

اوپیورسیتی تیکنیکل ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EFFECTIVENESS OF THE NEW FORMULATION OF GNP/SA HYBRID CONDUCTIVE INK ON TORSION/ BENDING CYCLIC LOADING

HAZRIL HISHAM BIN HUSSIN

اوپیورسیتی تیکنیکل ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

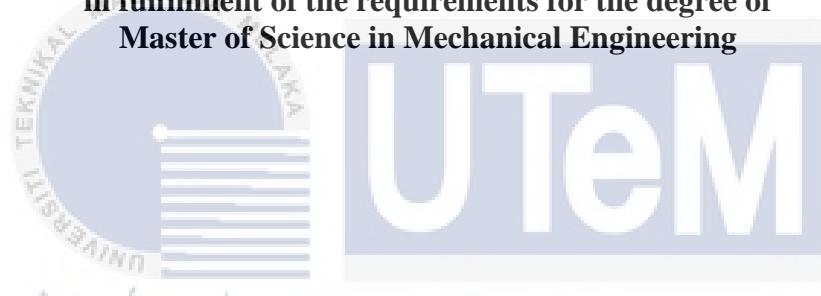
MASTER OF SCIENCE IN MECHANICAL ENGINEERING

2024

Faculty of Mechanical Technology and Engineering

EFFECTIVENESS OF THE NEW FORMULATION
OF GNP/SA HYBRID CONDUCTIVE INK ON
TORSION/BENDING CYCLIC LOADING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA


Master of Science in Mechanical Engineering

2024

**EFFECTIVENESS OF THE NEW FORMULATION OF GNP/SA HYBRID
CONDUCTIVE INK ON TORSION/BENDING CYCLIC LOADING**

HAZRIL HISHAM BIN HUSSIN

**A thesis submitted
in fulfillment of the requirements for the degree of
Master of Science in Mechanical Engineering**

**جامعة ملاكا
كلية تكنولوجيا و الهندسة
Faculty of Mechanical Technology and Engineering**

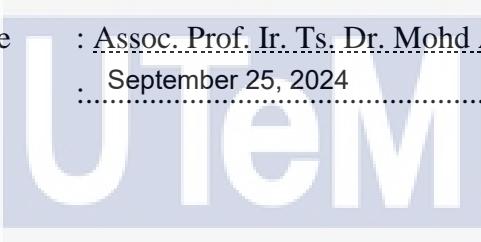
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DECLARATION

I declare that this thesis entitled “Effectiveness of The New Formulation of GNP/SA Hybrid Conductive Ink on Torsion/Bending Cyclic Loading“ is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

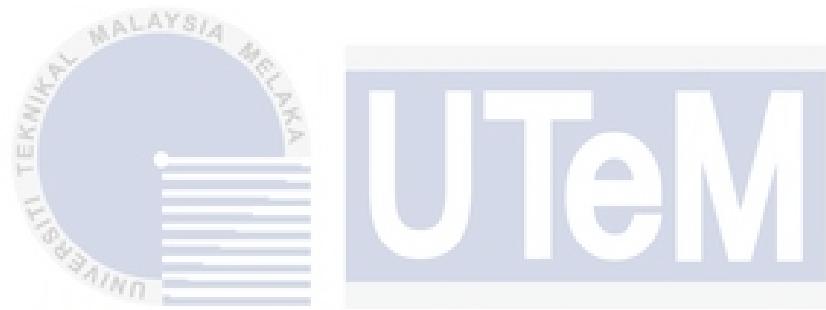

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

Signature :

Supervisor Name : Assoc. Prof. Ir. Ts. Dr. Mohd Azli Bin Salim

Date : September 25, 2024



جامعة ملaka التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved mother, father and most importantly my beloved wife.

