

EFFECTIVE SCATTERING AREA ON COATED GLASS SUBSTRATES USING OPTICAL SIDE COUPLING TECHNIQUE FOR SENSITIVITY ENHANCEMENT

اوینیورسیتی تیکنیکال ملیسیا ملاک

MARLINA BINTI JAHAVA
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2025

Faculty of Electrical Technology and Engineering

**EFFECTIVE SCATTERING AREA ON COATED GLASS
SUBSTRATES USING OPTICAL SIDE COUPLING TECHNIQUE
FOR SENSITIVITY ENHANCEMENT**

اونیورسیتی تکنیکال ملیسیا ملاک

Marlina binti Jahava

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Master of Science in Electrical Engineering

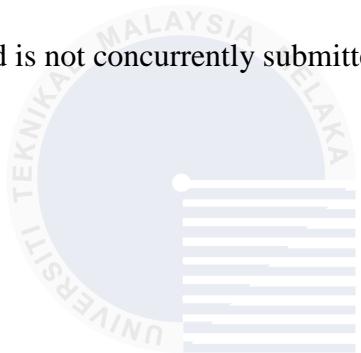
2025

**EFFECTIVE SCATTERING AREA ON COATED GLASS SUBSTRATES USING
SIDE COUPLING TECHNIQUE FOR SENSITIVITY ENHANCEMENT**

MARLINA BINTI JAHAVA

A thesis submitted
in fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering

جامعة ملاكا
جامعة تكنولوجيا ملاكا


UNIVERSITI TEKNIKAL MALAYSIA MELAKA
Faculty of Electrical Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2025

DECLARATION

I declare that this thesis entitled “Effective Scattering Area on Coated Glass Substrates using Optical Side Coupling Technique for Sensitivity Enhancement“ is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : Marlina binti Jahava

Date : 19 August 2025

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering

Signature :

Supervisor Name : ...Ts. Dr. Mohd Hafiz Bin Jali.....

Date :20 August 2025.....

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

I would want to dedicate this thesis to my parents, who have always had a strong faith of my education and have committed endless gives that allowed me to pave the way for every accomplishment I have ever known. They have provided me with the strength to overcome challenges and pursue my dreams with courage through the consistent encouragement.

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

The integration of nanomaterials with optical sensing platforms has significantly advanced the performance and versatility of sensor devices. Among various alternatives to optical sensor, glass substrates have recently garnered considerable interest due to their stability, low cost, and ease of fabrication. However, conventional glass based sensors often suffer from limited sensitivity, primarily due to inefficient light coupling and low transmission from a single edge illuminated source. This research proposes an enhanced optical sensing approach utilizing side coupling visible light on a zinc oxide (ZnO) nanorod coated glass substrate. By directing a visible light source perpendicularly onto the upper surface of the glass, the technique increases light intensity along the sensing region while minimizing backscattering losses. ZnO nanorods, selected for their high refractive index, were coated on the substrate surface. Different exposed coating areas were investigated to evaluate their influence on light scattering and coupling efficiency. Experimental results demonstrate that a sensor with a 0.022m^2 coating area achieved superior performance across multiple parameters, including output light intensity, voltage response, and refractive index sensitivity. This sample exhibited a 97.5% linearity and a sensitivity of $0.0125\text{V}/\%\text{Concentration}$, outperforming single-source devices by a factor of 1.5. The proposed sensor also showed notable improvements in resolution and linear range, indicating its potential for high precision optical measurements. Overall, this study introduces a simple yet effective method for enhancing the performance of glass based optical sensors. By leveraging the scattering and absorption characteristics of ZnO nanostructures under side-coupled illumination, the proposed design offers a promising solution for developing reliable and cost efficient sensors suitable for various industrial and environmental monitoring applications.

