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ABSTRACT 

Flexible electronics have become highly desirable for a variety of applications because of 
their low cost, lightweight characteristics, and flexibility. However, one of the challenges in 
developing a flexible electronic is depending on a suitable ink material formulation. The 
graphene nanoplatelets (GNP) sheets are inherently stacked together because of the strong 
van der Waals interactions between adjacent layers. Silver is the most popular metallic 
material due to its excellent electrical conductivity and chemical stability. This thesis aimed 
to investigate the characteristics and applications of graphene and silver conductive ink 
mixed with an organic solvent, which had low resistivity, high flexibility, and high thermal 
conductivity. Four strategies were adopted to develop such inks. The first was to formulate 
a new formulation of conductive ink. The second was to characterise the electrical, 
mechanical, and thermal behaviour of a new formulation of conductive ink. The third was 
to simulate the proposed formulation characteristics using the finite element method (FEM). 
The fourth was to validate the thermal conductivity and resistivity relationship of the new 
formulation. To evaluate the performance in tenns of electrical, mechanical, and thermal 
conductivity, this research firstly developed a GNP baseline using GNP as the only 
conductive filler with epoxy. Finite element analysis (FEA) was used to validate the GNP 
baseline stretchability and thermal conductivity formulations. Following that, research was 
carried out on the formulation and performance of GNP hybrids using GNP, silver flakes 
(Ag), and silver acetate (SA) as conductive fillers mixed with organic solvents. After the 
twisting and bending test, the GNP hybrid formulation reliability was evaluated. The use of 
GNP and silver conductive ink in combination with an organic solvent result in low 
resistance, high flexibility, and high thermal conductivity. GNP baseline and GNP hybrid 
formulations were compared in terms of electrical, mechanical, and thermal conductivity. 
The finding that the resistivity value of 0.1 wt.% GNP of GNP hybrid is 2.35 x 10-7 O..m, 
which is significantly lower than the resistivity value of GNP baseline, 0.249 O..m, 
demonstrates that mixing GNP with silver improves the performance of electrical 
conductivity. The GNP hybrid had the highest shear and thermal conductivity values of 1.98 
MPa and 367.28 W/m.K. The GNP hybrid formulation could minimise the amount of silver 
used in the production of conductive ink. The GNP hybrid also improved conductive ink 
flexibility and thermal conductivity, which will have an impact on circuit manufacturing in 
the electronics industry. 



FORMULAS/ BAHARU PENGHIBRIDAN GNP/AG KEBERALIRAN HABA TINGGI 

ABSTRAK 

Elektronikfleksibel telah menjadi sangat diperlukan untuk pelbagai aplikasi kerana kosnya 
yang rendah, ciri yang ringan dan fleksibiliti. Waiau bagaimanapun, salah satu cabaran 
dalam membangunkan elektronikyangfleksibel adalah bergantung kepadaformulasi bahan 
dakwat yang sesuai. Kepingan nanoplatelet graphene (GNP) sememangnya disusun 
bersama kerana interaksi Van Der Waals yang kuat antara lapisan-lapisannya. Perak 
adalah bahan logam yang paling popular kerana kekonduksian elektrik yang sangat baik 
dan mempunyai kestabilan kimia. Tesis ini bertujuan untuk mengkaji ciri-ciri dan aplikasi 
dakwat konduktif graphene dan perak yang dicampur dengan pelarut organik, mempunyai 
kerintangan rendah, kelenturan tinggi, dan kekonduksian haba yang tinggi. Empat strategi 
telah digunakan untuk membangunkan dakwat tersebut. Yang pertama adalah untuk 
merumuskan formulasi baru dakwat konduktif. Yang kedua ialah untuk mencirikan 
p erlakuan elektrik, mekanikal dan haba bagi rumusan baharu dakwat konduktif. Yang ketiga 
adalah untuk mensimulasikan ciri-ciri formulasi yang dicadangkan dengan menggunakan 
kaedah unsur terhingga (FEM). Keempat adalah untuk mengesahkan hubungan 
kekonduksian haba dan kerintangan f ormulasi baru. Untuk menilai prestasi dari segi 
kekonduksian elektrik, mekanikal dan haba, p enyelidikan ini mu/a-mu/a membangunkan 
garis dasar GNP yang menggunakan GNP sebagai satu-satunya pengisi konduktif dengan 
epoksi. Analisis unsur terhingga (FEA) telah digunakan untuk mengesahkan 
kebolehregangan garis dasar GNP dan formulasi kekonduksian haba. Berikutan itu, 
p enyelidikan telah dijalankan terhadap perumusan dan prestasi hibrid GNP dengan 
menggunakan GNP, plat p erak (Ag), dan asetat perak (SA) sebagai pengisi konduktif yang 
dicampur dengan p elarut organik. Selepas ujian memusing dan membengkok, 
kebolehpercayaan formulasi hibrid GNP dinilai. Penggunaan GNP dan dakwat konduktif 
perak dalam kombinasi dengan pelarut organik menghasilkan rintangan yang rendah, 
fleksibiliti tinggi dan kekonduksian haba yang tinggi. Garis dasar GNP dan formulasi hibrid 
GNP dibandingkan dari segi kekonduksian elektrik, mekanikal dan haba. Dapatan bahawa 
nilai kerintangan 0.1 wt.% GNP daripada hibrid GNP ialah 2.35x10-7 Q.m, yangjauh lebih 
rendah daripada nilai kerintangan garis dasar GNP, 0.249 Q.m, menunjukkan bahawa 
campuran antara GNP dengan perak dapat meningkatkan prestasi kekonduksian elektrik. 
Hibrid GNP mempunyai nilai ricih dan kekonduksian haba yang tinggi iaitu 1.98 MPa dan 
367.28 W/m.K. Formulasi hibrid GNP boleh meminimumkanjumlah perakyang digunakan 
dalam pengeluaran dakwat konduktif. Hibrid GNP juga dapat meningkatkan kelenturan 
dakwat konduktif dan kekonduksian haba, seterusnya akan memberi kesan kepada 
pembuatan litar dalam industri elektronik. 
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