اوپیزه میتی تکنیکل ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

In a dynamic era characterized by the integration of innovation and technology, hybrid conductive ink has emerged as a powerful catalyst in the production of flexible electronic devices. It also opens up new opportunities to advance electronic printing technology. However, there are challenges in realizing it, namely in terms of formulating a suitable ink material for that purpose. Materials such as graphene nanoplatelets (GNP), which are carbon-based, become fillers in polymer composites together with silver flakes (Ag), planning a good combination with silver acetate (SA) to produce a new formulation of conductive hybrid ink. This research aims to study the characteristics and uses of GNP hybrid conductive ink when mixed with organic solvents and cured at 250°C. Several aspects have been studied as a research goal in terms of formulating a new GNP hybrid conductive ink formulation and further, comparing the characteristics of the new conductive ink formulation against the mechanical, electrical and morphological properties of the flexible substrate. The optimal formulation process of the hybrid conductive ink is important in ensuring its level of resistivity during cyclic testing using the Two-Point-Probe measurement technique. The evaluation of electrical and mechanical conductivity is started by carrying out a cyclic test on the sample and comparing it to the baseline, which is not subjected to the test. After the cyclic tests of torsion and bending are conducted, shear stress tests are also conducted to determine the mechanical properties. The reliability of the new formulation of conductive ink was also evaluated. After the cyclic and baseline tests, a comparative analysis of the GNP hybrid revealed no significant changes in the tested sample's resistivity. The total average resistivity of the sample was 1.99E-05 Ω.m at baseline, and the lowest average for torsion was 2.02E-05 Ω.m and for bending, 2.41E-05 Ω.m. The higher shear stress values (MPa) for samples cured at 5 hours indicate a better result with an average of 57.36 MPa. The findings in this research show that the hybrid formulation of GNP in conductive ink can improve its electrical conductivity performance with an average improvement of 42.58% for both torsion and bending tests. This provides valuable insights, and pave the way for future improvements in conductive ink formulations that can be utilized in various flexible electronic applications.

KEBERKESANAN FORMULASI BAHARU DAKWAT KONDUKTIF HIBRID GNP/SA TERHADAP BEBANAN KITARAN KILASAN/LENTURAN

ABSTRAK

Dalam era dinamik yang dicirikan oleh penyepaduan inovasi dan teknologi, dakwat konduktif hibrid telah muncul sebagai pemangkin berkuasa dalam pengeluaran peranti elektronik yang fleksibel. Ia juga membuka peluang baharu untuk memajukan teknologi percetakan elektronik. Namun begitu, terdapat cabaran dalam merealisasikannya iaitu dari segi formulasi bahan dakwat yang sesuai bagi tujuan tersebut. Bahan seperti graphene nanoplatelets (GNP), yang berasaskan karbon, menjadi pengisi dalam komposit polimer bersama serpihan perak (Ag), merencanakan kombinasi yang baik dengan perak asetat (SA) untuk menghasilkan rumusan baharu dakwat hibrid konduktif. Penyelidikan ini bertujuan untuk mengkaji beberapa ciri dan kegunaan dakwat konduktif hibrid GNP apabila dicampur dengan pelarut organik dan diawet pada suhu 250°C. Beberapa aspek telah dikaji sebagai matlamat kajian dari segi merumuskan formulasi dakwat konduktif hibrid GNP baharu dan seterusnya, membandingkan ciri-ciri rumusan baharu dakwat konduktif terhadap sifat mekanikal, elektrikal dan morfologi substrat fleksibel. Proses perumusan optimum dakwat konduktif hibrid adalah penting dalam memastikan tahap kerintangannya semasa ujian kitaran menggunakan teknik pengukuran kuar dua titik. Penilaian kekonduksian elektrik dan mekanikal dimulakan dengan menjalankan ujian kitaran pada sampel dan membandingkannya dengan garis dasar, yang tidak tertakluk kepada ujian. Selepas ujian kitaran kilasan dan lenturan dijalankan, ujian tegasan rincih juga dijalankan untuk menentukan sifat mekanikal. Kebolehpercayaan formulasi baru dakwat konduktif juga dinilai. Selepas ujian kitaran dan garis dasar, analisis perbandingan hibrid GNP mendedahkan tiada perubahan ketara dalam kerintangan sampel yang diuji. Jumlah kerintangan purata sampel ialah 1.99E-05 Ω.m pada garis dasar, dan purata terendah untuk kilasan ialah 2.02E-05 Ω.m dan untuk lenturan, 2.41E-05 Ω.m. Nilai tegasan rincih (MPa) yang lebih tinggi untuk sampel yang diawetkan pada 5 jam menunjukkan keputusan yang lebih baik dengan purata 57.36 MPa. Penemuan dalam penyelidikan ini menunjukkan bahawa formulasi hibrid GNP dalam dakwat konduktif boleh meningkatkan prestasi kekonduksian elektriknya, dengan purata peningkatan sebanyak 42.58% untuk kedua-dua ujian kilasan dan lenturan. Ini memberikan pandangan yang berharga, dan membuka jalan untuk penambahbaikan masa depan dalam formulasi dakwat konduktif yang boleh digunakan dalam pelbagai aplikasi elektronik yang fleksibel.

