

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

**ESTIMATION OF PEROVSKITE SOLAR CELL PERFORMANCE
BASED ON OGHMANANO AND COMSOL MULTIPHYSICS
MODELLING SIMULATION**

LEE JIN YAO

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2025

اونیورسیتی تکنیکل ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

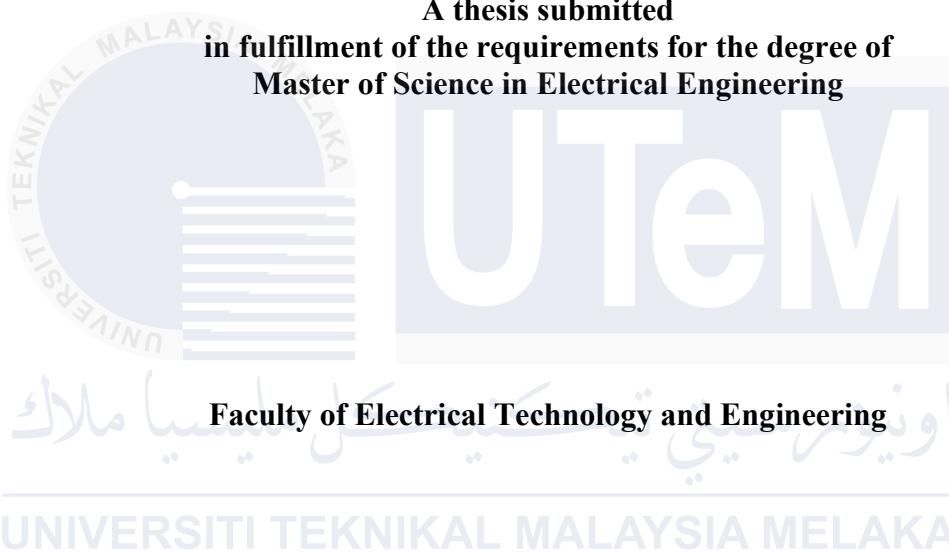
Faculty of Electrical Technology and Engineering

ESTIMATION OF PEROVSKITE SOLAR CELL PERFORMANCE
BASED ON OGHMANANO AND COMSOL MULTIPHYSICS
MODELLING SIMULATION

اونیورسیتی تکنیکل ملیسیا ملاک

LEE JIN YAO

UNIVERSITI TEKNIKAL MALAYSIA MELAKA


Master of Science in Electrical Engineering

2025

**ESTIMATION OF PEROVSKITE SOLAR CELL PERFORMANCE BASED ON
OGHMANANO AND COMSOL MULTIPHYSICS MODELLING SIMULATION**

LEE JIN YAO

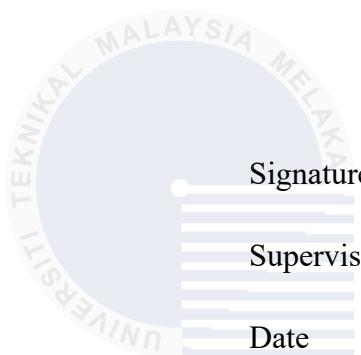
**A thesis submitted
in fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering**

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2025

DECLARATION

I declare that this thesis entitled “Estimation of Perovskite Solar Cell Performance Based on Oghmanano and Comsol Multiphysics Modelling Simulation” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.


Signature :
Name : Lee Jin Yao
Date : 30/6/2025

جامعة ملاكا التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

Signature

Supervisor Name

Date

.....
Dr. Rahifa binri Ranom
.....
30/6/2025

جامعة ملaka التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved mother and father.

