

A NEW INDUCTIVE POWER TRANSFER USING INTEGRATED LOW LOSS DIELECTRIC TECHNIQUE ON METAMATERIAL

UNIVER MUHAMMAD SUKRIYLLAH BIN YUSRI

MASTER OF SCIENCE IN ELECTRONIC ENGINEERING

Faculty of Electronics and Computer Engineering and Technology

A NEW INDUCTIVE POWER TRANSFER USING INTEGRATED LOW LOSS DIELECTRIC TECHNIQUE ON METAMATERIAL

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Muhammad Sukriyllah Bin Yusri

Master of Science in Electronic Engineering

A NEW INDUCTIVE POWER TRANSFER USING INTEGRATED LOW LOSS DIELECTRIC TECHNIQUE ON METAMATERIAL

MUHAMMAD SUKRIYLLAH BIN YUSRI

Faculty of Electronics and Computer Engineering and Technology

DECLARATION

I declare that this thesis entitled "A New Inductive Power Transfer Using Integrated Low Loss Dielectric Technique On Metamaterial" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature : MUHAMMAD SUKRIYLLAH BIN YUSRI
Date : 15/08/2025

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Master of Science in Electronic Engineering.

α.	4
Nion	ature
DIEII	ature

Supervisor Name

TS. DR. MOHAMAD HARRIS MISRAN

Date

15/08/2025

DEDICATION

I would like to dedicate this entire study to Allah Almighty, the ultimate source of wisdom, patience, and inspiration, whose grace has guided me through the completion of this research.

My heartfelt thanks go to my beloved parents, whose blessings and encouragement have been invaluable throughout this process. Additionally, I extend my deepest appreciation to my supervisor, Dr. Mohamad Harris bin Misran, and co-supervisor, Dr. Norbayah binti Yusop, for their invaluable guidance and support in bringing this project to fruition.

اونيورسيني نيكنيكل مليسيا ملاك

ABSTRACT

In recent times, there has been a significant surge in innovation and advancement in the field of wireless power transfer (WPT), leading to an increased demand for WPT systems that offer high power transfer efficiency (PTE) and longer transmission lengths for end users. As a result, there is an increasing need for enhanced PTE and extended transmission distance in WPT systems, to meet the needs of consumers. However, currently available WPT systems have limited PTE and transmission ranges due to their use of inductive coupling. As the distance between the transmitter and receiver coils increases, the PTE undergoes a substantial decrease when using this approach. Therefore, this work proposes a concept for inductive WPT that utilizes metamaterials (MTMs) to enhance PTE by controlling the refraction of magnetic fields. Integration MTM between the transmitting (TX) and receiving (RX) coils can improve the effectiveness and distance coverage of WPT. MTMs have qualities such as evanescent wave amplification and negative refractive index, which show potential for improving PTE. The proposed MTM structures exhibit a negative permeability characteristic, allowing them to redirect the flux towards the RX coil area. This redirection results in an increase in both the flux density and the generated current. The PTEs shows amplification with implementation of MTM. When used at a distance of 40 mm, MTM A, MTM B, and MTM C all show a notable enhancement in PTE. Specifically, there is a 32.95% increase with MTM A, 32.49% increase with MTM B, and another 20% increase with MTM C.