ACKNOWLEDGEMENT

In the name of Allah, The Beneficent, The Merciful

All thanks belong to Allah, the Most Gracious, the Most Merciful and the source of this success to complete this thesis.

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Assoc. Prof. Ir. Ts. Dr. Mohd Azli Bin Salim from the Faculty of Mechanical Technology and Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support, and encouragement towards the completion of this thesis. I would also like to express my greatest gratitude to Assoc. Prof. Dr. Nor Azmmi Bin Masripan from the Faculty of Mechanical Technology & Engineering, co-supervisor of this research for his advice and suggestions in the evaluation of conductive ink measurement.

Here, I would like to thank Jabatan Pendidikan Politeknik dan Kolej Komuniti (JPPKK) and the Ministry of Higher Education (MoHE), Malaysia for giving me the chance to conduct this research by funding my Master of Science in Mechanical Engineering studies. Particularly, I would also like to express my deepest gratitude to all lecturers from the Advanced Academia-Industry Collaboration Laboratory (AiCL) and, Faculty of Mechanical Technology & Engineering for their guidance and assistance with the laboratory experiments. Mr. Mahader Bin Muhamad Assistant Engineer from Materials Science lab Faculty of Mechanical Technology & Engineering for his assistance and efforts in the lab and analysis works.

Special thanks to all my colleagues, my beloved siblings for their moral support in completing this study. Lastly, and most importantly, I am also deeply grateful to my mother Hajjah Zaitun Binti Harun and my beloved wife, Hajjah. Nurzarina Binti Shariff, for her continuous moral support, patience, and love.

Thank you to everyone who had been associated with the crucial parts of the realization of this research.

TABLE OF CONTENTS

	PAGES
DECLARATION	i
APPROVAL	ii
DEDICATION	iii
ABSTRACT	iv
ABSTRAK	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	viii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xv
LIST OF SYMBOLS	xvii
LIST OF PUBLICATIONS	xix
 CHAPTER	
1. INTRODUCTION	1
1.1 Background of The Research	1
1.2 Problem Statement	6
1.3 The Objective of The Research	7
1.4 Scope and Limitation of Research	7
1.5 Contribution to Knowledge	8
1.6 Outlines of The Research	9
2. LITERATURE REVIEW	10
2.1 Introduction	10
2.2 Overview of Composite Material	11
2.3 Overview of Metal-Based Materials	13
2.3.1 Gold (Au)	14
2.3.2 Copper (Cu)	16
2.3.3 Silver (Ag)	17
2.4 Material of Conductive Ink	19
2.4.1 Graphene Materials	21
2.4.2 Graphene Nanoplatelets (GNP) Hybrid	26
2.4.3 Organic Solvents	29
2.5 Development of Conductive Ink	33
2.6 Mixing Process	36
2.6.1 Ultrasonication Mixing	37
2.6.2 High Shear Mixing	40
2.7 Printing Technology	42
2.7.1 Screen Printing	45
2.7.2 Inkjet printing	48
2.7.3 Flexographic printing	50
2.8 Curing Process	52

