N L“*L’J&*—“‘“ Sz

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SYNERGISTIC EFFECT OF MICRO-NANO FILLERS ON
RELIABILITY PERFORMANCE OF HYBRID ELECTRICALLY
CONDUCTIVE ADHESIVE

ZAINALFIRDAUS BIN ADNAN

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

2024



£ e

Dl bs Jemiemid o 50

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Mechanical Technology and Engineering

SYNERGISTIC EFFECT OF MICRO-NANO FILLERS
ON RELIABILITY PERFORMANCE OF HYBRID
ELECTRICALLY CONDUCTIVE ADHESIVE

Zainalfirdaus bin Adnan

Master of Science in Mechanical Engineering

2024



SYNERGISTIC EFFECT OF MICRO-NANO FILLERS ON RELIABILITY
PERFORMANCE OF HYBRID ELECTRICALLY CONDUCTIVE ADHESIVE

ZAINALFIRDAUS BIN ADNAN

A thesis submitted
in fulfilment of the requirements for the degree of Master of Science
in Mechanical Engineering

Faculty of Mechanical Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024



DECLARATION

| declare that this thesis entitled “Synergistic Effect of Micro-Nano Fillers on Reliability
Performance of Hybrid Electrically Conductive Adhesive” is the result of my own research
except as cited in the references. The thesis has not been accepted for any degree and is not

concurrently submitted in the candidature of any other degree.

Signature N M N . WY
Name o S8 e

Date .. Ko ey o ey e st il - » e o]



APPROVAL

| hereby declare that | have read this thesis and in my opinion, this thesis is sufficient in

terms of scope and quality for the award of Master of Science in Mechanical Engineering.

Signature N R B N oan B SN

Supervisor Name : .rofesor Madya Dr. Siti Hajar Binti

Sheikh Md. Fadzullah

e . 01.07.2024



DEDICATION

To my beloved mother and father

UNIVERSITI TEKNIKAL MALAYSIA MELAKA



ABSTRACT

In today's digital age, the escalating demand for efficient electronic technologies contrasts
starkly with the global issue of electronic waste (e-waste) containing hazardous lead (Pb)
solder. Consequently, there is a critical need for alternative materials in electronics
interconnection technology, notably electrically conductive adhesives (ECA) based on
polymer composites. Despite significant advancements in hybridizing various filler types
in ECAs, systematic demonstration of material component optimization remains lacking.
This gap jeopardizes the reliability performance of hybrid ECAs (HECA) due to polymer
degradation under extreme environmental conditions of temperature and humidity. This
research aims to establish an optimal HECA formulation with a low percolation threshold
and enhanced reliability performance under extreme conditions, thereby investigating the
failure mechanisms of HECA. The study employs a Design of Experiment (DOE) approach
incorporating Analysis of Variance (ANOVA) and Response Surface Methodology (RSM)
to optimize the formulation. Electrical and mechanical characterizations were conducted
using a four-point probe with a Jandel RM3000+ test unit and a Hengzhun HZ-1003
universal testing machine (UTM), respectively. Samples underwent evaluation both before
and after hygrothermal ageing at 85% relative humidity and 85°C for up to 504 hours.
Morphological analysis utilized Scanning Electron Microscopy (SEM) and Field-Emission
Scanning Electron Microscopy (FESEM). Rheological and thermal analyses were
performed using an Anton Parr Rheometer and TGA-DSCL1 analyser, respectively. The
RSM indicated that the optimal HECA formulation achieved a 0.07 AQMF-MWCNT ratio,
demonstrating enhanced electrical conductivity with a lower percolation threshold. Notably,
no electrical degradation was observed over the ageing period for ratios of 0.07 and 0.17,
underscoring their resilience under specified conditions. Despite epoxy cracking, micro-
void formation, and delamination causing degradation, the HECA exhibited satisfactory
mechanical reliability. Overall, the HECA formulation established at a 0.17 ratio in this
study demonstrates superior electrical and mechanical reliability, making it well-suited for
electronic packaging applications.