ABSTRACT

Perovskite Solar Cell (PSC) is one of the third-generation solar cells with advanced materials, intelligent properties, and high potential performance. The PSC is made up of 5 layers, the active layers consist of an absorber layer (AL) sandwiched between a hole transport layer (HTL) and an electron transport layer (ETL), these active layers are sandwiched between transparent conductive oxide (TCO) as cathode and conductive metal as anode. Due to the multiple layers involved in the operation mechanism of PSC, the performance of PSC becomes unpredictable especially when the material is altered in the PSC's layers. Therefore, to prevent the wastage of precious rare materials and time of manufacture, design and modelling the PSC in a simulation is important to predict the performance of PSC. The PSC's AL contains lead which is harmful to the environment and a serious health hazard. However, the PSC with the lead-free perovskite layer has lower stability in terms of its performance. Therefore, the lead-free PSC cell performance is evaluated in this research for the potential to replace the lead PSC and the optimization for the performances of lead-free PSC is conducted. This research uses electrochemical modelling by drift-diffusion equations to model the dynamic operations in PSC in OghmaNano and COMSOL Multiphysics semiconductor modelling simulation software. The properties of each layer in PSC are extracted from the drift-diffusion equations which are defined in the semiconductor modelling simulation software before computation. The complex drift-diffusion equations are solved in semiconductor modelling simulation software with the finite element method (FEM) numerical scheme to generate the JV curve as its output. The defined problems are discretized into the various elements with the mesh number that is set and solved by using a multiple defined equations. The output JV curves generated from semiconductor modelling simulation software are dependent on the layer properties of the PSC. These properties include the layer's thickness, electron affinity, energy bandgap, relative permittivity, conduction band density, valence band density, doping density, mobility of electrons, and mobility of holes. The performance of PSC can be abstracted and calculated from the resulting JV curves. These PSC's performance includes short circuit current (JSC), open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE). For validation purposes, the PSC performance obtained from the simulation with the same PSC properties used in the work is validated against the results from SCAPS. The PSC's PCE showed a good agreement with the results from SCAPS, the other PSC performance's value (JSC, VOC, and FF) difference is only less than 6% under the same comparison. In the subsequent works, the results of PSC's PCE with the different cell layer properties variations are discussed in this research. A set of PSC layers properties' optimum values have been determined from the analysis. The PSC performance is computed with the optimum value of cell layer properties showing that the PSC's PCE increased by 16.14% and 9.05% in OghmaNano and COMSOL Multiphysics respectively. However, in the evaluation of the performance between lead and lead-free PSC, the simulation results show that the PSC's PCE decreased by 18.33% and 18.67% in OghmaNano and COMSOL Multiphysics respectively after replacing the lead AL of PSC with lead-free AL. The lead-free PSC's PCE also increased by 1.52% after optimizing its AL properties' value.