2.9	Cyclic Test for Conductive Ink	53
2.9.1	Cyclic Torsion Test	55
2.9.2	Cyclic Bending Test	57
2.10	Research Gap	59
3.	RESEARCH METHODOLOGY	63
3.1	Introduction	63
3.2	Materials	67
3.2.1	Graphene Nanoplatelets (GNP)	68
3.2.2	Silver Flakes (Ag)	69
3.2.3	Silver Acetate (SA)	70
3.2.4	Ethanol	71
3.2.5	The 1-Butanol	72
3.2.6	The Terpineol	73
3.2.7	The Copper (Cu) Thin Film Substrates	74
3.3	Fabrications of Conductive Ink	74
3.3.1	Formulation of GNP Hybrid Powder	76
3.3.2	Weighing the Raw Materials	78
3.3.3	Mixing Process	79
3.3.4	Formulation of GNP Hybrid Paste	81
3.4	The Copper (Cu) Thin Film Substrate Preparations	84
3.5	Printing Method	87
3.6	Curing Process	90
3.7	Characterization Analysis of Conductive Ink	91
3.7.1	Electrical Characterization using a Two-Point-Probe	92
3.7.2	Resistance and Resistivity	94
3.7.3	Cyclic Torsion Test	98
3.7.4	Cyclic Bending Test	100
3.7.5	Shear Stress Test	102
3.8	Morphology Observation Using SEM and EDX	106
3.8.1	Sample Preparation of SEM and EDX Process	109
3.8.2	Examination using a Light Microscope	114
3.9	Summary	115
4.	RESULTS AND DISCUSSION	117
4.1	Introduction	117
4.2	Characteristics of the GNP Hybrid Baseline	117
4.2.1	Electrical Properties Analysis of the GNP Hybrid Baseline	117
4.2.2	Morphology Results of GNP Hybrid Baseline	120
4.2.3	SEM Analysis of GNP Hybrid Baseline	121
4.2.4	EDX Analysis of GNP Hybrid Baseline	122
4.3	Electrical Properties Analysis using Cyclic Torsion Test for GNP Hybrid	125
4.3.1	Resistance and Resistivity of the GNP Hybrid with Cyclic Torsion Test	126
4.4	Electrical Properties Analysis using Cyclic Bending Test for GNP Hybrid	130
4.4.1	Resistance and Resistivity of the GNP Hybrid with Cyclic Bending Test	130

4.5	Morphology Results of GNP Hybrid Formulation After Cyclic Test	133
4.5.1	Morphological Result After Torsion Test	133
4.5.2	Morphological Result After Bending Test	135
4.5.3	SEM Analysis of GNP Hybrid After Cyclic Torsion Test	137
4.5.4	SEM Analysis of GNP Hybrid After Cyclic Bending Test	139
4.5.5	EDX Analysis of GNP Hybrid After Cyclic Torsion Test	141
4.5.6	EDX Analysis of GNP Hybrid After Cyclic Bending Test	148
4.6	Shear Stress Test of GNP Hybrid	154
4.7	Verification of Cyclic Testing Experiments for GNP Hybrid	157
4.7.1	The Effect of Torsion on The Reliability of Conductive Ink	158
4.7.2	The Effect of Bending on The Reliability of Conductive Ink	160
4.8	Summary	163
5.	CONCLUSION AND RECOMMENDATIONS	165
5.1	Conclusion of the research	165
5.2	Contribution to knowledge and science	168
5.3	Recommendation for future study	168
REFERENCES		170

