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ABSTRACT 

 

Perovskite Solar Cell (PSC) is one of the third-generation solar cells with advanced 

materials, intelligent properties, and high potential performance. The PSC is made up of 5 

layers, the active layers consist of an absorber layer (AL) sandwiched between a hole 

transport layer (HTL) and an electron transport layer (ETL), these active layers are 

sandwiched between transparent conductive oxide (TCO) as cathode and conductive metal 

as anode. Due to the multiple layers involved in the operation mechanism of PSC, the 

performance of PSC becomes unpredictable especially when the material is altered in the 

PSC’s layers. Therefore, to prevent the wastage of precious rare materials and time of 

manufacture, design and modelling the PSC in a simulation is important to predict the 

performance of PSC. The PSC’s AL contains lead which is harmful to the environment and 

a serious health hazard. However, the PSC with the lead-free perovskite layer has lower 

stability in terms of its performance. Therefore, the lead-free PSC cell performance is 

evaluated in this research for the potential to replace the lead PSC and the optimization for 

the performances of lead-free PSC is conducted. This research uses electrochemical 

modelling by drift-diffusion equations to model the dynamic operations in PSC in 

OghmaNano and COMSOL Multiphysics semiconductor modelling simulation software. 

The properties of each layer in PSC are extracted from the drift-diffusion equations which 

are defined in the semiconductor modelling simulation software before computation. The 

complex drift-diffusion equations are solved in semiconductor modelling simulation 

software with the finite element method (FEM) numerical scheme to generate the JV curve 

as its output. The defined problems are discretized into the various elements with the mesh 

number that is set and solved by using a multiple defined equations. The output JV curves 

generated from semiconductor modelling simulation software are dependent on the layer 

properties of the PSC. These properties include the layer’s thickness, electron affinity, 

energy bandgap, relative permittivity, conduction band density, valence band density, 

doping density, mobility of electrons, and mobility of holes. The performance of PSC can 

be abstracted and calculated from the resulting JV curves. These PSC’s performance 

includes short circuit current (JSC), open circuit voltage (VOC), fill factor (FF), and power 

conversion efficiency (PCE). For validation purposes, the PSC performance obtained from 

the simulation with the same PSC properties used in the work is validated against the results 

from SCAPS. The PSC’s PCE showed a good agreement with the results from SCAPS, the 

other PSC performance’s value (JSC, VOC, and FF) difference is only less than 6% under 

the same comparison. In the subsequent works, the results of PSC’s PCE with the different 

cell layer properties variations are discussed in this research. A set of PSC layers properties' 

optimum values have been determined from the analysis. The PSC performance is computed 

with the optimum value of cell layer properties showing that the PSC’s PCE increased by 

16.14% and 9.05% in OghmaNano and COMSOL Multiphysics respectively. However, in 

the evaluation of the performance between lead and lead-free PSC, the simulation results 

show that the PSC’s PCE decreased by 18.33% and 18.67% in OghmaNano and COMSOL 

Multiphysics respectively after replacing the lead AL of PSC with lead-free AL. The lead-

free PSC’s PCE also increased by 1.52% after optimizing its AL properties’ value. 
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ANGGARAN PRESTASI SEL SOLAR PEROVSKITE BERDASARKAN SIMULASI 

PEMODELAN OGHMANANO DAN COMSOL MULTIPHYSICS 

 

ABSTRAK 

 

Sel solar perovskite (PSC) ialah salah satu daripada sel solar generasi ketiga dengan bahan 

termaju, sifat pintar dan prestasi berpotensi tinggi. PSC terdiri daripada 5 lapisan, lapisan 

aktif terdiri daripada lapisan penyerap (AL) yang diapit di antara lapisan pengangkutan 

lubang (HTL) dan lapisan pengangkutan elektron (ETL), lapisan aktif ini diapit antara 

oksida pengalir lutsinar (TCO) sebagai katod dan logam pengalir sebagai anod. 

Disebabkan oleh pelbagai lapisan yang terlibat dalam mekanisme operasi PSC, prestasi 

PSC menjadi tidak dapat diramalkan terutamanya apabila bahan diubah dalam lapisan 

PSC. Oleh itu, untuk mengelakkan pembaziran bahan nadir berharga dan masa pembuatan, 

reka bentuk dan pemodelan PSC dalam simulasi adalah penting untuk meramalkan prestasi 