**ANGGARAN PRESTASI SEL SOLAR PEROVSKITE BERDASARKAN SIMULASI
PEMODELAN OGHMANANO DAN COMSOL MULTIPHYSICS**

ABSTRAK

Sel solar perovskite (PSC) ialah salah satu daripada sel solar generasi ketiga dengan bahan termaju, sifat pintar dan prestasi berpotensi tinggi. PSC terdiri daripada 5 lapisan, lapisan aktif terdiri daripada lapisan penyerap (AL) yang diapit di antara lapisan pengangkutan lubang (HTL) dan lapisan pengangkutan elektron (ETL), lapisan aktif ini diapit antara oksida pengalir lutsinar (TCO) sebagai katod dan logam pengalir sebagai anod. Disebabkan oleh pelbagai lapisan yang terlibat dalam mekanisme operasi PSC, prestasi PSC menjadi tidak dapat diramalkan terutamanya apabila bahan diubah dalam lapisan PSC. Oleh itu, untuk mengelakkan pembaziran bahan nadir berharga dan masa pembuatan, reka bentuk dan pemodelan PSC dalam simulasi adalah penting untuk meramalkan prestasi PSC. AL PSC mengandungi plumbum yang berbahaya kepada alam sekitar dan bahaya kesihatan yang serius. Walau bagaimanapun, PSC dengan lapisan perovskite bukan plumbum mempunyai kestabilan yang lebih rendah dari segi prestasinya. Oleh itu, prestasi sel PSC bukan plumbum dinilai dalam penyelidikan ini untuk potensi menggantikan PSC plumbum dan pengoptimuman untuk prestasi PSC bukan plumbum dijalankan. Penyelidikan ini menggunakan pemodelan elektrokimia secara persamaan drift-difusi untuk memodelkan operasi dinamik dalam PSC dalam perisian simulasi pemodelan semikonduktor OghmaNano dan COMSOL Multiphysics. Sifat setiap lapisan dalam PSC diekstrak daripada persamaan drift-difusi yang ditakrifkan dalam perisian simulasi pemodelan semikonduktor sebelum pengiraan. Persamaan drift-difusi yang kompleks diselesaikan dalam perisian simulasi pemodelan semikonduktor dengan skema berangka kaedah unsur terhingga (FEM) untuk menjana lengkung JV sebagai keluarannya. Masalah yang ditakrifkan didiskrisikan ke dalam pelbagai elemen dengan nombor mesh yang ditetapkan dan diselesaikan dengan menggunakan persamaan berbilang yang ditakrifkan. Lengkung JV keluaran yang dihasilkan daripada perisian simulasi pemodelan semikonduktor adalah bergantung kepada sifat lapisan PSC. Sifat ini termasuk ketebalan lapisan, pertalian elektron, celah jalur tenaga, ketelusan relatif, ketumpatan jalur pengaliran, ketumpatan jalur valens, ketumpatan doping, mobiliti elektron dan mobiliti lubang. Prestasi PSC boleh diabstrak dan dikira daripada lengkung JV yang terhasil. Prestasi PSC ini termasuk arus litar pintas (J_{sc}), voltan litar terbuka (V_{oc}), faktor isian (FF), dan kecekapan penukaran kuasa (PCE). Untuk tujuan pengesahan, prestasi PSC yang diperoleh daripada simulasi dengan sifat PSC yang sama digunakan dalam kerja disahkan terhadap data daripada SCAPS. PCE PSC menunjukkan persetujuan yang baik dengan SCAPS, perbezaan nilai prestasi PSC yang lain (J_{sc} , V_{oc} , dan FF) hanya kurang daripada 6% di bawah perbandingan yang sama. Dalam kerja-kerja seterusnya, keputusan PCE PSC dengan variasi sifat lapisan sel yang berbeza dibincangkan dalam penyelidikan ini. Satu set nilai optimum sifat lapisan PSC telah ditentukan daripada analisis. Prestasi PSC dikira dengan nilai optimum sifat lapisan sel yang menunjukkan bahawa PCE PSC masing-masing meningkat sebanyak 16.14% dan 9.05% dalam OghmaNano dan COMSOL Multiphysics. Walau bagaimanapun, dalam penilaian prestasi antara PSC plumbum dan bukan plumbum, keputusan simulasi menunjukkan bahawa PCE PSC menurun sebanyak 18.33% dan 18.67% masing-masing dalam OghmaNano dan COMSOL Multiphysics selepas menggantikan AL

plumbum PSC dengan AL bukan plumbum. PCE PSC bukan plumbum juga meningkat sebanyak 1.52% selepas mengoptimumkan nilai sifat ALnya.

ACKNOWLEDGEMENT

First and foremost, I would like to express my deep and sincere gratitude to my research supervisor, Dr. Rahifa binti Ranom and my co-supervisor, Dr. Kyairul Azmi bin Baharin for their guidance, advice, and motivation. Because of their invaluable guidance with patience, several new skills were unlocked for me, and I believe the knowledge that I gained is a stepping stone for my career in future. It was a great privilege and honour to work and study under their guidance. Without their support, this research cannot be done completely.

A deep heartfelt thanks to my parents Mr. Lee Chee Min and Mrs. Boon Kam Lan for their love, prayers, caring and sacrifices for educating and preparing me for my future. Because of them, I can reach this stage of my life, without their foster after born, I am nothing. Family is always the backbone and haven for my whole life, they provide love, care, and support to me at all times.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Particularly, I would also like to express my deepest thanks to the Ministry of Higher Education Malaysia for the funding under FRGS/1/2020/FKE-CERIA/F00414 and also a special thanks to Universiti Teknikal Malaysia Melaka (UTeM) for allowing conducting the study and research works.

Special thanks to my soul mate, Ms. Nasio Sihombing for her kindness and support in physically and mentally to cross over the bottleneck along the progress of the research. Lastly, I am extending my thanks to all my friends and seniors. The views and tips from them are useful indeed, they are willing to help each other and glow together.

