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ABSTRACT

In a dynamic era characterized by the integration of innovation and technology, hybrid
conductive ink has emerged as a powerful catalyst in the production of flexible electronic
devices. It also opens up new opportunities to advance electronic printing technology.
However, there are challenges in realizing it, namely in terms of formulating a suitable ink
material for that purpose. Materials such as graphene nanoplatelets (GNP), which are
carbon-based, become fillers in polymer composites together with silver flakes (Ag),
planning a good combination with silver acetate (SA) to produce a new formulation of
conductive hybrid ink. This research aims to study the characteristics and uses of GNP
hybrid conductive ink when mixed with organic solvents and cured at 250°C. Several aspects
have been studied as a research goal in terms of formulating a new GNP hybrid conductive
ink formulation and further, comparing the characteristics of the new conductive ink
formulation against the mechanical, electrical and morphological properties of the flexible
substrate. The optimal formulation process of the hybrid conductive ink is important in
ensuring its level of resistivity during cyclic testing using the Two-Point-Probe measurement
technique. The evaluation of electrical and mechanical conductivity is started by carrying
out a cyclic test on the sample and comparing it to the baseline, which is not subjected to the
test. After the cyclic tests of torsion and bending are conducted, shear stress tests are also
conducted to determine the mechanical properties. The reliability of the new formulation of
conductive ink was also evaluated. After the cyclic and baseline tests, a comparative analysis
of the GNP hybrid revealed no significant changes in the tested sample's resistivity. The total
average resistivity of the sample was 1.99E-05 Q.m at baseline, and the lowest average for
torsion was 2.02E-05 Q.m and for bending, 2.41E-05 Q.m. The higher shear stress values
(MPa) for samples cured at 5 hours indicate a better result with an average of 57.36 MPa.
The findings in this research show that the hybrid formulation of GNP in conductive ink can
improve its electrical conductivity performance with an average improvement of 42.58% for
both torsion and bending tests. This provides valuable insights, and pave the way for future
improvements in conductive ink formulations that can be utilized in various flexible
electronic applications.



KEBERKESANAN FORMULASI BAHARU DAKWAT KONDUKTIF HIBRID
GNP/SA TERHADAP BEBANAN KITARAN KILASAN/LENTURAN

ABSTRAK

Dalam era dinamik yang dicirikan oleh penyepaduan inovasi dan teknologi, dakwat
konduktif hibrid telah muncul sebagai pemangkin berkuasa dalam pengeluaran peranti
elektronik yang fleksibel. la juga membuka peluang baharu untuk memajukan teknologi
percetakan elektronik. Namun begitu, terdapat cabaran dalam merealisasikannya iaitu dari
segi formulasi bahan dakwat yang sesuai bagi tujuan tersebut. Bahan seperti graphene
nanoplatelets (GNP), yang berasaskan karbon, menjadi pengisi dalam komposit polimer
bersama serpihan perak (Ag), merencanakan kombinasi yang baik dengan perak asetat (SA)
untuk menghasilkan rumusan baharu dakwat hibrid konduktif. Penyelidikan ini bertujuan
untuk mengkaji beberapa ciri dan kegunaan dakwat konduktif hibrid GNP apabila dicampur
dengan pelarut organik dan diawet pada suhu 250°C. Beberapa aspek telah dikaji sebagai
matlamat kajian dari segi merumuskan formulasi dakwat konduktif hibrid GNP baharu dan
seterusnya, membandingkan ciri-ciri rumusan baharu dakwat konduktif terhadap sifat
mekanikal, elektrikal dan morfologi substrat fleksibel. Proses perumusan optimum dakwat
konduktif hibrid adalah penting dalam memastikan tahap kerintangannya semasa ujian
kitaran menggunakan teknik pengukuran kuar dua titik. Penilaian kekonduksian elektrik dan
mekanikal dimulakan dengan menjalankan ujian kitaran pada sampel dan
membandingkannya dengan garis dasar, yang tidak tertakluk kepada ujian. Selepas ujian
kitaran kilasan dan lenturan dijalankan, ujian tegasan ricih juga dijalankan untuk
menentukan sifat mekanikal. Kebolehpercayaan formulasi baru dakwat konduktif juga
dinilai. Selepas ujian Kkitaran dan garis dasar, analisis perbandingan hibrid GNP
mendedahkan tiada perubahan ketara dalam kerintangan sampel yang diuji. Jumlah
kerintangan purata sampel ialah 1.99E-05 Q.m pada garis dasar, dan purata terendah untuk
kilasan ialah 2.02E-05 Q.m dan untuk lenturan, 2.41E-05 Q.m. Nilai tegasan ricih (MPa)
yang lebih tinggi untuk sampel yang diawetkan pada 5 jam menunjukkan keputusan yang
lebih baik dengan purata 57.36 MPa. Penemuan dalam penyelidikan ini menunjukkan
bahawa formulasi hibrid GNP dalam dakwat konduktif boleh meningkatkan prestasi
kekonduksian elektriknya, dengan purata peningkatan sebanyak 42.58% untuk kedua-dua
ujian kilasan dan lenturan. Ini memberikan pandangan yang berharga, dan membuka jalan
untuk penambahbaikan masa depan dalam formulasi dakwat konduktif yang boleh
digunakan dalam pelbagai aplikasi elektronik yang fleksibel.
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