PEMINDAHAN KUASA ARUHAN BARU MENGGUNAKAN TEKNIK DIELEKTRIK KEHILANGAN RENDAH BERSEPADU PADA METABAHAN

ABSTRAK

Dalam masa kini, terdapat peningkatan ketara dalam inovasi dan kemajuan dalam bidang pemindahan kuasa tanpa wayar (WPT), yang membawa kepada peningkatan permintaan terhadap sistem WPT yang menawarkan kecekapan pemindahan kuasa (PTE) yang tinggi serta jarak penghantaran yang lebih jauh bagi memenuhi keperluan pengguna. Sehubungan itu, keperluan terhadap peningkatan kecekapan pemindahan kuasa dan jarak penghantaran dalam sistem WPT menjadi semakin mendesak. Namun demikian, sistem WPT sedia ada menghadapi had dari segi kecekapan dan jarak pemindahan disebabkan oleh penggunaan teknik gandingan beraruhan. Apabila jarak antara gegelung pemancar dan gegelung penerima meningkat, kecekapan pemindahan kuasa akan menurun secara ketara menggunakan kaedah ini. Oleh itu, kajian ini mencadangkan satu konsep baharu bagi sistem WPT beraruhan yang menggunakan metabahan (MTM) bagi meningkatkan kecekapan pemindahan kuasa melalui pengawalan pembiasan medan magnet. Penyepaduan struktur MTM di antara gegelung pemancar dan gegelung penerima dapat meningkatkan keberkesanan serta liputan jarak penghantaran sistem WPT. MTM memiliki ciri-ciri seperti penguatan gelombang evanesen dan indeks pembiasan negatif, yang berpotensi untuk meningkatkan kecekapan pemindahan kuasa. Struktur MTM yang dicadangkan menunjukkan ciri kebolehtelapan negatif, yang membolehkan ia mengarahkan fluks magnet ke kawasan gegelung penerima. Pengarahan semula ini menghasilkan peningkatan dalam ketumpatan fluks serta arus terhasil. Kecekapan pemindahan kuasa menunjukkan peningkatan PTE dengan penggunakaan MTM. Pada jarak 40 mm, penggunaan MTM A, MTM B dan MTM C masing-masing menunjukkan peningkatan ketara dalam PTE. Secara khusus, peningkatan sebanyak 32.95% direkodkan dengan MTM A, 32.49% dengan MTM B dan manakala peningkatan sebanyak 20% dengan MTM C.

ACKNOWLEDGEMENTS

By the boundless grace and mercy of Allah, the Most Generous and Most Forgiving, I am deeply honored to express my profound gratitude to several individuals and institutions who have been instrumental in the completion of this thesis.

First and foremost, I wish to extend my heartfelt appreciation to my supervisor, Dr. Mohamad Harris bin Misran. His essential supervision, steadfast support, and insightful guidance have been crucial throughout this research journey. His patience and encouragement have been a constant source of motivation and inspiration, making it possible for me to navigate the complexities of this project and bring it to fruition. I am also immensely grateful to Dr. Norbayah binti Yusop, my co-supervisor, for her invaluable contributions to this research. Her expert evaluation, constructive feedback, and innovative ideas have greatly enhanced the quality and depth of this thesis. Her assistance and support have been instrumental in successfully completing this work.

Furthermore, I would like to acknowledge the significant role played by Universiti Teknikal Malaysia Melaka (UTeM) in providing a conducive platform for this study. The resources and environment offered by the university have been essential for the research process. Additionally, my sincere thanks go to the Malaysian Ministry of Higher Education (MOHE) and UTeM for their generous financial support through the FRGS/1/2021/TK0/UTEM/02/52 scholarship. This financial assistance has been crucial in enabling me to focus on my research and complete this thesis. Each of these contributions has been invaluable, and I am deeply appreciative of the support and opportunities provided by all who have been involved in this endeavor.

Lastly, I wish to express my deepest appreciation to my family, especially my parents, Hj Yusri bin Wahab and Hjh Noormasijah binti Suja, for their unwavering support, love, and prayers throughout this journey. I am also profoundly grateful to my fiancé Nur Izzati Najwa binti Muhd Yusuf and my friend Muhammad Nazmi bin Zainal for their continuous moral support and collaboration during the research process. My sincere thanks extend to the lab technicians, En Imran bin Mohammed and En Sufian bin Abu Talib, for their dedicated assistance and support throughout my research. Additionally, I want to acknowledge and thank everyone who has contributed to my academic journey, offering encouragement and motivation that have been instrumental in completing my education.

