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ABSTRACT

Flexible electronics have become highly desirable for a variety of applications because of
their low cost, lightweight characteristics, and flexibility. However, one of the challenges in
developing a flexible electronic is depending on a suitable ink material formulation. The
graphene nanoplatelets (GNP) sheets are inherently stacked together because of the strong
van der Waals interactions between adjacent layers. Silver is the most popular metallic
material due to its excellent electrical conductivity and chemical stability. This thesis aimed
to investigate the characteristics and applications of graphene and silver conductive ink
mixed with an organic solvent, which had low resistivity, high flexibility, and high thermal
conductivity. Four strategies were adopted to develop such inks. The first was to formulate
a new formulationof eendictive ink. The second was to characterise the electrical,
mechanical, and thermal behaviour of a new formulation of econductive ink. The third was
to simulate the proposed formulation characteristics using the finite element method (FEM).
The fourth was to validate the thermal conductivity and resistivity relationship of the new
formulation. To evaluate the-performance in terms of electrical, mechanical, and thermal
conductivity, this research firstly-developed a GNP baseline using GNP as the only
conductive filler wath epoxy. Finite element analysis (FEA) was used to validate the GNP
baseline stretchability ‘and-thermal conductivity formulations. Following that, research was
carried out on the formulation and performance-of GNP hybrids using GNP, silver flakes
(Ag), and silver-acetate-(SA) as conductive-fillers mixed with-organic-solvents. After the
twisting and bending test, the GNP hybrid formulation reliability was evaluated. The use of
GNP and silver iconductive ink (in, combination with, an:organi¢ solvent result in low
resistance, high flexibility, and high thermal conductivity. GNP baseline and GNP hybrid
formulations were compared in terms of electrical, mechanical, and thermal conductivity.
The finding that the resistivity value of 0.1 wt.% GNP of GNP hybrid is 2.35 x 107 Q.m,
which is significantly lower than the resistivity value of GNP baseline, 0.249 Q.m,
demonstrates that mixing GNP with silver improves the performance of electrical
conductivity. The GNP hybrid had the highest shear and thermal conductivity values of 1.98
MPa and 367.28 W/m.K. The GNP hybrid formulation could minimise the amount of silver
used in the production of conductive ink. The GNP hybrid also improved conductive ink
flexibility and thermal conductivity, which will have an impact on circuit manufacturing in
the electronics industry.
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FORMULASI BAHARU PENGHIBRIDAN GNP/AG KEBERALIRAN HABA TINGGI

ABSTRAK

Elektronik fleksibel telah menjadi sangat diperlukan untuk pelbagai aplikasi kerana kosnya
yang rendah, ciri yang ringan dan fleksibiliti. Walau bagaimanapun, salah satu cabaran
dalam membangunkan elektronik yang fleksibel adalah bergantung kepada formulasi bahan
dakwat yang sesuai. Kepingan nanoplatelet graphene (GNP) sememangnya disusun
bersama kerana interaksi Van Der Waals yang kuat antara lapisan-lapisannya. Perak
adalah bahan logam yang paling popular kerana kekonduksian elektrik yang sangat baik
dan mempunyai kestabilan kimia. Tesis ini bertujuan untuk mengkaji ciri-ciri dan aplikasi
dakwat konduktif graphene dan perak yang dicampur dengan pelarut organik, mempunyai
kerintangan rendah, kelenturan tinggi, dan kekonduksian haba yang tinggi. Empat strategi
telah digunakan untuk mentbangunkan dakwat tersebut. Yang pertama adalah untuk
merumuskan formulasi baru dakwat konduktif. Yang kedua ialah wntuk mencirikan
perlakuan elektrik, mekanikal dan haba bagi rumusan baharu dakwat konduktif. Yang ketiga
adalah untuk mensimulasikan civi-ciri formulasi yang dicadangkan dengan menggunakan
kaedah unsur terhingga—(FEM)~ Keempat adaloh untuk mengesahkan hubungan
kekonduksian haba dan kerintangan formulasi baru. Untuk menilai prestasi dari segi
kekonduksian elektrik, mekanikal dan haba;, penyelidikan ini mula-mula membangunkan
garis dasar GNP yang 'menggunakan GNP sebagai satu-satunya pengisi konduktif dengan
epoksi. Analisis. | unsur terhingga~ (FEA) telah digunakan untuk | mengesahkan
kebolehregangan - guaris- dasar ~“GNP-dan formulasi ‘kekonduksian habua. Berikutan itu,
penyelidikan telah dijalankan terhadap perumusan dan-prestasi hibrid GNP dengan
menggunakan GNP, plat perak (Ag), dan asetat\perak (SA)-sebagai pengisi-konduktif yang
dicampur dengan pelarut organik. Selepas ujian memusing dan membengkok,
kebolehpercayaan formulasi hibrid GNP dinilai. Penggunaan GNP dan dakwat konduktif

perak dalam kombinasi dengan pelarut organik menghasilkan rintangan yang rendah,

Meksibiliti tinggi dan kekonduksian haba yang tinggi. Garis dasar GNP dan formulasi hibrid