LUAS SERAKAN BERKESAN PADA SUBSTRAT KACA BERSALUT

MENGGUNAKAN KAEDEAH GANDINGAN SISI OPTIK UNTUK

PENINGKATAN KEPEKAAN

ABSTRAK

Integrasi nanomaterial dengan platform pengesan optik telah meningkatkan prestasi dan kebolehlaksanaan peranti sensor secara signifikan. Antara pelbagai alternatif kepada sensor optik, substrat kaca telah menarik minat yang besar sejak kebelakangan ini disebabkan kestabilannya, kos yang rendah, dan proses fabrikasi yang mudah. Walau bagaimanapun, sensor berasaskan kaca konvensional sering mengalami masalah kepekaan yang rendah, terutamanya disebabkan kecekapan penggandingan cahaya yang lemah dan penghantaran cahaya yang rendah daripada sumber tunggal di tepi substrat. Kajian ini mencadangkan pendekatan pengesanan optik yang dipertingkatkan dengan menggunakan cahaya tampak yang digandingkan dari sisi ke atas substrat kaca yang disalut dengan nanorod zink oksida (ZnO). Dengan mengarahkan sumber cahaya tampak secara menegak ke permukaan atas substrat, teknik ini meningkatkan keamatian cahaya di sepanjang kawasan pengesanan sambil mengurangkan kehilangan cahaya akibat penyebaran semula (backscattering). Nanorod ZnO, yang dipilih kerana indeks biasan tingginya, disalut pada permukaan substrat dan kawasan salutan yang berbeza diuji untuk menilai kesannya terhadap penyebaran dan kecekapan penggandingan cahaya. Keputusan eksperimen menunjukkan bahawa sensor dengan kawasan salutan seluas 0.022m^2 mencapai prestasi terbaik dalam pelbagai parameter, termasuk keamatian cahaya keluar, tindak balas voltan, dan kepekaan terhadap perubahan indeks biasan. Sampel ini mencataatkan lineariti sebanyak 97.5% dan kepekaan sebanyak 0.0125 V/%, serta menunjukkan prestasi yang lebih baik berbanding peranti sumber tunggal dengan faktor peningkatan sebanyak 1.5. Sensor yang dicadangkan juga menunjukkan peningkatan ketara dari segi resolusi dan julat linear. Secara keseluruhannya, kajian ini memperkenalkan kaedah mudah tetapi berkesan untuk meningkatkan prestasi sensor optik berasaskan kaca. Dengan memanfaatkan ciri penyebaran dan penyerapan permukaan nanostruktur ZnO melalui pencahayaan sisi, reka bentuk ini menawarkan penyelesaian untuk membangunkan penderia yang boleh dipercayai dan cekap kos yang sesuai untuk pelbagai aplikasi pemantauan industri dan alam sekitar.

ACKNOWLEDGEMENT

Under the auspices of Allah, the Most Gracious and Merciful. At the outset and foremost, I am profoundly grateful to Ts. Dr. Mohd Hafiz bin Jali, my supervisor for this research. Your constructive critiques and insightful inquiries compelled me to refine my ideas, broaden my perspective, and maintain the highest standards of scholarly rigor. Their professionalism, support, guidance, and valuable advice were helpful in the completion of my thesis. Their forceful assessment and encouraging remarks were extremely beneficial to me. I am also deeply grateful to Dr. Md Ashadi bin Md. Johari, my co-supervisor for their insightful recommendations and motivation.

Besides that, I would like to express my gratitude to the Faculty of Electrical Technology and Engineering, Universiti Teknikal Malaysia Melaka for providing me with a stimulating academic environment, access to essential resources, and administrative support that have enabled me to complete this work. I am particularly appreciative of Mr. Syed Alif, the assistance engineer, for his guidance and support throughout my experimental work.

Last but not least, I would like to extend my heartfelt gratitude to my fellow graduate students and friends, specially, Nor Sapinah binti Mohd Pagal for the moral support, collaborative discussions, and solidarity that have helped me endure during difficult periods. Finally, I am profoundly grateful to my family for their constant encouragement, grace, and faith in me. Your understanding and efforts were invaluable in achieving of this achievement.

TABLE OF CONTENTS

	PAGES
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
LIST OF SYMBOLS	xi
LIST OF APPENDICES	xii
LIST OF PUBLICATIONS	xiii
 CHAPTER	
1. INTRODUCTION	1
1.1 Background of Study	1
1.2 Zinc Oxide Nanomaterial for Optical Sensor	2
1.3 Problem Statement	3
1.4 Research Question	5
1.5 Research Objective	6
1.6 Scope of Research	6
1.7 Organisation of the Thesis	8
2. LITERATURE REVIEW	11
2.1 Introduction	11
2.2 Optical Sensor	14
2.3 Glass Substrate Platform in Sensing Application	16
2.4 Light Transmission through a Glass Substrate	19
2.5 Zinc Oxide Nanorods	22
2.6 Hydrothermal Synthesis	24
2.7 Optical Side Coupling in Sensing Applications	30
2.8 Summary	32
3. FABRICATION, CHARACTERIZATION AND OPTIMIZATION OF SCATTERING AREAS ON A COATED GLASS SUBSTRATES PLATFORM	34
3.1 Introduction	34
3.2 Research Design	36
3.3 Synthesis of ZnO Nanorods on Glass Substrates Using Hydrothermal Technique	38
3.3.1 Preparation of the Glass Substrates	39
3.3.2 Seeding Process	40
3.3.3 Growth Process	42