PSC. AL PSC mengandungi plumbum yang berbahaya kepada alam sekitar dan bahaya 

kesihatan yang serius. Walau bagaimanapun, PSC dengan lapisan perovskite bukan 

plumbum mempunyai kestabilan yang lebih rendah dari segi prestasinya. Oleh itu, prestasi 

sel PSC bukan plumbum dinilai dalam penyelidikan ini untuk potensi menggantikan PSC 

plumbum dan pengoptimuman untuk prestasi PSC bukan plumbum dijalankan. Penyelidikan 

ini menggunakan pemodelan elektrokimia secara persamaan drift-difusi untuk memodelkan 

operasi dinamik dalam PSC dalam perisian simulasi pemodelan semikonduktor 

OghmaNano dan COMSOL Multiphysics. Sifat setiap lapisan dalam PSC diekstrak 

daripada persamaan drift-difusi yang ditakrifkan dalam perisian simulasi pemodelan 

semikonduktor sebelum pengiraan. Persamaan drift-difusi yang kompleks diselesaikan 

dalam perisian simulasi pemodelan semikonduktor dengan skema berangka kaedah unsur 

terhingga (FEM) untuk menjana lengkung JV sebagai keluarannya. Masalah yang 

ditakrifkan didiskrisikan ke dalam pelbagai elemen dengan nombor mesh yang ditetapkan 

dan diselesaikan dengan menggunakan persamaan berbilang yang ditakrifkan. Lengkung 

JV keluaran yang dihasilkan daripada perisian simulasi pemodelan semikonduktor adalah 

bergantung kepada sifat lapisan PSC. Sifat ini termasuk ketebalan lapisan, pertalian 

elektron, celah jalur tenaga, ketelusan relatif, ketumpatan jalur pengaliran, ketumpatan 

jalur valens, ketumpatan doping, mobiliti elektron dan mobiliti lubang. Prestasi PSC boleh 

diabstrak dan dikira daripada lengkung JV yang terhasil. Prestasi PSC ini termasuk arus 

litar pintas (Jsc), voltan litar terbuka (Voc), faktor isian (FF), dan kecekapan penukaran 

kuasa (PCE). Untuk tujuan pengesahan, prestasi PSC yang diperoleh daripada simulasi 

dengan sifat PSC yang sama digunakan dalam kerja disahkan terhadap data daripada 

SCAPS. PCE PSC menunjukkan persetujuan yang baik dengan SCAPS, perbezaan nilai 

prestasi PSC yang lain (Jsc, Voc, dan FF) hanya kurang daripada 6% di bawah 

perbandingan yang sama. Dalam kerja-kerja seterusnya, keputusan PCE PSC dengan 

variasi sifat lapisan sel yang berbeza dibincangkan dalam penyelidikan ini. Satu set nilai 

optimum sifat lapisan PSC telah ditentukan daripada analisis. Prestasi PSC dikira dengan 

nilai optimum sifat lapisan sel yang menunjukkan bahawa PCE PSC masing-masing 

meningkat sebanyak 16.14% dan 9.05% dalam OghmaNano dan COMSOL Multiphysics. 

Walau bagaimanapun, dalam penilaian prestasi antara PSC plumbum dan bukan plumbum, 

keputusan simulasi menunjukkan bahawa PCE PSC menurun sebanyak 18.33% dan 18.67% 

masing-masing dalam OghmaNano dan COMSOL Multiphysics selepas menggantikan AL 



iii 

plumbum PSC dengan AL bukan plumbum. PCE PSC bukan plumbum juga meningkat 

sebanyak 1.52% selepas mengoptimumkan nilai sifat ALnya. 
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𝐽𝑝(𝑑𝑟𝑖𝑓𝑡) - hole drift current density 

𝐽𝑝(𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛) - hole diffusion current density 

F - electrostatic force 

m - mass of the electron 

a - acceleration of the electron 

𝑉𝑑𝑟𝑖𝑓𝑡 - drift velocity of the electron 

t - time 

𝜇𝑛 - electron mobility 

𝜇𝑝 - hole mobility 

𝐷𝑛 - electron diffusion coefficient 

𝐷𝑝 - hole diffusion coefficient 

𝑘𝐵 - Boltzmann’s constant 

T - temperature 

𝐺𝑛 - electron generation rate 

𝐺𝑃 - hole generation rate 

𝑅𝑛 - electron recombination rate 
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𝑅𝑝 - hole recombination rate 

𝑅𝑏−𝑏 - band-to-band recombination rate 

ni - intrinsic carrier density 

𝑅𝑆𝑅𝐻 - SRH recombination rate 

𝜏𝑛 - electron minority carrier lifetime 

𝜏𝑝 - hole minority carrier lifetime 

Ei - intrinsic energy level 

Et - trap state energy level 

𝑅𝐴𝑢𝑔𝑒𝑟 - Auger recombination rate 

𝛾𝑛 - Auger recombination constant for electron 

𝛾𝑝 - Auger recombination constant for hole 

εo - vacuum permittivity 

EC - conduction band energy level 

EV - valence band energy level 

V - applied voltage 

Jmax - current density at maximum power 

Vmax - voltage at maximum power 

Pmax - maximum power 
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