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Summary of previous studies on solvent exchange GNP for conductive inks (Htwe et al., 2021)	32
Table 2.2	Research gaps in the current study	62
Table 3.1	Primary component of conductive ink	67
Table 3.2	The specification of GNP powder of 25 μm	68
Table 3.3	The specification of Ag flakes	70
Table 3.4	The specification of SA	71
Table 3.5	The specification of Ethanol	72
Table 3.6	The specification of 1-Butanol	73
Table 3.7	The specification of terpineol	74
Table 3.8	Formulation of GNP hybrid powder	78
Table 3.9	The material and apparatus for printing method	87
Table 3.10	Main components of torsion test	98
Table 3.11	Main components of bending test	101
Table 3.12	The sputtered material's specifications, Pt.	107
Table 3.13	Epoxy resin and hardener specifications for cold mounting	110
Table 4.1	Measurement resistance and resistivity of the GNP hybrid baseline	118
Table 4.2	Electrical resistance and resistivity of GNP hybrid under torsion test	126
Table 4.3	Electrical resistance and resistivity of GNP hybrid under bending test	131
Table 4.4	Data of shear stress test of GNP hybrid	155

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1	Type of printing technologies (a) Screen printing (b) Flexography or gravure (c) Ink jet (Zavanelli et al., 2021)	2
Figure 1.2	The electronics skin complex shapes and stretchable (Wu, 2019)	3
Figure 1.3	The image of flexible substrates	4
Figure 1.4	Types of conductive materials (a) GNP (b) Ag and (c) Cu	5
Figure 2.1	The application of composites material (Kim et al., 2021)	13
Figure 2.2	Chemical composition (wt%) and archimedes densities for the ternary system Au-Ag-Cu (Kraut and Stern, 2000)	14
Figure 2.3	The Au, Ag and Cu melting point (Goyal, 2020)	15
Figure 2.4	The Cu thin film as a substrate and various applications	17
Figure 2.5	The AgNPs with different shapes	19
Figure 2.6	Description of the hybrid zinc sintering process and Illustration of the steps of the hybrid sintering process (a) Deposition by printing (b) Acetic acid spray coating (c) Photonic sintering (Fumeaux and Briand, 2023)	20
Figure 2.7	Sputtering, unzipping, annealing, FCVA, evaporation, laser exfoliation, arc discharge, evaporation, plasma etching, PLD, and particle irradiation were used to convert graphite, CNTs, C60 fullerene, and a-C to graphene (Wu et al., 2020)	22
Figure 2.8	Various potential applications of graphene materials	22
Figure 2.9	An atomically layer of graphene materials in honeycomb structure (Allen et al., 2010)	23
Figure 2.10	Graphene materials single layer	24
Figure 2.11	A schematic illustration of various structures of graphene derivatives (Qazi and Javaid, 2023)	25
Figure 2.12	The fabrication process of GNP/AgNPs hybrid conductive inks pattern (a) Conductive filler, solvent and surfactant with sonication process to conductive ink, (b) Printing and annealing process	28

Figure 2.13	The optimization results of GNP and Ag paste form with various organic solvent ratios of 1-Butanol: terpineol (Saleh et al., 2022)	31
Figure 2.14	(a) Number of publications (b) Trend publication 2008 to 2021 (Chandrasekaran et al., 2022)	35
Figure 2.15	The application of conductive ink in various fields (Wu et al., 2020)	36
Figure 2.16	The sonicators with different modes for dispersion (a) Ultrasonic bath and (b) Ultrasonic probe (Hwang et al., 2011)	38
Figure 2.17	(a) Thermostatically regulated reaction cell placed directly in the ultrasonic bath (b) Thermostatically regulated reaction cell with the ultrasonic probe in a ‘face-on geometry’ (Pollet and Kocha, 2022)	39
Figure 2.18	The high shear mixer machine	42
Figure 2.19	Classification of printing technology (Altay et al., 2020)	45
Figure 2.20	Schematic diagram of basic screen-printing method (Kahn, 2015)	47
Figure 2.21	A schematic illustration of inkjet printing process (Sztymela et al., 2022)	49
Figure 2.22	Schematic illustration of flexography printing process (Tan et al., 2016b)	51
Figure 2.23	Schematic setup of torsion test (Mohammed, 2017)	56
Figure 2.24	Bending test setup by fixing sample on holder (Manaf et al., 2020)	59
Figure 3.1	Process flow of GNP conductive ink formulation	65
Figure 3.2	The conductive filler (a) GNP in powder form (b) GNP Powder of 25 μm nanoparticle size	68
Figure 3.3	The Conductive filler for hybrid formulation (a) Ag flake in flakes form (b) Ag flakes	69
Figure 3.4	The hybrid formulation for the synthesis of Ag (a) SA in powder (b) SA	70
Figure 3.5	Ethanol as a chemical solvent	71
Figure 3.6	1-Butanol as an organic solvent	72
Figure 3.7	Terpineol utilised to create a conductive filler paste	73
Figure 3.8	The Cu thin film used as a hybrid formulation substrate	74
Figure 3.9	Flowchart for GNP conductive ink fabrication	75