TABLE OF CONTENTS

	PAGES
DECLARATION	i
APPROVAL	ii
DEDICATION	iv
ABSTRACT	v
ABSTRAK	vii
ACKNOWLEDGEMENT	viii
TABLE OF CONTENTS	xiii
LIST OF TABLES	xv
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xix
LIST OF SYMBOLS	
LIST OF APPENDICES	
LIST OF PUBLICATIONS	
 CHAPTER	
1. INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	4
1.3 Research Question	6
1.4 Research Objective	6
1.5 Scope of Research	7
1.6 Research Contributions	8
1.7 Thesis Outline	9
2. LITERATURE REVIEW	11
2.1 Introduction	11
2.2 The Revolution of Solar Cell	11
2.3 Perovskite Solar Cell (PSC)	23
2.3.1 Perovskite Crystal Structure and Materials	23
2.3.2 Perovskite Solar Cell Architecture	24
2.3.3 Perovskite Solar Cell Operation Principle	26
2.4 Electrochemical Modelling of PSC	29
2.5 Previous Studies in Modelling PSC	40
2.6 Summary	45
3. METHODOLOGY	49
3.1 Overview	49
3.2 Semiconductor Modelling Simulation Software	51
3.3 Modelling the PSC's Drift-Diffusion Equations in Semiconductor Simulation Software	53
3.3.1 Procedure of PSC Simulation in OghmaNano	58
3.3.2 Procedure of PSC Simulation in COMSOL Multiphysics	63
3.4 Method to Analyze the PSC Cell Performance for Various Cell Layer Properties	80

3.5	Method to Evaluate the Lead-Free PSC Cell Performance as Potential to Replace the Lead PSC Which Contains the Toxicant Lead.	84
3.6	Summary	87
4.	RESULT AND DISCUSSION	88
4.1	Introduction	88
4.2	Validation of the PSC Simulation Model	88
4.3	The Effect of the PSC Layer's Properties on Its Performance	90
4.3.1	The effect of PSC thickness (L) variation upon its PCE	90
4.3.2	The effect of PSC electron affinity (χ) variation upon its PCE	94
4.3.3	The effect of PSC energy bandgap (E_g) variation upon its PCE	96
4.3.4	The effect of PSC relative permittivity (ϵ_r) variation upon its PCE	99
4.3.5	The effect of PSC conduction band density (N_C) and valence band density (N_V) variation upon its PCE	102
4.3.6	The effect of PSC doping density (N_D & N_A) variation upon its PCE	107
4.3.7	The effect of PSC electron mobility (μ_n) and hole mobility (μ_p) variation upon its PCE	110
4.3.8	PSC properties optimization	115
4.4	The suitability of replacing the lead perovskite in PSC's absorber layer with non-lead perovskite	119
4.5	Practical Implications and Beneficiaries	123
4.6	Summary	124
5.	CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH	126
5.1	Conclusion	126
5.2	Future Works	128
REFERENCES		131
APPENDICES		149

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	The strength, weakness, and performance of different types of solar cells	46
Table 3.1	Cell properties for the PSC simulation from SCAPS (HOSSEINI et al., 2021)	56
Table 3.2	The range of the cell properties values for the PSC simulation used in the simulation software	81
Table 3.3	Lead-free AL properties for the PSC simulation (Coulibaly et al., 2019)	85
Table 4.1	Performances of PSC from JV curves plotted in Figure 4.1 and its performance's value difference in percentage	90
Table 4.2	Optimized thickness and electrical properties for the PSC in OghmaNano simulation based on analysis	116
Table 4.3	Optimized thickness and electrical properties for the PSC in COMSOL Multiphysics simulation based on analysis	117
Table 4.4	Optimized performances of PSC from JV curves plotted in Figure 4.20 and Figure 4.21 and its performance's value difference in percentage	118
Table 4.5	Lead and non-lead PSC's performances from JV curves plotted in Figure 4.22 and Figure 4.23 and its performance's value difference in percentage	120
Table 4.6	Optimized thickness and electrical properties of AL for the non-lead PSC in OghmaNano simulation based on analysis	122
Table 4.7	Non-lead and optimized non-lead PSC's performances from JV curves plotted in Figure 4.24 and its performance's value difference in percentage	123