3.4	Characterization of ZnO Nanorods Using FESEM analysis	43
3.5	Optimization of the Effective Scattering Area on the Coated Glass	46
3.6	Experimental Setup for Effective Scattering Area on the Coated Glass	49
3.7	Results and Discussions on Effective Scattering Area of the Coated Glass	52
3.8	Summary	57
4.	SENSING PERFORMANCE OF THE ZNO NANORODS COATED GLASS SUBSTRATES USING SIDE COUPLING TECHNIQUE	59
4.1	Introduction	59
4.2	Lactose Sensing Experiment	60
4.2.1	Results and Discussions of Lactose Sensing Application	62
4.3	Results Comparison with Classic Single Light Source	70
4.4	Summary	71
5.	CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH	72
5.1	Conclusion	72
5.2	Future Works	74
REFERENCES		75
APPENDICES		92

جامعة ملاكا التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Type and characteristics of glass substrates	21
Table 2.2	List of research works based on hydrothermal technique	25
Table 4.1	Preparation of lactose solution at different concentration	62
Table 4.2	Sensing performance based on light side coupling (LSS)	71

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

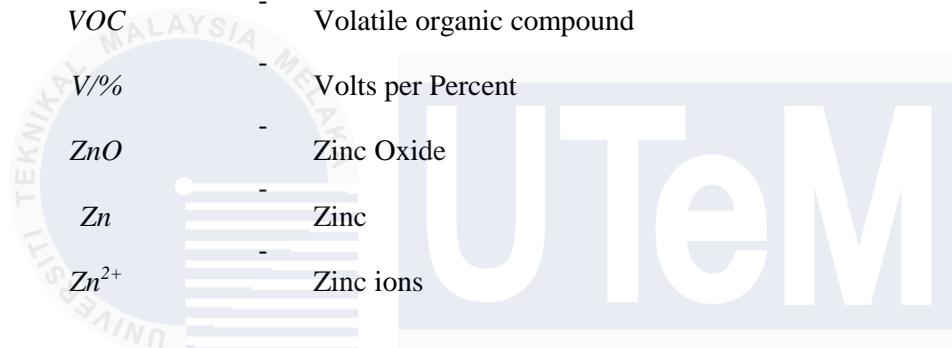

FIGURE	TITLE	PAGE
Figure 2.1	Scattering and guided light propagation	13
Figure 2.2	Differences between types of optical sensor	15
Figure 2.3	Light spectrum (Inc, 2020)	17
Figure 2.4	Light travel through glass	18
Figure 2.5	Mechanism of light propagation at the glass interface	20
Figure 2.6	Physical structure of ZnO oxide on glass (Jali et al., 2019a).	24
Figure 2.7	FESEM images of ZnO nanorods with various temperatures for seed layer (a) 80°C (b) 100°C (c) 120°C (d) 150°C (Worasawat et al., 2018)	26
Figure 2.8	SEM images capping agents shows component (a) without any combination (b) adding PEI (c) and (d) adding 5mM and 10mM sodium citrate (Gerbreders et al., 2020)	27
Figure 2.9	SEM images synthesized hydrothermal of ZnO particles at different pH (a) 7.5 (b) 8.0 (c) 8.5 (d) 9.0 (e) 11.00 (f) 13.5 (Ejsmont and Goscianska, 2023)	28
Figure 2.10	Hydrothermal of ZnO particles at different temperature (a) 6hrs (b) 9hrs (c) 12hrs (d) 15hrs (e) 18hrs (Jali et al., 2018)	29
Figure 2.11	Side coupling experimental setup	31
Figure 3.1	Flowchart of research activities	37
Figure 3.2	The hydrothermal synthesis process	38
Figure 3.3	Glass substrates preparation	39
Figure 3.4	The process of seeding on the glass substrates	40
Figure 3.5	Seeding process using drop and dry technique on the hotplate	42
Figure 3.6	After coated glass with Zinc Oxide	43
Figure 3.7	Energy Dispersive X-ray (EDX) analysis of the best samples	45
Figure 3.8	FESEM visuals show the density of ZnO nanorods prior to growth areas of: a) 0.016m ² , b) 0.018m ² , c) 0.020m ² , d) 0.022m ² , and e) 0.024m ² .	45