Figure 3.10	The flowchart producing GNP hybrid powder	77
Figure 3.11	Beaker was positioned at the center of the weighing pan	78
Figure 3.12	Ethanol was added to the mixture	79
Figure 3.13	Magnetic stirring process	80
Figure 3.14	Powder was allowed to cool to room temperature	80
Figure 3.15	Mixture in container	80
Figure 3.16	Flowchart for GNP hybrid paste	82
Figure 3.17	Weighted material before mixing process	83
Figure 3.18	1- Butanol and terpineol as solvent for conductive ink	83
Figure 3.19	Centrifugal (Thinky) mixer machine (ARE-310)	83
Figure 3.20	Revolution balance setting on the Thinky mixer	84
Figure 3.21	The schematic diagram of printed ink on substrate from top view	85
Figure 3.22	The schematic diagram of printed ink on substrate from the side view	86
Figure 3.23	The schematic diagram of printed ink on substrate and the size of ink paste	86
Figure 3.24	The materials and apparatus for the printing method are depicted, including (a) A Cu sheet, (b) A stencil mesh, and (c) A scraper	88
Figure 3.25	The schematic of mesh stencil method (a), (b) and (c)	89
Figure 3.26	Schematic view of extracted paste or scooped out conductive ink paste	90
Figure 3.27	The equipment for curing process	91
Figure 3.28	Resistance measurement using Two-Point-Probe	93
Figure 3.29	The illustration of Two-Point-Probe principle	94
Figure 3.30	(a) Positive and negative probes and (b) Resistance values are obtained at three different points	95
Figure 3.31	The measurement location at Points 1	96
Figure 3.32	The conductive ink resistance, measured using a digital multimeter, from Point 1 to Point 3	96