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1	The schematic of a simple silicon solar cell	3
Figure 2.1	The Best Research-Cell Efficiency Chart taken from January 2024 provided by NREL of the U.S. Department of Energy (Renewable Energy Lab, 2024)	12
Figure 2.2	The three generations and types of solar cells (Ahmad, Naqvi and Jaffri, 2021)	13
Figure 2.3	The lattice arrangement of monocrystalline and polycrystalline (Hidayanti, 2020)	14
Figure 2.4	The structure layer of CdTe, CIGS, and α -Si: H thin-film solar cells (Renewable Energy Lab, 2024; Sarkar and Ghosh, 2017)	15
Figure 2.5	The OPV solar cell structure (Ahmad, Naqvi and Jaffri, 2021)	17
Figure 2.6	The construction and working principle of the dye-sensitized nanocrystalline solar cells (Sharma, Sharma and Sharma, 2018)	19
Figure 2.7	The QDSC device schematic and its component (Mingsukang, Buraidah and Arof, 2017a)	21
Figure 2.8	The structure layer of a perovskite solar cell (Mahapatra et al., 2020)	22
Figure 2.9	The compound structure of perovskite showing BX6 octahedral and larger A cation occupied in cubooctahedral site (Hussain et al., 2018)	23
Figure 2.10	The perovskite solar cell in four different structures (Bashir and Sultan, 2020)	24
Figure 2.11	The structure of the HOMO/valence bands (dashed lines) and LUMO/conduction bands (solid lines) of PSC and the flow of electrons and holes (Foster et al., 2014).	28
Figure 2.12	The direction of the applied electric field, the direction of drift current, and the direction of charge carriers' movement in semiconductors (Physics Department of Douglas College and OpenStax, 2019)	32

Figure 2.13	The concentration of charge carriers with the charge carriers diffusion direction and the charge carrier diffusion currents directions	35
Figure 3.1	Flow chart of methodology to achieve 3 objectives in the entire research	50
Figure 3.2	Flow chart to model the PSC with simulation software in this research	57
Figure 3.3	3D device architecture of PSC shown in OghmaNano simulator main window	58
Figure 3.4	Layer editor window in OghmaNano simulator	59
Figure 3.5	Contacts window in the OghmaNano simulator	59
Figure 3.6	Electrical parameters window in the OghmaNano simulator	60
Figure 3.7	Light source window from the optical tool in the OghmaNano simulator	61
Figure 3.8	Graph of generation rate and energy levels of each layer in PSC	62
Figure 3.9	Generation rate profile of electron in PSC	62
Figure 3.10	Physics selected window in COMSOL Multiphysics	63
Figure 3.11	Study selected window in COMSOL Multiphysics	64
Figure 3.12	Tools bar, model builder window, settings window, and graphics window in COMSOL Multiphysics	65
Figure 3.13	The definition of PSC's layer thickness and initial applied voltage in the parameter's settings window	66
Figure 3.14	The PSC's geometry length unit selection in the geometry settings window	67
Figure 3.15	The PSC's ETL coordinates definition in the geometry interval settings window	67
Figure 3.16	The PSC's AL coordinates definition in the geometry interval settings window	68
Figure 3.17	The PSC's HTL coordinates definition in the geometry interval settings window	68
Figure 3.18	Built one-dimensional PSC model in graphics window of COMSOL Multiphysics	69

Figure 3.19	The PSC's ETL properties definition in the definition's variables settings window	70
Figure 3.20	The PSC's AL properties definition in the definition's variables settings window	70
Figure 3.21	The PSC's HTL properties definition in the definition's variables settings window	71
Figure 3.22	The PSC's layers materials properties definition in the material settings window	72
Figure 3.23	The operating temperature definition for PSC's layers in the semiconductor (<i>semi</i>) settings window that shows the Poisson equation	73
Figure 3.24	The operating temperature definition for PSC's layers in the semiconductor material model settings window that shows the drift-diffusion equations	73
Figure 3.25	The donor doping definition for PSC's layers in the analytic doping model settings window	74
Figure 3.26	The acceptor doping definition for PSC's layers in the analytic doping model settings window	75
Figure 3.27	The PSC's generation rate definition in the user-define generation settings window	76
Figure 3.28	The PSC's direct recombination rate definition in the direct recombination settings window	76
Figure 3.29	The PSC's cathode terminal contact definition in the metal contact settings window	77
Figure 3.30	The PSC's anode terminal contact definition in the metal contact settings window	78
Figure 3.31	The element size definition for FEM in the mesh settings window	79
Figure 3.32	The applied voltage range definition for the study in stationary settings window	79
Figure 3.33	The different results of simulation which contain various performances of the PSC	80
Figure 3.34	Flow chart to analyse the PSC performance for different cell layer properties in this research	83