KESAN SINERGISTIK PENGISI MIKRO-NANO TERHADAP PRESTASI
KEBOLEHPERCAYAAN PELEKAT KONDUKTIF ELEKTRIK HIBRID

ABSTRAK

Di era digitalisasi ini, permintaan untuk teknologi elektronik yang cekap dan canggih
meningkat, sementara sisa elektronik (e-waste) yang mengandungi timah (Pb) penuh
beracun menjadi isu global. Oleh itu, terdapat keperluan mendesak untuk bahan alternatif
dalam teknologi penyambungan elektronik, terutamanya pelekat konduktif elektrik
berdasarkan komposit polimer yang lebih dikenali sebagai pelekat konduktif elektrik
(ECA). Walaupun banyak kajian membuktikan peningkatan luar biasa dalam hibridisasi
pelbagai jenis pengisi dalam ECA, optimisasi komponen bahan dalam komposit tidak
dipamerkan secara sistematik. Ini mengancam prestasi kebolehpercayaan hibrid ECA
(HECA) kerana degradasi polimer di bawah keadaan suhu dan kelembapan ekstrem.
Kajian ini bertujuan untuk menetapkan formulasi HECA optimum dengan ambang
perkolasi yang rendah dan prestasi kebolehpercayaan yang diperkukuhkan di bawah
keadaan ekstrem, serta menyiasat mekanisme kegagalan HECA. Kajian ini menggunakan
pendekatan Reka Bentuk Eksperimen (DOE) yang menggabungkan Analisis Varians
(ANOVA) dan Metodologi Permukaan Tindak Balas (RSM) untuk mengoptimumkan
formulasi. Pencirian elektrik dan mekanikal dilakukan menggunakan probe empat titik
dengan unit ujian Jandel RM3000+ dan mesin ujian serba guna Hengzhun HZ-1003,
masing-masing. Sampel dinilai sebelum dan selepas penuaan hidrotermal pada
kelembapan relatif 85% dan 85°C selama hingga 504 jam. Analisis morfologi
menggunakan Mikroskop Elektron Pemindahan Medan (SEM) dan Mikroskop Elektron
Pemindahan Medan (FESEM). Analisis reologi dan termal dilakukan menggunakan
Rheometer Anton Parr dan analis TGA-DSC1, masing-masing. RSM menunjukkan
formulasi HECA optimum diperoleh pada nisbah 0.07 AgMF-MWCNT, menunjukkan
pengaliran elektrik yang dipertingkatkan dengan ambang perkolasi yang lebih rendah.
Tidak kurang pentingnya, tidak ada degradasi elektrik yang diperhatikan sepanjang tempoh
penuaan untuk nisbah 0.07 dan 0.17, menunjukkan keupayaan tahan degradasi di bawah
keadaan yang dinyatakan. Walaupun retakan epoksi, pembentukan mikro-void, dan
delaminasi menyebabkan degradasi, HECA menunjukkan kebolehpercayaan mekanikal
yang memuaskan. Secara keseluruhannya, formulasi HECA yang ditetapkan pada nisbah
0.17 dalam kajian ini menunjukkan prestasi kebolehpercayaan elektrik dan mekanikal yang
unggul, menjadikannya sesuai untuk aplikasi pembungkusan elektronik.
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CHAPTER 1

INTRODUCTION

Research background

Conductive silver paste is the most sought-after material in the electronic
industry for making circuits and terminal assembling. Despite the highly
conductive benefit carried by silver as a conductive filler, however, the
applications of an electrically conductive adhesive (ECA) are at a crucial state due
to the high amount of silver needed, as demonstrated by many researchers in
attempts to achieve excellent electrical properties of the ECA (Marcq et al., 2011;
Cui and Du, 2013; Ji et al., 2015; Luo et al., 2016; Zhou et al., 2016), which
conceives a need to overlook for metal and non-metal filler combination in ECA.
The idea of hybridizing fillers in ECA has disclosed a more comprehensive range
of studies regarding interface dissociation and synergistic effect, including various
incorporation of metal and non-metal filler materials. However, numerous hybrid
electrically conductive adhesive (HECA) projects achieving high electrical
performance does not actually provides an optimum formulation (Amoli et al.,
2015). Moreover, since HECA comprises multiple filler elements, the distribution
of the material components is rather crucial due to the incorporation of different
particle size, geometry and aspect ratio that are responsible for the formation of
electrical network inside the HECA.

There are many works attempted in monitoring and enhancing different
filler elements’ dispersion behaviour. For instance, using dispersant agent for

carbon nanotube (CNT) (Marcq et al.,, 2011), direct mixing and sonication
1