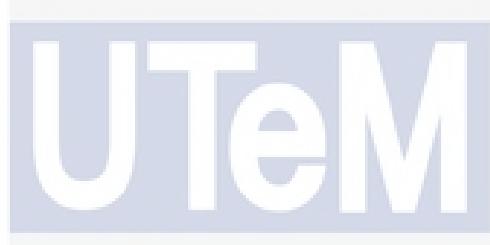
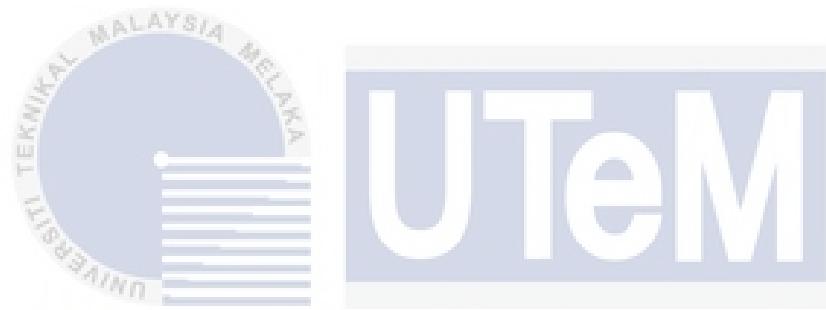
Figure 3.33	Three points of printed GNP hybrid on Cu thin film substrate	98
Figure 3.34	The torsion test rig is used for various cycles	99
Figure 3.35	Schematic component in a cyclic torsion test rig in flat position	100
Figure 3.36	Schematic component in a cyclic torsion test rig in a twisted position	100
Figure 3.37	Visual representation of the bending test rig	101
Figure 3.38	Schematic of the test component in a cyclic bending test rig in a flat position	102
Figure 3.39	Schematic of the test component in a cyclic bending test rig in a bent position	102
Figure 3.40	Dimension of the Cu substrate for shear test	103
Figure 3.41	Schematic diagram of; (a) The bonding interface of the two-layer Cu substrate with printed conductive ink and (b) Isometric view of the sample intended for the shear stress test	105
Figure 3.42	Printed Cu substrate are bonding interfaces for shear test process	105
Figure 3.43	Sample are mounted on the single column, Universal Testing Machine (UTM) for shear test process	106
Figure 3.44	Image of Scanning electron microscopy (SEM) machine	107
Figure 3.45	Auto Fine Coater Machine	108
Figure 3.46	The cold mounting materials (a) Epoxy resin and (b) Hardener	109
Figure 3.47	Sample specimen for cold mounting process	110
Figure 3.48	Rubber tube as a specimen holder	110
Figure 3.49	The specimen is completely ready	111
Figure 3.50	A mixture of epoxy resin and hardener is poured over the specimen	112
Figure 3.51	Conductive ink sample during the mounting procedure. (a) Before, sample in mounting cup (b) After, final product of cold mounting sample	112
Figure 3.52	Image of grinder and polisher machine	113
Figure 3.53	Image of sand paper and installation	113
Figure 3.54	Image of grinding process	114

Figure 3.55	Mechanical cross-section process (a) Pour polishing cloth (b) Polishing process for the mechanical cross-section	114
Figure 3.56	The light microscope equipment employed for surface observation	115
Figure 4.1	The total average resistance and resistivity for GNP hybrid baseline	119
Figure 4.2	Microstructure image of GNP hybrid baseline	120
Figure 4.3	SEM images of filler loading cross-section area on different magnifications (a) x200, (b) x800, (c) x2000	122
Figure 4.4	EDX mapping images of GNP hybrid baseline. (a) SEM image, (b) EDX mapping image of spectrum, (c) EDX table image of spectrum, (d) EDX C image, (e) EDX Cu image, (f) EDX Ag image	124
Figure 4.5	Total average resistance and resistivity versus torsion test in specific number of cycles	127
Figure 4.6	Total average resistance and resistivity versus bending test in specific number of cycles	132
Figure 4.7	Microstructure image of GNP hybrid cyclic torsion test cycles compare with baseline	134
Figure 4.8	Microstructure image of GNP hybrid cyclic bending test cycles compare with baseline	136
Figure 4.9	SEM images of filler loading cross-section area on different magnifications x2000 after torsional test for baseline to 4000 cycles	138
Figure 4.10	SEM images of filler loading cross-section area on different magnifications x2000 after bending test for baseline to 4000 cycles	140
Figure 4.11	EDX mapping images of GNP hybrid after torsion test 500 Cycle. (a) SEM image, (b) EDX mapping image of spectrum, (c) EDX table image of spectrum, (d) EDX C image, (e) EDX Cu image, (f) EDX Ag image	142
Figure 4.12	EDX mapping images of GNP hybrid after torsion test 1000 Cycle. (a) SEM image, (b) EDX mapping image of spectrum, (c) EDX table image of spectrum, (d) EDX C image, (e) EDX Cu image, (f) EDX Ag image	143
Figure 4.13	EDX mapping images of GNP hybrid after torsion test 2000 Cycle. (a) SEM image, (b) EDX mapping image of spectrum, (c) EDX	

