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ABSTRACT 

 

The prevalence of accidents resulting from vehicle braking failures has led to advancements 

in active safety technology, resulting in the development of brake-by-wire (BBW) systems, 

which completely revamp conventional braking mechanisms. Due to the need for high 

braking torque and quick response within a 12 V power source, BBW systems now 

increasingly integrate electronic wedge brake (EWB) technology. This study aims to develop 

and optimize a new EWB mechanism to reduce power consumption, validate its 

mathematical model, and evaluate its performance in a hardware-in-the-loop-simulation 

(HILS) environment. Additionally, the study seeks to assess the effectiveness of the 

proposed anti-lock braking system (ABS) controller in maintaining desired tire slip during 

braking, using the optimized EWB as the brake actuator. To achieve these, two evaluation 

methods were employed namely the MATLAB Simulink program and HILS methodology. 

In the simulation investigation, both the validated quarter vehicle traction model and the 

CW-EWB actuation model were utilized to simulate the vehicle's braking system. 

Afterwards, the braking system's performance was assessed using dynamic tests that 

simulated sudden braking conditions at 40 km/h and 60 km/h and verified through HILS 

experiments conducted on a test rig. Brake performance, such as vehicle body speed, wheel 

speed, longitudinal slip and stopping distance, are the parameters evaluated. Moreover, the 

validated CW-EWB system was further integrated with the ABS. The developed ABS 

control mechanism was incorporated into the CW-EWB model utilizing conventional PID 

and self-tuning PID control strategies, namely Fuzzy Logic PID (FPID) and Self-Tuning 

Fuzzy PID (SFPID). These control techniques were compared and evaluated in dynamic 

simulation tests. The findings reveal that SFPID is the most efficient ABS control technique 

compared to PID and FPID, as it is 10 % and 1 % faster in stopping time, 8 % and 1 % 

shorter in stopping distance, 9 % and 1 % faster in settling time, and 40 % and 5 % more 

efficient in achieving the target slip, respectively. For future work, ABS evaluation must be 

measured to confirm the prediction from the ABS control technique. Experiments on actual 

vehicles are also required to replace the HILS test method in order to analyze the brake 

system's performance more precisely. 
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PENGAWAL PID ADAPTIF-KABUR UNTUK SISTEM BREK ANTIKUNCI 

MENGGUNAKAN BREK BAJI KON ELEKTRONIK 

 

ABSTRAK 

 

Kelaziman kemalangan akibat kegagalan brek kenderaan telah mendorong kepada 

kemajuan dalam teknologi keselamatan aktif, iaitu pembangunan teknologi brek melalui 

wayar (BBW), yang merombak sepenuhnya mekanisme brek konvensional. Disebabkan 

keperluan untuk tork brek yang tinggi dan tindak balas pantas dalam sumber kuasa 12 V, 

sistem BBW kini semakin menyepadukan teknologi brek baji elektronik (EWB). Kajian ini 

bertujuan untuk membangunkan dan mengoptimumkan mekanisme EWB baharu bagi 

mengurangkan penggunaan kuasa, mengesahkan model matematiknya dan menilai 

prestasinya dalam persekitaran simulasi perkakasan-dalam-gelung (HILS). Selain itu, 

kajian ini bertujuan untuk menilai keberkesanan pengawal sistem brek anti-kunci (ABS) 

yang dicadangkan dalam mengekalkan gelinciran tayar yang dikehendaki semasa brek, 

menggunakan EWB yang dioptimumkan sebagai penggerak brek. Untuk mencapai 

matlamat-matlamat ini, dua kaedah penilaian digunakan iaitu program MATLAB Simulink 

dan metodologi HILS. Dalam kajian simulasi, kedua-dua model cengkaman kenderaan suku 

dan model penggerak CW-EWB yang disahkan telah digunakan untuk mensimulasikan 

sistem brek kenderaan. Selepas itu, prestasi sistem brek dinilai menggunakan ujian dinamik 

yang mensimulasikan keadaan brek mengejut pada 40 km/j dan 60 km/j dan disahkan 

melalui eksperimen HILS yang dijalankan pada pelantar ujian. Prestasi brek, seperti 

kelajuan badan kenderaan, kelajuan roda, gelinciran membujur dan jarak berhenti, adalah 

parameter yang dinilai. Selain itu, sistem CW-EWB yang disahkan telah disepadukan lagi 

dengan ABS. Mekanisme kawalan ABS yang dibangunkan telah digabungkan ke dalam 

model CW-EWB menggunakan strategi kawalan PID konvensional dan penalaan sendiri, 

iaitu Fuzzy Logic PID (FPID) dan Self-Tuning Fuzzy PID (SFPID). Teknik kawalan ini 

dibandingkan dan dinilai dalam ujian simulasi dinamik. Penemuan menunjukkan bahawa 

SFPID adalah teknik kawalan ABS yang paling cekap berbanding dengan PID dan FPID, 

kerana ia adalah 10 % dan 1 % lebih cepat dalam masa berhenti, 8 % dan 1 % lebih pendek 

dalam jarak berhenti, 9 % dan 1 % lebih cepat dalam masa menetap, dan 40 % dan 5 % 

lebih cekap dalam mencapai slip sasaran, masing-masing. Untuk kerja akan datang, 

penilaian ABS mesti diukur untuk mengesahkan ramalan daripada teknik kawalan ABS. 

Eksperimen pada kenderaan sebenar juga diperlukan untuk menggantikan kaedah ujian 

HILS bagi menganalisis prestasi sistem brek dengan lebih tepat. 
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