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 ABSTRACT 

 

In a dynamic era characterized by the integration of innovation and technology, hybrid 

conductive ink has emerged as a powerful catalyst in the production of flexible electronic 

devices. It also opens up new opportunities to advance electronic printing technology. 

However, there are challenges in realizing it, namely in terms of formulating a suitable ink 

material for that purpose. Materials such as graphene nanoplatelets (GNP), which are 

carbon-based, become fillers in polymer composites together with silver flakes (Ag), 

planning a good combination with silver acetate (SA) to produce a new formulation of 

conductive hybrid ink. This research aims to study the characteristics and uses of GNP 

hybrid conductive ink when mixed with organic solvents and cured at 250°C. Several aspects 

have been studied as a research goal in terms of formulating a new GNP hybrid conductive 

ink formulation and further, comparing the characteristics of the new conductive ink 

formulation against the mechanical, electrical and morphological properties of the flexible 

substrate. The optimal formulation process of the hybrid conductive ink is important in 

ensuring its level of resistivity during cyclic testing using the Two-Point-Probe measurement 

technique. The evaluation of electrical and mechanical conductivity is started by carrying 

out a cyclic test on the sample and comparing it to the baseline, which is not subjected to the 

test. After the cyclic tests of torsion and bending are conducted, shear stress tests are also 

conducted to determine the mechanical properties. The reliability of the new formulation of 

conductive ink was also evaluated. After the cyclic and baseline tests, a comparative analysis 

of the GNP hybrid revealed no significant changes in the tested sample's resistivity. The total 

average resistivity of the sample was 1.99E-05 Ω.m at baseline, and the lowest average for 

torsion was 2.02E-05 Ω.m and for bending, 2.41E-05 Ω.m. The higher shear stress values 

(MPa) for samples cured at 5 hours indicate a better result with an average of 57.36 MPa. 

The findings in this research show that the hybrid formulation of GNP in conductive ink can 

improve its electrical conductivity performance with an average improvement of 42.58% for 

both torsion and bending tests. This provides valuable insights, and pave the way for future 

improvements in conductive ink formulations that can be utilized in various flexible 

electronic applications. 
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KEBERKESANAN FORMULASI BAHARU DAKWAT KONDUKTIF HIBRID 

GNP/SA TERHADAP BEBANAN KITARAN KILASAN/LENTURAN  

 

ABSTRAK 

 

Dalam era dinamik yang dicirikan oleh penyepaduan inovasi dan teknologi, dakwat 

konduktif hibrid telah muncul sebagai pemangkin berkuasa dalam pengeluaran peranti 

elektronik yang fleksibel. Ia juga membuka peluang baharu untuk memajukan teknologi 

percetakan elektronik. Namun begitu, terdapat cabaran dalam merealisasikannya iaitu dari 

segi formulasi bahan dakwat yang sesuai bagi tujuan tersebut. Bahan seperti graphene 

nanoplatelets (GNP), yang berasaskan karbon, menjadi pengisi dalam komposit polimer 

bersama serpihan perak (Ag), merencanakan kombinasi yang baik dengan perak asetat (SA) 

untuk menghasilkan rumusan baharu dakwat hibrid konduktif. Penyelidikan ini bertujuan 

untuk mengkaji beberapa ciri dan kegunaan dakwat konduktif hibrid GNP apabila dicampur 

dengan pelarut organik dan diawet pada suhu 250°C. Beberapa aspek telah dikaji sebagai 

matlamat kajian dari segi merumuskan formulasi dakwat konduktif hibrid GNP baharu dan 

seterusnya, membandingkan ciri-ciri rumusan baharu dakwat konduktif terhadap sifat 

mekanikal, elektrikal dan morfologi substrat fleksibel. Proses perumusan optimum dakwat 

konduktif hibrid adalah penting dalam memastikan tahap kerintangannya semasa ujian 

kitaran menggunakan teknik pengukuran kuar dua titik. Penilaian kekonduksian elektrik dan 

mekanikal dimulakan dengan menjalankan ujian kitaran pada sampel dan 

membandingkannya dengan garis dasar, yang tidak tertakluk kepada ujian. Selepas ujian 

kitaran kilasan dan lenturan dijalankan, ujian tegasan ricih juga dijalankan untuk 

menentukan sifat mekanikal. Kebolehpercayaan formulasi baru dakwat konduktif juga 

dinilai. Selepas ujian kitaran dan garis dasar, analisis perbandingan hibrid GNP 

mendedahkan tiada perubahan ketara dalam kerintangan sampel yang diuji. Jumlah 

kerintangan purata sampel ialah 1.99E-05 Ω.m pada garis dasar, dan purata terendah untuk 

kilasan ialah 2.02E-05 Ω.m dan untuk lenturan, 2.41E-05 Ω.m. Nilai tegasan ricih (MPa) 

yang lebih tinggi untuk sampel yang diawetkan pada 5 jam menunjukkan keputusan yang 

lebih baik dengan purata 57.36 MPa. Penemuan dalam penyelidikan ini menunjukkan 

bahawa formulasi hibrid GNP dalam dakwat konduktif boleh meningkatkan prestasi 

kekonduksian elektriknya, dengan purata peningkatan sebanyak 42.58% untuk kedua-dua 

ujian kilasan dan lenturan. Ini memberikan pandangan yang berharga, dan membuka jalan 

untuk penambahbaikan masa depan dalam formulasi dakwat konduktif yang boleh 

digunakan dalam pelbagai aplikasi elektronik yang fleksibel. 
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