	25
2.5	Illustration of width of cut	26
2.6	Geometric of a cutting tool	27
2.7	(a) Profile showing wavelength of 0.25mm, $R_a = 20\mu\text{m}$, (b) Recommended cut-offs for different surface finishes	31
2.8	Principle of surface roughness measurement using contact method	34
2.9	Graphical interpretation of R_a , R_v , R_p	35
2.10	Machining temperature in milling at high cutting speed	38
2.11	Feed rate direction	41
2.12	Connected rod drawing	44
2.13	Type and geometry tool S42 1000 072	45
2.14	Machinability of a material	47
2.15	Flow chart of taguchi method	49
2.16	2^n factorial design of CCD	53
3.1	Overall flow chart of the research	68

3.2	Process flow for preparation of AA6041 specimen	69
3.3	(a) optical emission spectrometer, (b) result of material composition test	70
3.4	Preparation of experiment workpiece using (a) sawing machine, (b) rough workpiece, (c) finishing process	71
3.5	A block of AA6041 material for machining test	71
3.6	Sequence of operations for CNC machining process	72
3.7	Installation, run out and setting: HAAS CNC milling machine	72
3.8	AL SE end mills standard HPMT	74
3.9	Roughness tester	75
3.10	Technical measurement	76
3.11	Work principle of surface roughness	77
3.12	Installation and adjustment	78
3.13	MLX90614 infrared thermometer connected to the Arduino and LED	78
3.14	Force sensor equipment (a) Kistler 5233A, (b) measurement setup	79
3.15	Sequence of microstructure analysis	80
3.16	(a) micracut, (b) cutting the sample through precise micro diamond	81
3.17	Detailed cutting	81
3.18	(a) mounting machine, (b) specimen on mounting, (c) lapping	82
3.19	Polishing machine	83
3.20	Sputter machine	83
3.21	SEM machine	85
3.22	Flow of experiments	86
3.23	Processed workpiece for phase 1	87

3.24	Flow chart of Taguchi	87
3.25	An example of the Fanuc program	89
3.26	Processed workpiece for phase 2	90
3.27	End milling process	90
3.28	Flow chart of RSM	91
4.1	General overview of experimental work approach	94
4.2	Flow process of experiment-phase 1	95
4.3	Trajectory process	97
4.4	Flow process of experiment-phase 2	100
4.5	Trajectory of end milling operation	101
4.6	Position and trajectory of cutting experiments	101
4.7	Box-Behnken design	104
4.8	Correlation matrix for three factors of end milling operation parameters	110
4.9	Pearson's matrix for three factors of end milling operation parameters	110
4.10	Fraction of design space graph	112
4.11	Perturbation / trace plots in <i>std. error of design</i>	114
4.12	One factor graph in <i>std. error of design</i>	115
4.13	Plot Interaction in <i>std. error of design</i>	116
4.14	Plot diagram for <i>std. error of design</i> : contour graph at C = 0.3	117
4.15	3D Surface graph with actual factor (depth of cut) at 0.3 mm	118
4.16	Cube graph of <i>std. err mean</i>	119
4.17	Flow of model analysis	120
4.18	Linear normal graph of the plot of residuals in 17 runs of experiment	122