Figure 3.9 Sensing mechanism of the sensor	47
Figure 3.10 The proposed research work light side coupling setup	50
Figure 3.11 The body sensing device	51
Figure 3.12 Normalized α for every growth area when the % Concentration increase	53
Figure 3.13 Normalized γ for every growth area when the % Concentration increases	54
Figure 3.14 Average output voltage between various concentration levels for each scattering areas	56
Figure 3.15 Trendline of every growth areas samples when concentration (%) increases	56
Figure 3.16 Linearity of every growth areas samples.	57
Figure 4.1 Experiment setup for lactose sensing application	61
Figure 4.2 Preparation of lactose solution for sensing performance	62
Figure 4.3 Repeatability for a samples glass substrate (a) without ZnO (b) with ZnO	64
Figure 4.4 Stability for a samples glass substrate (a) without ZnO (b) with ZnO	66
Figure 4.5 Hysteresis for a sample (a) without ZnO glass substrate (b) with ZnO glass substrate.	67
Figure 4.6 Response time and recovery time for both samples.	69
Figure 4.7 Trendline of a proposed sensor on a ZnO coated glass substrate and uncoated glass substrate based on side coupling	69

LIST OF ABBREVIATIONS

<i>UTeM</i>	- Universiti Teknikal Malaysia Melaka
<i>3D</i>	- Three dimension
<i>dBm/°C</i>	- Decibel-milliwatts per degree Celsius
<i>C₂H₅OH</i>	- Pure ethanol
<i>CH₃COCH₃</i>	- Acetone
<i>CH₃COO</i>	- Acetate ions
<i>Zn(O₂CCH₃)₂.2H₂O</i>	- Zinc acetate dehydrate
<i>DAQ</i>	- Data Acquisition System
<i>DI</i>	- Deionized water
<i>EDX</i>	- Energy Dispersive X-ray spectroscopy
<i>EtG</i>	- Ethyl Glucuronide
<i>FESEM</i>	- Field Emission Scanning Electron Microscope
<i>HMT</i>	- Hexamethylenetetramin
<i>LED</i>	- Light emitting diode
<i>LSS</i>	- Light Side Coupling
<i>IoT</i>	- Internet of Thing
<i>IR</i>	- Infrared
<i>O</i>	- Oxigen
<i>NaOH</i>	- Sodium Hydroxide
<i>NASA</i>	- National Aeronautics and Space Administration
<i>Nm</i>	- Nanometer
<i>PC</i>	- Personal Computer
<i>PEC</i>	- Photoelectrochemical

<i>pH</i>	- Potential of Hydrogen
<i>RI</i>	- Refractive Index
<i>SEM</i>	- Scanning electron microscopy
<i>SMF</i>	- Single Mode Fiber
<i>TiO₂</i>	- Titanium dioxide
<i>TIR</i>	- Total Internal Reflection
<i>UV</i>	- Ultraviolet
<i>VOC</i>	- Volatile organic compound
<i>V/V%</i>	- Volts per Percent
<i>ZnO</i>	- Zinc Oxide
<i>Zn</i>	- Zinc
<i>Zn²⁺</i>	- Zinc ions

اویونیورسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS

α	-	Scattering coefficient
γ	-	Sensing performance factor
d		diameter
V	-	Output Voltage
θ	-	Scattering angle
θ_I		Incident angle
λ	-	Wavelength of light
n	-	Refractive index
L	-	Length of sensing areas
I	-	Output light
I_o	-	Lighth Sources
$^{\circ}\text{C}$	-	Degree Celcius

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	The publications listed below are directly related to the work carried out in this thesis:	92
Appendix B	The following is a list of equipment arising from the research conducted in this thesis	96

LIST OF PUBLICATIONS

Listed below are the publications result from the research undertaken in this thesis:

Jahava, M., Jali, M.H., Johari, M.A.M., Norashikin, M.A., Yusof, H.H.M. and Ahmad, A., 2023, December. ZnO Nanorods Coated Glass Substrate Based on Side Coupling Technique for Lactose Sensing Application. In *2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE)* (pp. 1-7). IEEE.

