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ABSTRACT

Gait analysis is an important way to help diagnose neurodegenerative diseases early, espe-
cially in older adults. Small changes in the way people walk can show the start of diseases
like Parkinson’s Disease (PD), Huntington’s Disease (HD), and Amyotrophic Lateral Scle-
rosis (ALS). This study looks at the time and frequency patterns of gait signals using Con-
tinuous Wavelet Transform (CWT). This method helps better understand the vertical Ground
Reaction Force (vGRF) signals and find small problems in walking. Even though this is
useful, it is still hard to tell these diseases apart because their walking features can be sim-
ilar, and aging also changes how people walk. The study used data from 64 people: 13
with ALS, 15 with PD, 20 with HD, and 16 healthy controls. Since the focus is on older
adults, only data from those aged 50 and above were used. The main goal was to build a
strong model that uses time-frequency features from vGRF signals along with clinical infor-
mation to improve early detection and work well for different people. The work was done
in three steps. First, common machine learning methods, Support Vector Machine (SVM),
Random Forest (RF), Decision Tree (DT), and Multilayer Perceptron (MLP) were trained
using handpicked features from the vGRF data. SVM gave the best accuracy of 83.3%.
These methods worked well but depended on features chosen by hand, which limits how
well work on new data. Next, deep learning methods were used by changing the vGRF
signals into time-frequency images using CWT. Convolutional Neural Networks (CNN) and
ResNet-50 models learned features automatically from these images. They reached accuracy
rates of 95.18% and 95.06%, respectively. But these models only used signal data and did
not include clinical details like age, gender, and disease severity, which can affect walking.
Finally, a combined deep learning model was made that used both the spectrogram images
and clinical data together. This model could learn walking patterns and personal differences
at the same time. It had the highest accuracy of 98.46%, with good sensitivity, specificity,
precision, and F1-score. This shows it can reliably tell apart different neurodegenerative gait
disorders.



SENI BINA PENGGABUNGAN MULTIMODAL BERASASKAN KEKUATAN GAIT
DENGAN RANGKAIAN NEURAL DALAM UNTUK GANGGUAN GAIT DALAM
KALANGAN WARGA EMAS

ABSTRAK

Analisis gaya berjalan adalah cara penting untuk membantu mendiagnosis penyakit neu-
rodegeneratif lebih awal, terutamanya pada orang dewasa yang lebih tua. Perubahan kecil
dalam cara orang berjalan boleh menunjukkan permulaan penyakit seperti Penyakit Parkin-
son (PD), Penyakit Huntington (HD), dan Amyotrophic Lateral Sclerosis (ALS). Kajian ini
melihat corak masa dan kekerapan isyarat gaya berjalan menggunakan Continuous Wavelet
Transform (CWT). Kaedah ini membantu lebih memahami isyarat Ground Reaction Force
(vGRF) menegak dan mencari masalah kecil dalam berjalan. Walaupun ini berguna, masih
sukar untuk membezakan penyakit ini kerana ciri berjalan mereka mungkin serupa, dan
penuaan juga mengubah cara orang berjalan. Kajian itu menggunakan data daripada 64
orang: 13 dengan ALS, 15 dengan PD, 20 dengan HD, dan 16 kawalan sihat. Memandan-
gkan tumpuan diberikan kepada orang dewasa yang lebih tua, hanya data daripada mereka
yvang berumur 50 tahun ke atas digunakan. Matlamat utama adalah untuk membina model
kukuh yang menggunakan ciri kekerapan masa daripada isyarat vVGRF bersama-sama den-
gan maklumat klinikal untuk meningkatkan pengesanan awal dan berfungsi dengan baik
untuk orang yang berbeza. Kerja itu dilakukan dalam tiga langkah. Pertama, kaedah pem-
belajaran mesin biasa, Mesin Vektor Sokongan (SVM), Hutan Rawak (RF), Pokok Keputu-
san (DT) dan Multilayer Perceptron (MLP) telah dilatih menggunakan ciri pilihan daripada
data vVGRF. SVM memberikan ketepatan terbaik sebanyak 83.3%. Kaedah ini berfungsi den-
gan baik tetapi bergantung pada ciri yang dipilih secara manual, yang mengehadkan ke-
berkesanan data baharu. Seterusnya, kaedah pembelajaran mendalam digunakan dengan
menukar isyarat vVGRF kepada imej frekuensi masa menggunakan CWT. Model Rangkaian
Neural Convolutional (CNN) dan ResNet-50 mempelajari ciri secara automatik daripada
imej ini. Mereka mencapai kadar ketepatan 95.18% dan 95.06%, masing-masing. Tetapi
model ini hanya menggunakan data isyarat dan tidak menyertakan butiran klinikal seperti
umur, jantina dan keterukan penyakit, yang boleh menjejaskan berjalan.Akhirnya, model
pembelajaran mendalam gabungan telah dibuat yang menggunakan kedua-dua imej spek-
trogram dan data klinikal bersama-sama. Model ini boleh mempelajari corak berjalan dan
perbezaan peribadi pada masa yang sama. la mempunyai ketepatan tertinggi 98.46%, den-
gan kepekaan, kekhususan, ketepatan dan skor F1 yang baik. Ini menunjukkan ia boleh
membezakan dengan pasti gangguan gaya berjalan neurodegeneratif yang berbeza.
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