Figure 3.35	Flow chart to evaluate the PSC cell performance after replacing the lead AL of PSC with lead-free AL in this research	86
Figure 4.1	JV curve of PSC from simulation results of OghmaNano (Red dash line), COMSOL Multiphysics (Blue dash line), and SCAPS (HOSSEINI et al., 2021) (Black solid line) for the properties' value which is stated in Table 3.1	89
Figure 4.2	PSC's PCE simulated for different thickness (L) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in OghmaNano	92
Figure 4.3	PSC's PCE simulated for different thickness (L) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in COMSOL Multiphysics	93
Figure 4.4	PSC's PCE simulated for different electron affinity (χ) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in OghmaNano	95
Figure 4.5	PSC's PCE simulated for different electron affinity (χ) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in COMSOL Multiphysics	96
Figure 4.6	PSC's PCE simulated for different energy bandgap (E_g) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in OghmaNano	98
Figure 4.7	PSC's PCE simulated for different energy bandgap (E_g) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in COMSOL Multiphysics	99
Figure 4.8	PSC's PCE simulated for different relative permittivity (ϵ_r) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in OghmaNano	101
Figure 4.9	PSC's PCE simulated for different relative permittivity (ϵ_r) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in COMSOL Multiphysics	102
Figure 4.10	PSC's PCE simulated for different conduction band density (N_c) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in OghmaNano	104
Figure 4.11	PSC's PCE simulated for different valence band density (N_v) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in OghmaNano	105

Figure 4.12	PSC's PCE simulated for different conduction band density (N_C) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in COMSOL Multiphysics	106
Figure 4.13	PSC's PCE simulated for different valence band density (N_V) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in COMSOL Multiphysics	107
Figure 4.14	PSC's PCE simulated for different doping density (N_D & N_A) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in OghmaNano	109
Figure 4.15	PSC's PCE simulated for different doping density (N_D & N_A) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in COMSOL Multiphysics	110
Figure 4.16	PSC's PCE simulated for different mobility of electrons (μ_n) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in OghmaNano	112
Figure 4.17	PSC's PCE simulated for different mobility of holes (μ_p) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in OghmaNano	112
Figure 4.18	PSC's PCE simulated for different mobility of electrons (μ_n) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in COMSOL Multiphysics	114
Figure 4.19	PSC's PCE simulated for different mobility of holes (μ_p) of ETL (Blue solid line), AL (Red solid line), and HTL (Green solid line) in COMSOL Multiphysics	114
Figure 4.20	JV curve of PSC simulated in OghmaNano simulation for the thickness and electrical properties stated in Table 4.2	116
Figure 4.21	JV curve of PSC simulated in COMSOL Multiphysics simulation for the thickness and electrical properties stated in Table 4.3	117
Figure 4.22	JV curve of lead and non-lead PSC simulated in OghmaNano simulation for the thickness and electrical properties stated in Table 3.1 and Table 3.3	119
Figure 4.23	JV curve of lead and non-lead PSC simulated in COMSOL Multiphysics simulation for the thickness and electrical properties stated in Table 3.1 and Table 3.3	120
Figure 4.24	JV curve of non-lead and optimized non-lead PSC simulated in OghmaNano simulation for the thickness and electrical properties stated in Table 3.1, Table 3.3, and Table 4.6	122