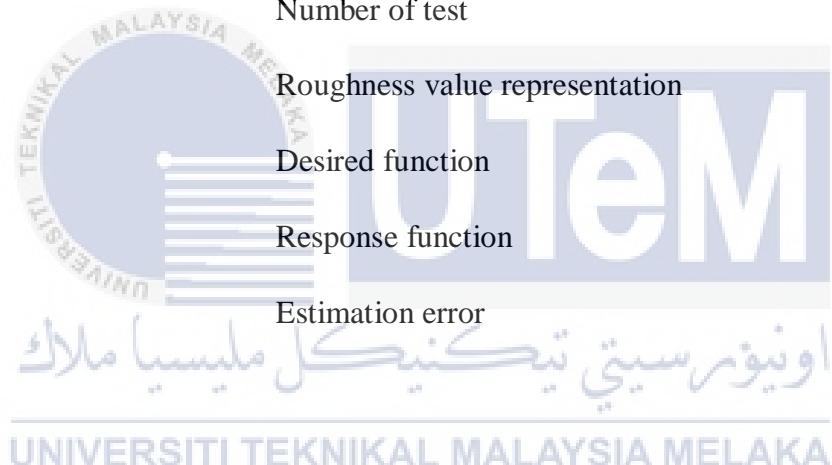

4.19	Predicted versus actual graph in 17 runs of experiment	123
4.20	2D Surface roughness graph in depth of cut at 0.1 mm	124
4.21	Influence of feed rate and cutting speed on surface roughness for $C = 0.1$	125
4.22	End milling operation temperature in 17 runs of the experiment	128
4.23	2D cutting temperature graph in depth of cut at 0.1 mm	130
4.24	3D surface graph of cutting temperature in depth of cut at 0.1 mm	130
4.25	End milling operation cutting force of normal plot graph in 17 experiments	133
4.26	Linear graph of end milling operation cutting force in 17 runs	135
4.27	2D cutting force graph in depth of cut at 0.5 mm	136
4.28	3D Surface roughness graph in depth of cut at 0.5 mm	136
4.29	Results of numerical analyses for three responses	138
4.30	Cube graphs for desirability and dependent responses	139
4.31	Overlay plots for depth of cut ($C = 0.3$ mm and $C = 0.5$ mm)	140
4.32	Roughness measurement graph in optimization	142
4.33	Roughness measurement optimization graph by surface tester	142
4.34	Cutting temperature data in optimization test	143
4.35	Cutting force graphs, (a) connection between force and time, (b) smooth graph of the three trajectories, (c) adjusting the smoothing graph	144
4.36	Summary optimization in prediction by ANOVA and measurement	145
4.37	Criteria of validation: (a) cutting speed, (b) feed rate, (c) depth of cut	147
4.38	Measurement of surface roughness	148

4.39	Measurement of cutting temperature	149
4.40	Measurement of cutting force in end milling operation	149
4.41	Summary of three validation results for predicted and actual R_a , T_c and F_c	150
4.42	Error percentage graphs of optimization and validation analysis	156
4.43	Sticking chip	157
4.44	Cutting force graph, relationship between force and cycle in low pass type	159
4.45	Relationship between force and frequency	159
4.46	Roughness measurement in validation 3	161
4.47	Surface roughness of AA 6014 through the end milling process	161
4.48	Surface roughness through end milling process on a reading scale of 0.5	162
4.49	Micro structure 10 μm (a) mag = 500x, (b) mag = 1000x	162
4.50	Micro structure 2 μm , mag = 3000 x	163
4.51	SEM image showing the effect of feed on the surface of test No. 7 which yields an average R_a of 0.14 μm (a) smearing, (b) back cut	164
4.52	(a) Tool rotation geometry, (b) feed mark effect on tool path	164

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Surface roughness and numerical values are outlined in ISO/R 468-1966	194
B	K-chart for AA6041 on end milling operation test	195
C	Composition of material test	196
D	International alloy designations and chemical composition limits for wrought aluminium and wrought aluminium alloys	197
E	Screening process	198
F	Taguchi Design	202
G	Regression analysis: R_a versus V_c ; V_f ; D_{oc} ; W_{oc} ; Z	206
H	Computer numerical control program	208
I	Contour graph surface roughness	209
J	Sequential model sum of squares [Type I]	210
K	Model summary statistics of cutting temperature	211
L	Model summary statistics of cutting force	212
M	Analysis results	213
N	Numerical and graphical optimization	216
O	Optimization	223
P	Arduino program	229

Q	Validation	230
R	Python program for validation	247
S	Function block	249
T	Python program for analysing prediction responses	251
U	Macro structure and scanning electron microscope (SEM)	261


اوپیزه مهندسی یونیورسیتی ملکا مالیزیا

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS

R_a	Roughness value
R_p	Maximum profile pick height
R_v	Maximum profile valley depth
l	Sampling length
T_c	Cutting temperature
F_c	Cutting force
V_c	Cutting speed
V_f	Feed rate
D_{oc}	Depth of cut
f	Feed per tooth
W_{oc}	Width of cut
Z	Flute
D	Diameter of end mill
n	Spindle speed
π	Pi, 3.14
Q	Metal removal rate
A	Cutting cross section
a_p	Cut depth
L	Total feed length

S_m	Sum of square due to mean
V_e	Mean square
T	Sum of data
P_{pi}	Percentage of each parameter
SS_{pi}	Sum of square
SS_T	Total sum of square
SS_E	Error of square
A_i	Average roughness
n_{Ai}	Number of parameter level
N	Number of test
x_i	Roughness value representation
Y	Desired function
F	Response function
Δ	Estimation error