GNP dibandingkan dari segi kekonduksian elektrik, mekanikal dan haba. Dapatan bahawa
nilai kerintangan 0.1 wt.% GNP daripada hibrid GNP ialah 2.35 x 107 Q.m, yang jauh lebih
rendah daripada nilai kerintangan garis dasar GNP, 0.249 £.m, menunjukkan bahawa
campuran antara GNP dengan perak dapat meningkatkan prestasi kekonduksian elektrik.
Hibrid GNP mempunyai nilai ricih dan kekonduksian haba yang tinggi iaitu 1.98 MPa dan
367.28 W/m.K. Formulasi hibrid GNP boleh meminimumbkan jumlah perak yang digunakan
dalam pengeluaran dakwat konduktif. Hibrid GNP juga dapat meningkatkan kelenturan
dakwat konduktif dan kekonduksian haba, scterusnya akan memberi kesan kepada
pembuatan litar dalam industri elektronik.
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Maximum principal elastic strain of GNP baseline conductive material
cross-section view with different thicknesses. (a) 0.05 mm,
(b) 0.10 mm, (c) 0.20 mm, (d) 1.00 mm, (e) 1.50 mm, (f) 2.00 mm

Von-Mises stress of GNP baseline conductive material with different
thicknesses. (a) 0.05 mm; (b) 0.10 mm, (¢) 0.20 mm, (d) 1.00 mm,
(e) 1.50 mm, and (f) 2.00 mm

Maximum principal elastic strain of GNP baseline conductive ink
with d1fferent thicknesses

Von Mlses stress Qf GNP baseline conductive ink with different
thlcknesses

M-;ode_l of 'the‘coqd_uct'ive inks eircuit board. (a) Experimental setup.
(b) Dimension-of the die-attach material and die

Te;npex:ai:ure results of die-attach materials using transient thermal
analysis.,(a) Au/Sn (80/20) braze (b) Nanoscale silver,
(c) SAC alloy solder conduetive ink;-and (d) Epo -Tek P1011 epoxy

Total heat flux resuits of d1e-attach materials using transient thermal
analysis. (a) Au/Sn (80/20) braze, (b) Nanoscale silver,
(c) SAC alloy solder conductive ink, and (d) Epo-Tek P1011 epoxy

Trend of the line probes during the test. (a) Temperature with respect
to time. (b) Total heat flux with respect to time
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LIST OF ABBREVIATIONS

PCB Printed circuit boards
GNP Graphene nanoplatelets
Ag Silver flake
SA Silver acetate
FEA Finite element analysis
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El Polyimide
NPM N-methyl-2-pyrrolidone
DMF Dimethylformamide
ECA Electrical conductive adhesives
SEM Scanning Electron Microscopy
EDX Energy Dispersive X-ray
SCI Stretchable conductive ink
Au Aurum (Gold)
Pt Platinum
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AgNP Silver nanoparticles
AgNW Silver nanowires
PEDOT:PSS Poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate)
PAN Polyaniline
PET Polyethylene terephthalate
PVP Polyvinylpyrrolidone
EC Ethyl cellulose
TCPM Thermally conductive polymer materials
GO Graphene oxides
rGO Reduced graphene oxides
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EMI Electromagnetic 1n_terfcrence’
NaCl Sodium chloride
NH; Nitrenium ion (amine)
OH Hydroxyl
Dk Dielectric constants
T Glass-transition temperatures
Ta Thermal decomposition temperatures
SSWNT Single-walled carbon nanotubes
CPI Chemical process industries
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Te-PEDOT:PSS

CFD
PDMS
Au-Sn
Au-Ge

Agln

MT
Gr-Ag

RMC

Thermoelectric poly (3,4-ethylenedioxythiophene)
polystyrene sulfonate

Computational fluid dynamics
Polydimethylsiloxane
Gold-tin

Gold-germanium
Silver-indium

Mori-Tanaka

Graphene - silver

Recharging microchannel

FVM . 275 Finite volume method

Slllcop carbide . |
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‘Tetrahedrons patch confirming -
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wt.%
himax

Fmax

R
Rin
UTM

SPP

Weight percentage

Maximum depth of the indentation
Indentation maximum force
Thermal resistance

Material resistance

Universal Testing Machine

Silk-sericin photoresist
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