TABLE OF CONTENTS

PAG	ξE
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	iii
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS x	aiii
LIST OF APPENDICES TEKNIKAL MALAYSIA MELAKA	ΧV
	vi
 1.1 Research Background 1.2 Problem Statement 1.3 Research Objectives 1.4 Research Scopes 1.5 Contribution of Research 	17 17 19 21 21 22
 2.1 Introduction 2.2 Type of Wireless Power Transfer 2.2.1 Far-field Wireless Power Transfer 2.2.2 Near-field Wireless Power Transfer 2.3 Power Transfer Efficiency in Wireless Power Transfer 2.4 Enhancement of Power transfer Efficiency in Inductive Wireless Power Transfer 2.5 Overview of Existing Studies on Metamaterial in Inductive Wireless Power Transfer 2.5.1 Motivation of Research 2.5.2 Recent Development of Metamaterial in Inductive Wireless Power Transfer 	25 25 26 27 31 35 36 42 42 45 62
·	02 64

3.1	Introduction	64
3.2	Flowchart	65
	3.2.1 Stage 1: Theoretical and Mathematical Modelling	66
	3.2.2 Stage 2: Simulation Design	67
	3.2.3 Stage 3: Optimization and Enhancement	68
2.2	3.2.4 Stage 4: Fabrication and Verification	69
3.3	Research Framework	69
3.4	Design specifications of the antenna and Metamaterial	71
3.5	Theoretical Analysis 3.5.1 Mathematical Modelling	72 72
	3.5.2 3D Circuit Simulation	76
3.6	Fabrication and Measurement Setup	82
3.7	Summary	84
4	RESULTS AND DISCUSSION	86
4 .1	Introduction	86
4.2	Analyzing the Effect of Various Parameters on Antenna Performance in Wireless	00
	Transfer Efficiency	86
	4.2.1 Antenna with Different Materials	87
	4.2.2 Antenna with Different Number of Loop	90
	4.2.3 Antenna with Different Size of Substrate	92
	4.2.4 Antenna with Different Distance Between TX and RX	94
	4.2.5 Antenna with Different Distance Misalignment Effect	96
4.3	Developing Metamaterial Design for The WPT System	99
4.4	Analyzing the Influence of Various Parameters on PSC Performance in Proposed	
	Metamaterial Design	105
	4.4.1 Transfer Efficiency Against Number of Unit Cell of Proposed Metamaterial De	sign 105
4.5	Different Type of Metamaterial Design	109
4.6	Analysis of Transfer Efficiency of PSC on Simulation	117
	4.6.1 Analysis of Transfer Efficiency of PSC without Metamaterial at Distance 40m	nm 117
	4.6.2 Comparison Transfer Efficiency of PSC at Various Distance	123
	4.6.3 Comparison Transfer Efficiency of PSC with Metamaterial Design A with	The
	Effect Of 10% Tolerance's Capacitor	127
4.7	Analysis of Transfer Efficiency of PSC on Measurement.	129
	4.7.1 Analysis of Transfer Efficiency of PSC at Distance 40 mm	129
	4.7.2 Comparison Transfer Efficiency of PSC at Distance 40 mm	134
4.8	Analysis of Transfer Efficiency Enhancement for Various Metamaterial Designs	136
4.9	Analysis of Deviation of Transfer Efficiency Between Simulation and Measurement a	
	Distance 40mm	138
4.10	Analysis of Transfer Efficiency at Misalignment	143
4.11	Summary	147
5	CONCLUSION AND RECOMMENDATIONS	150
5.1	Conclusion	150
5.2	Recommendations	152

APPENDICES 160

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1 Summary of current	research	58
Table 3.1 FR4 and antenna spe	cifications	71
Table 3.2 PSC parameters and	specifications	72
Table 3.3 Coefficients for Curr	ent Sheet Expression	75
Table 3.4 Coefficient for Modi	fied Wheeler Expression	75
Table 4.1 Substrate specification	on	88