table image of spectrum, (d) EDX C image, (e) EDX Cu image, (f) EDX Ag image	144
Figure 4.14 EDX mapping images of GNP hybrid after torsion test 4000 Cycle. (a) SEM image, (b) EDX mapping image of spectrum, (c) EDX table image of spectrum, (d) EDX C image, (e) EDX Cu image, (f) EDX Ag image	145
Figure 4.15 EDX mapping images of GNP hybrid after bending test 500 cycle. (a) SEM image, (b) EDX mapping image of spectrum, (c) EDX table image of spectrum, (d) EDX C image, (e) EDX Cu image, (f) EDX Ag image	149
Figure 4.16 EDX mapping images of GNP hybrid after bending test 1000 cycle. (a) SEM image, (b) EDX mapping image of spectrum, (c) EDX table image of spectrum, (d) EDX C image, (e) EDX Cu image, (f) EDX Ag image	150
Figure 4.17 EDX mapping images of GNP hybrid after bending test 2000 cycle. (a) SEM image, (b) EDX mapping image of spectrum, (c) EDX table image of spectrum, (d) EDX C image, (e) EDX Cu image, (f) EDX Ag image	151
Figure 4.18 EDX mapping images of GNP hybrid after bending test 4000 cycle. (a) SEM image, (b) EDX mapping image of spectrum, (c) EDX table image of spectrum, (d) EDX C image, (e) EDX Cu image, (f) EDX Ag image	152
Figure 4.19 Shear stress of different curing times	157
Figure 4.20 Torsion test condition of the printed GNP/Ag/SA on Cu thin film substrates (a) Before torsion (b) After torsion	158
Figure 4.21 Morphology images of the formulation GNP hybrid on the Cu thin film substrates after torsion test	159
Figure 4.22 Bending test condition of the printed GNP hybrid on Cu thin film substrates. (a) Before bending (b) After bending	161
Figure 4.23 Morphology images of the formulation GNP hybrid on the Cu thin film substrates after bending test	162
Figure 4.24 The overall total average resistance and resistivity for torsion and bending tests with various cycles	164

LIST OF ABBREVIATIONS

RFID	Radio frequency identification
PCB	Printed circuit boards
GNP	Graphene nanoplatelets
Au	Aurum (Gold)
Pt	Platinum
AgNPs	Silver nanoparticles
CNT	Carbon nanotube
CPs	Conductive polymers
Cu	Copper
Ag	Silver
Al	Aluminium
SA	Silver acetate
PE	Printed electronics
DMF	Dimethylformamide
NMP	N-methyl-2-pyrrolidone
SEM	Scanning Electron Microscopy
EDX	Energy Dispersive X-ray



IACS	International Annealed Copper Standard
PTF	Polymer thick films
Zn	Zinc
CVD	Chemical vapor deposition
3D	Three-dimensional
CFD	Computational fluid dynamics
PEDOT:PSS	Poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate)
DoD	Drop-on-demand
PET	Polyethylene terephthalate
AgNW	Silver nanowires
SCI	Stretchable conductive ink
PD	Palladium
Sn	Tin
CB	Carbon black
RPM	Revolutions per minute
SE	Secondary electron
IoT	Internet of things
Gr-Ag	Graphene - silver
GNP-Ag	Graphene nanoplatelets and silver

xGnP H-5 GNP powder

wt.% Weight percentage

R_m Material resistance

UTM Universal Testing Machine

اوپیوڑسیتی یتکنیکل ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS

$\Omega \cdot \text{m}$	Ohm meter
%	Percentage
$\text{k}\Omega/\text{sq}$	kilohms per square
\$	Dollar
$^{\circ}\text{C}$	Degree Celsius
$\Omega \cdot \text{cm}$	Ohm centimeter
μm	Micrometer
$\mu\Omega \cdot \text{cm}$	Microohm centimeter
$\text{R, } \Omega$	Resistance
V	Voltmeter
I	Current source to the sample
$\text{M}\Omega$	Megaohm
V_s	Voltage source
I_m	Current measure
ρ	Volume of resistivity
A	Cross-sectional area
L	Length
F	Force
ℓ	Length of the specimen
w	Width of conductive ink
t	Thickness of conductive ink

x Zoom ratio of the lens

E Young's modulus

τ Shear stress

σ Stress