LIST OF ABBREVIATIONS

UTeM	-	Universiti Teknikal Malaysia Melaka
PSC	-	Perovskite Solar Cell
AL	-	Absorber Layer
HTL	-	Hole Transport Layer
ETL	-	Electron Transport Layer
TCO	-	Transparent Conductive Oxide
FEM	-	Finite Element Method
PCE	-	Power Conversion Efficiency
TWH	-	Tera-Watt-Hour
SRH	-	Shockley–Read–Hall
CPU	-	Central Processing Unit
RAM	-	Random Access Memory
NREL	-	National Renewable Energy Laboratory
DSSC	-	Dye-Sensitized Solar Cell
QDSC	-	Quantum Dots Solar Cell
ETM	-	Electron Transporting Material
HTM	-	Hole Transporting Material
LUMO	-	Lowest Unoccupied Molecular Orbital
HOMO	-	Highest Occupied Molecular Orbital
NTU	-	Nanyang Technological University
R&D	-	Research and Development
PDE	-	Partial Differential Equation

ARC	-	Anti-Reflective Coating
DETL	-	Double Electron Transport Layer
DHTL	-	Double Hole Transport Layer
DAL	-	Double Absorber Layer
1D	-	1 Dimension
2D	-	2 Dimension
3D	-	3 Dimension
OFET	-	Organic Field Effect Transistor
OLED	-	Organic Light Emitting Diode
CIGS	-	Copper Indium Gallium Selenide
CdTe	-	Cadmium Telluride
α -Si	-	Amorphous Silicon
CELIV	-	Charge Extraction by Linearly Increasing Voltage
TPC	-	Transient Photocurrent
TPV	--	Transient Photovoltage

IS UNIVERSITATI TEKNOLOGI MALAYSIA MELAKA Impedance Spectroscopy

IMPS	-	Intensity Modulated Photocurrent Spectroscopy
TMM	-	Transfer Matrix Method

LIST OF SYMBOLS

J_{SC}	-	short circuit current
V_{OC}	-	open circuit voltage
FF	-	fill factor
η	-	power conversion efficiency
L	-	thickness
χ	-	electron affinity
E_g	-	energy bandgap
ϵ_r	-	relative permittivity
N_C	-	conduction band density
N_V	-	valence band density
N_D	-	donor doping density
N_A	-	acceptor doping density
μ_n	-	electron mobility
μ_p	-	hole mobility
c	-	direct recombination factor
P_{in}	-	input power
e	-	electron
h	-	hole
E	-	electric field
q	-	charge density
ϵ	-	dielectric permittivity
ϕ	-	electrostatic potential
p	-	hole charge density

n	- electron charge density
N_D	- donor ionized doping concentration
N_A	- acceptor ionized doping concentration
p_t	- trapped hole
n_t	- trapped electron
J_n	- electron total current density
$J_n(\text{drift})$	- electron drift current density
$J_n(\text{diffusion})$	- electron diffusion current density
J_p	- hole total current density
$J_p(\text{drift})$	- hole drift current density
$J_p(\text{diffusion})$	- hole diffusion current density
F	- electrostatic force
m	- mass of the electron
a	- acceleration of the electron
V_{drift}	- drift velocity of the electron
t	- time
μ_n	- electron mobility
μ_p	- hole mobility
D_n	- electron diffusion coefficient
D_p	- hole diffusion coefficient
k_B	- Boltzmann's constant
T	- temperature
G_n	- electron generation rate
G_P	- hole generation rate
R_n	- electron recombination rate

R_p	- hole recombination rate
R_{b-b}	- band-to-band recombination rate
n_i	- intrinsic carrier density
R_{SRH}	- SRH recombination rate
τ_n	- electron minority carrier lifetime
τ_p	- hole minority carrier lifetime
E_i	- intrinsic energy level
E_t	- trap state energy level
R_{Auger}	- Auger recombination rate
γ_n	- Auger recombination constant for electron
γ_p	- Auger recombination constant for hole
ε_0	- vacuum permittivity
E_C	- conduction band energy level
E_V	- valence band energy level
V	- applied voltage
J_{max}	- current density at maximum power
V_{max}	- voltage at maximum power
P_{max}	- maximum power

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	List of Various Cell Layer Propertie's Values Based on Data Obtained From References	149