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1 Magnetic coupling WPT		27
Figure 2.2 Type of WPT		27
Figure 2.3 The category of the different ar	reas of the electromagnetic field	28
Figure 2.4 Far-field Microwave Power Tra	ansmission	29
Figure 2.5 Laser Power Transmission		30
Figure 2.6 Inductive WPT		33
Figure 2.7 Magnetic resonance WPT		34
Figure 2.8 Capacitive WPT		34
Figure 2.9 Two-port network configuration	اوينوم سيني ننكنه	36
Figure 2.10 Two phase parallel inductive	power transfer	38
Figure 2.11 Wireless transfer efficiency en	nhancement	39
Figure 2.12 High quality coil for wireless	power transfer	40
Figure 2.13 PTE enhancement between H	TS TX coil and Cu TX coil	41
Figure 2.14 Type of MTM based on perm	eability (μ) and permittivity (ϵ) values	42
Figure 2.15 Refraction of light in material		44
Figure 2.16 Concept MTM based on the V	VPT	45
Figure 2.17 MTM as a (a) lens and (b) shi	eld	46
Figure 2.18 MTM arrangement for measu	rement process	47
Figure 2.19 PTE enhancement with MTM	implementation	48
Figure 2.20 (a) MTM design structure and	(b) relative permeability characteristic	49
Figure 2.21 PTE of ths system with different	ent type of MTMs	50

Figure 2.22 MTM with (a) MNG, (b) MNZ characteristic, and (c) measurement	
setup	51
Figure 2.23 PTE with misaligment perfromance improvement	52
Figure 2.24 MTM (a) structure and (b) permeability characteristic	53
Figure 2.25 (a) Measurement setup and (b) WPT performance	54
Figure 2.26 MTM layer as a lens in WPT	55
Figure 2.27 PTE performance with different wype of MTM	55
Figure 2.28 MTM arrangement for medical purpose	56
Figure 2.29 PTE enhancement with MTM structure	57
Figure 4.1 Proposed antenna design in CST software	87
Figure 4.2 Antenna design with different type of material (a) 3D view (b) side	
اوبيور سيني نيڪنيڪل مليسيا view	88
Figure 4.3 Wireless transfer efficiency at different materials	89
Figure 4.4 Antenna design with different number of loops	90
Figure 4.5 Wireless transfer efficiency at different number of loops	90
Figure 4.6 (a) Antenna design and (b) configuration setup with different distance	
between TX and RX	94
Figure 4.7 Antenna design with distance misalignment configuration	96
Figure 4.8 Transfer efficiency with distance misalignment effect	97
Figure 4.9 Transfer efficiency at misalignment position	98
Figure 4.10 The developing MTM Design A from (a) step I (b) step II and (c) step	
III	99
Figure 4.11 The permittivity of step by step developing the MTM	100
Figure 4.12 The permeability of step by step developing MTM Design A	101

Figure 4.13 The refraction index of step by step developing MTM Design A	102
Figure 4.14 Single unit cell of MTM A (a) Top view and (b) Bottom View	104
Figure 4.15 4x4 unit cell of proposed MTM design	105
Figure 4.16 5x5 unit cell of proposed MTM design	105
Figure 4.17 6x6 unit cell of proposed MTM design	106
Figure 4.18 MTM arrange from (a) 45 degree view and (b) side view	107
Figure 4.19 Transfer efficiency of various number of unit cell	108
Figure 4.20 Proposed MTM Design A	109
Figure 4.21 Proposed MTM Design B	110
Figure 4.22 Proposed MTM Design C	110
Figure 4.23 The permittivity of various type of MTM design	111
Figure 4.24 The permeability of various type of MTM design	113
Figure 4.25 The refractive index of various type of MTM design	115
Figure 4.26 Transfer efficiency of PSC without MTM at distance 40mm	117
Figure 4.27 WPT system with MTM Design A at distance 40mm	118
Figure 4.28 Proposed MTM design top and bottom view (a) MTM A (b) MTM B	
(c) MTM C	119
Figure 4.29 Transfer efficiency for various WPT system	120
Figure 4.30 Transfer efficiency of PSC on simulation at various distance	123
Figure 4.31 Transfer efficiency enhancement of PSC on simulation at various	
distance	125
Figure 4.32 Transfer efficiency of PSC with MTM Design A with the effect of	
10% tolerance's capacitor at distance 40 mm	127
Figure 4.33 Transfer efficiency of PSC without MTM at distance 40mm	129