Jahava, M., Jali, M.H., Johari, M.A.M., Norashikin, M.A., Yusof, H.H.M. and Ahmad, A., 2023, September. Optimizing Scattering Area of ZnO Nanostructures on Glass Substrates Platform for Sensing. In *2023 IEEE International Conference on Sensors and Nanotechnology (SENNANO)* (pp. 129-132). IEEE.

Jahava, M., Jali, M.H., Norashikin, M.A., Johari, M.A.M., Ahmad, A., Yusof, H.H.M., Rahim, H.R.A. and Harun, S.W., 2024. Optical Characterization of Different Scattering Area on ZnO Nanorods Coated Glass Substrate Based on Side Coupling Technique for Sensing Application. *IEEE Access*, 12, pp.26519-26528.

Jahava, M., Jali, M.H., Johari, M.A.M., Norashikin, M.A., Yusof, H.H.M. and Ahmad, A., 2025. Light Side Coupling on ZnO Nanorods-Coated Glass Substrate for Lactose Sensing. *Engineering, Technology & Applied Science Research*, 15(3), pp.22424–22430.

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Optical devices have gained considerable interest for sensing applications due to several advantages, such as simple design, wide detection range, low cost, high sensitivity and exceptional precision (Zhao et al., 2020). They offer distinct benefits compared to the electronic counterparts, particularly in demanding environments such as combustible atmospheres and high-pressure conditions. Additionally, optical devices are capable of transmitting signals over long distances. Furthermore, they significantly impact a wide range of fields, including healthcare (Pirzada and Altintas, 2019), chemical industries (Ullah et al., 2018), the production of semiconductor (Moon and Lee, 2024), and environmental control (Yeh et al., 2017). Optical sensors can be classified based on their operational principles, which are carefully evaluated and analyzed. These sensors are widely employed in various applications to detect and quantify diverse parameters, including humidity monitoring (Young and Lai, 2021), bioresorbable (Shin et al., 2019), chemical detecting (Sahoo et al., 2018), and biomedical (Roriz et al., 2020).

This thesis presents an extensive study on the development of a novel optical sensor that integrates a glass substrate coated with Zinc Oxide (ZnO) nanorods and employs a side coupling technique to enhance sensitivity. The development process is detailed in a straightforward and practical manner. The side coupling technique is a method commonly used in optical sensors to facilitate light transmission between different substrates. This method involves redirecting light from a source, such as a waveguide, into a detection

element or another waveguide by positioning it adjacent to the coupling area rather than aligning them linearly (Rahim et al., 2020). The side coupling approach is particularly advantageous when conventional end-to-end coupling is impractical due to space limitations or alignment challenges, which often lead to scattering losses. As part of this thesis, an improved sensor design with an enhanced scattering coefficient for sensitivity improvement also be presented.

1.2 Zinc Oxide Nanomaterial for Optical Sensor

Zinc oxide (ZnO) is a semiconductor nanomaterial that has garnered significant interest from researchers due to its remarkable optical, thermal, and mechanical properties (Sharma et al., 2022). ZnO exhibits an exciton binding energy of 60 millielectron volts (meV) and an energy gap of 3.3 electron volts (eV). It has been widely applied in various fields, including solar cell electrodes (Ji et al., 2019), gas sensor (Bhatia et al., 2017), coating (Verbić et al., 2019), and transistor fabrication (Jiang et al., 2018). Specifically, Nanomaterials, such as ZnO, have enabled numerous innovations in signal transduction, resulting in enhanced performance. This is attributed to their unique morphological characteristics, affordability, functionality, biocompatibility, non-toxicity, and catalytic properties (Yusof et al., 2018b). Numerous studies have demonstrated the successful production of ZnO nanorods on various platforms, including glass substrates (Yusof et al., 2019), paper substrate (Araújo et al., 2017), polyimide (Fung et al., 2017), and silica microfiber (Yasin et al., 2019). Additionally, the abundance of vacant oxygen sites in ZnO provides numerous potential adsorption locations for water molecules, enhancing its utility in sensing applications.

