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ABSTRACT 

 

System identifiction (SI) is a methodology for developing mathematical models of dynamic 
systems using measurements of input and output signals. This research focuses on improving 
Genetic Algorithms (GA) for SI, specifically addressing inefficiencies in common crossover 
operators that limit search space exploration and lead to premature convergence. The study 
aims to enhance the performance of GA by introducing a novel Single Parent Mating (SPM) 
technique. The objectives are to enhance the performance of crossover operator for GA, 
simulate SI using GA with the SPM technique, and compare the performance of the modified 
GA to traditional GA in terms of prediction accuracy, convergence to global optimum, and 
model parsimony. The methodology encompasses data acquisition, GA program 
development, SPM technique implementation, and simulation using MATLAB. The study 
simulated single-input-single-output (SISO) models: ARX and NARX. Performance 
indicators included the Akaike Information Criterion (AIC), Bayesian Information Criterion 
(BIC), and Parameter Magnitude-based Information Criterion 2 (PMIC2). The findings 
showed that incorporating SPM with single-point crossover resulted in lower objective 
function (OF) values and improved error indices (EI) compared to traditional GA methods. 
This enhanced the GA's ability to avoid premature convergence and maintained a diverse 
solution set, leading to more optimal model selection. The study's results were validated 
using real-world data from industrial systems, including a hair dryer, an air compression 
system, and a flexible robot arm. In these cases, the SPM technique consistently 
outperformed traditional GA, demonstrating improved model fit and predictive accuracy. 
Rigorous validation tests, including autocorrelation and cross-correlation functions, 
confirmed the reliability and robustness of these models. These practical applications 
underscore the versatility and effectiveness of the SPM technique in enhancing GA for SI, 
proving its utility across different fields such as engineering, finance, and healthcare. The 
successful validation in real-world systems marks a significant milestone, showing that the 
SPM technique can significantly improve model optimization in diverse and practical 
contexts . This research makes several important contributions to the field of GA and SI. The 
introduction of the SPM technique represents a significant enhancement in the performance 
of GA, particularly in terms of improving genetic diversity and search optimization . The 
findings provide a robust framework for applying GAs to complex modeling problems, 
emphasizing the importance of effective crossover strategies and genetic diversity . The SPM 
technique offers researchers and practitioners a powerful tool for achieving faster 
convergence, better optimization, and more accurate models. This study not only advances 
the theoretical understanding of GA but also provides practical methodologies that can be 
applied to real-world problems, making it a valuable contribution to both academic research 
and practical applications.  
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PENGENALPASTIAN SISTEM DISKRET-MASA MENGGUNAKAN ALGORTIMA 

GENETIK DENGAN TEKNIK PENGAWANAN BERASASKAN INDUK TUNGGAL 

 

ABSTRAK 

 

Pengenalpastian sistem (SI) adalah metodologi untuk membangunkan model matematik 
sistem dinamik menggunakan pengukuran isyarat masukan dan keluaran. Penyelidikan ini 
memberi tumpuan kepada memperbaiki Algoritma Genetik (GA) untuk SI, dengan 
menangani ketidakcekapan dalam operator penyilang biasa yang mengehadkan 
penerokaan ruang carian dan membawa kepada penumpuan awal. Kajian ini bertujuan 
untuk meningkatkan prestasi GA dengan memperkenalkan teknik Pengawanan Induk 
Tunggal (SPM) yang baru. Objektif kajian ini adalah untuk menigkatkan prestasi operator 
penyilang yang lebih baik untuk GA, mensimulasikan SI menggunakan GA dengan teknik 
SPM, dan membandingkan prestasi GA yang diubah suai dengan GA tradisional dari segi 
ketepatan ramalan, penumpuan kepada optimum global, dan kesederhanaan model. 
Metodologi kajian merangkumi pemerolehan data, pembangunan program GA, 
pelaksanaan teknik SPM, dan simulasi menggunakan MATLAB. Kajian ini 
mensimulasikan model masukan-tunggal-keluaran-tunggal (SISO): ARX dan NARX. 
Penunjuk prestasi termasuk Kriteria Maklumat Akaike (AIC), Kriteria Maklumat Bayesian 
(BIC), dan Kriteria Maklumat berasaskan Magnitud Parameter 2 (PMIC2). Hasil kajian 
menunjukkan bahawa penggabungan SPM dengan penyilang titik tunggal menghasilkan 
nilai fungsi objektif (OF) yang lebih rendah dan indeks ralat (EI) yang lebih baik 
berbanding dengan kaedah GA tradisional. Ini meningkatkan keupayaan GA untuk 
mengelakkan penumpuan awal dan mengekalkan set penyelesaian yang pelbagai, yang 
membawa kepada pemilihan model yang lebih optimum. Keputusan kajian ini disahkan 
menggunakan data dunia sebenar dari sistem industri, termasuk pengering rambut, sistem 
pemampatan udara, dan lengan robot fleksibel. Dalam kes ini, teknik SPM secara 
konsisten mengatasi GA tradisional, menunjukkan kesesuaian model dan ketepatan 
ramalan yang lebih baik. Ujian pengesahan yang ketat, termasuk fungsi autokorelasi dan 
silang-korelasi, mengesahkan kebolehpercayaan dan ketahanan model ini. Aplikasi 
praktikal ini menekankan kepelbagaian dan keberkesanan teknik SPM dalam 
meningkatkan GA untuk SI, membuktikan kegunaannya dalam pelbagai bidang seperti 
kejuruteraan, kewangan, dan penjagaan kesihatan. Pengesahan berjaya dalam sistem 
dunia sebenar menandakan pencapaian penting, menunjukkan bahawa teknik SPM boleh 
meningkatkan pengoptimuman model dalam pelbagai konteks praktikal. Penyelidikan ini 
memberikan beberapa sumbangan penting kepada bidang GA dan SI. Pengenalan teknik 
SPM mewakili peningkatan yang ketara dalam prestasi GA, terutamanya dari segi 
peningkatan kepelbagaian genetik dan pengoptimuman carian. Penemuan ini 
menyediakan rangka kerja yang kukuh untuk menerapkan GA kepada masalah pemodelan 
yang kompleks, menekankan kepentingan strategi penyilangan yang berkesan dan 
kepelbagaian genetik. Teknik SPM menawarkan alat yang kuat kepada penyelidik dan 
pengamal untuk mencapai penumpuan yang lebih cepat, pengoptimuman yang lebih baik, 
dan model yang lebih tepat. Kajian ini bukan sahaja memajukan pemahaman teori tentang 
GA tetapi juga menyediakan metodologi praktikal yang boleh diterapkan kepada masalah 
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dunia sebenar, menjadikannya sumbangan berharga kepada penyelidikan akademik dan 
aplikasi praktikal.  
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