A technologically advanced optical sensor has been developed for precisely evaluating the concentrations of solutions (%Concentration) using a ZnO coated glass substrate. The remarkable optical properties of ZnO, this sensor can detect even minute variations in the refractive index (RI) of a solution. Numerous materials have been studied for concentration sensing, including acetone (Yang et al., 2019), phenol (Dewidar et al., 2018), and formaldehyde (Johari et al., 2022). Consequently, the findings of this study provide deeper insights into the sensing mechanisms of the proposed sensor for lactose solutions by analyzing its sensitivity, accuracy, and practicality in real world scenarios. The outcomes are expected to be precise and reliable, further enhancing the utility of ZnO based optical sensors in diverse applications.

Optical sensors utilizing ZnO coated glass substrates achieve exceptional sensitivity and precision in detecting variations in the refractive index of solutions, making them highly desirable for a broad range of analytical and industrial applications. This novel method employs a straightforward and efficient light source and receiver system to convert light passing through the glass substrate into a voltage signal. A cost effective alternative to complex technologies has been implemented, using a data acquisition device constructed on the Arduino platform to analyze the output signal.

1.3 Problem Statement

Research on optical sensing devices based on glass substrate platforms has gained momentum in recent years. These devices are introduced to address issues associated with optical fibers, such as limited sensing regions, high costs related to mechanical alignment apparatus, and beam distribution inequalities, which lead to fluctuations, non-representative data, and low intensity (Rahim et al., 2020). However, the sensitivity of glass substrate based

sensing devices remains relatively low due to poor light coupling efficiency. This limitation arises because only a small transmission region allows light scattered from a single source at the edge of the glass substrate to travel along the sensing platform, resulting in significantly low total coupled power (Yusof et al., 2018a). Such conditions are undesirable in optical applications, including telecommunications, sensing, and measurements (Cennamo et al., 2021, Kadhim et al., 2022). One approach to increase light intensity is the implementation of the light side coupling technique on the surface of coated glass substrates. In this technique, a visible light source illuminates the upper hemisphere of the glass substrate, oriented normal to its surface. This method induces more channels for scattered light in various directions at angles larger than the critical angle, guiding the light within the sensing platform. While increasing the scattering layer can potentially enhance coupling efficiency, recent studies show that this is not always the case. Expanding the coating area for scattering can also create pathways for light leakage due to backscattering phenomena (Rahim et al., 2020).

Although semiconductor coating materials such as ZnO nanorods improve optical side coupling, they also introduce scattering centers that cause light leakage. This occurs as the light penetrates outside the sensing platform with each bounce at the interface. Such leakage limits the system's applicability for multiple channels and extended sources. The morphological structure of ZnO nanorods affects both forward and backward scattering. While backward scattering increases light leakage, forward scattering reduces it (Yusof et al., 2018a). Therefore, optimizing the balance between these phenomena is crucial to achieving the desired output response. To address this issue, investigating the coupling area of the coating material across the sensing platform becomes essential (Rahim et al., 2020). A significant challenge lies in the correlation between the scattering layer area induced by

the coating and the coupling power for sensitivity enhancement, which has been largely overlooked. This research project proposes a comprehensive analysis of the fundamental effects of the scattering layer area on output power intensity using the light side coupling technique. Additionally, determining an effective scattering layer area on coated glass substrate is necessary in order to identify the optimal trade off between backscattering and light coupling efficiency. To achieve this, theories related to light propagation, surface absorption, scattering coefficients, and nanostructural morphology must be incorporated and aligned with the research objectives. This approach aims to contribute to new knowledge by enhancing light coupling efficiency through the incorporation of the optical side coupling technique onto coated glass substrate platforms. It also seeks to establish new theoretical insights into the relationship between the scattering area of the coated glass substrate and the sensing response. Ultimately, this work was fulfill the critical requirements of sensing devices that demand high sensitivity, low cost, and simple design

1.4 Research Question

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

It is hypothesized that if the effective scattering area on a coated glass substrate layer is identified, the light intensity travel along the sensing region will be increase by limiting the light leakage due to backscattering. It can be predicted that possible enhancement of the total coupling will be achieved; thus increase the sensitivity of the proposed sensor. Several research question need to be addressed are:-

- i) What is the most effective scattering area on a coated glass substrate that produce greater light coupling efficiency.
- ii) How much improvement could be achieved by applying the light side coupling on the glass substrates as compared to the conventional technique.