Figure 4.34 Transfer efficiency of PSC with MTM (Design A) at distance 40mm	131
Figure 4.35 Transfer efficiency of PSC with MTM (Design B) at distance 40mm	132
Figure 4.36 Transfer efficiency of PSC with MTM (Design C) at distance 40mm	133
Figure 4.37 Transfer efficiency of PSC on measurement at 40mm distance	134
Figure 4.38 Transfer efficiency for various MTM design at distance 40mm	135
Figure 4.39 Transfer efficiency enhancement for various MTM design at distance	
40mm	137
Figure 4.40 Deviation of transfer efficiency between simulation and measurement	138
Figure 4.41 Magnetic field of (a) WPT system without MTM and (b) WPT system	
with MTM	139
Figure 4.42 Magnetic filed on (a) coil without MTM and (b) coil with MTM	
implementation	140
Figure 4.43 Flux refraction between two PSCs (a) without MTM and (b) with	
MTM	142
Figure 4.44 Lateral misalignment in WPT system	143
Figure 4.45 PTE at differenet lateral misalignment in WPT system	144
Figure 4.46 Lateral misalignment in WPT system	145
Figure 4.47 PTE at differenet angular misalignment in WPT system	146

LIST OF ABBREVIATIONS

UHF - Ultrahigh Frequency

SHF - Superhigh Frequecy

RFID - Radio Frequency Identification

E-FIELD - Electric Field

PM - Perturbation Method

TE - Transverse Electrical

TM - Transverse Magnetic

AC - Alternating Current

CPW - Coplanar Waveguide

CFA - Complementary Folded Arm

DS-CSRR - Double Slit Complementary Split Ring Resonator

SSRR - Square Split Ring Resonator

SRR - Split Ring Resonator

Q-Factor - Quality Factor

PEC - Perfect Electric Conductor

EM - Electromagnetic

DXF - Drawing Exchange Format

UV - Ultraviolet

CST - Computer Simulation Technology

VNA - Vector Network Analyzer

DUT - Device Under Test

LUT - Liquid Under Test

SUT - Solid Under Test

MUT - Material Under Test

PSC - Planar Spiral Coil

WET - Wireless Energy Transfer

WPT - Wireless Power Transfer

LIST OF SYMBOLS

Micrometre μm Millimetre mm Permittivity ε_r ε_r' Real Permittivity $\varepsilon_r^{\prime\prime}$ **Imaginary Permittivity** Permittivity of Free Space ε_o G Gain Inductor L CCapacitor R Resistor Е Electric Fields Characteristic Impedance Z_0 Effective Dielectric Constant ε_{eff} Width Length h Height (thickness) Gap Width g Speed of Light С L Actual Length of Patch Effective Length L_{eff} Incremental Length of Patch ΔL Resonant Frequency f_r Center Frequency f_o Frequency without Sample f_c Frequency with Sample f_{S} Δf Frequency Shifting Lowest Frequency f_1 Upper Frequency f_2 Q **Quality Factor**

 Q_{MUT} - Quality Factor of Material Under Test

 Q_U - Unloaded Quality Factor

BW - Bandwidth

dB - Decibels

 S_{11} - Return Loss

 S_{21} - Insertion Loss

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Roger RT/Duroid 5880	160
В	ROGER DUROID RO4350B	162
С	FR-4-86 UV BLOCK	164

LIST OF PUBLICATIONS

List of Conference

M. S. Yusri, M. H. Misran, N. Yusop, M. A. M. Said, M. A. Othman and S. Suhaimi, "Transfer Efficiency Enhancement on Wireless Power Transfer Using Metamaterial," *2023 International Conference on Information Technology (ICIT)*, Amman, Jordan, 2023, pp. 724-729, DOI: 10.1109/ICIT58056.2023.10226136

List of Journal

Muhammad Sukriyllah Yusri ¹, Mohamad Harris Misran ¹, Tan Kim Geok ², Sharul Kamal Abdul Rahim ³, Norbayah Yusop ¹, Maizatul Alice Meor Said ¹ and Azahari Salleh ¹. 'A Review: Advanced Perspectives on Metamaterial Integration in Wireless Power Transfer', *Applied Computational Electromagnetics Society Journal*, vol. 40, no. 03, pp. 237–252, Mar. 2025, DOI: https://doi.org/10.13052/2025.ACES.J.400308

Muhammad Sukriyllah Yusri¹, Mohamad Harris Misran², Maizatul Alice Meor Said³, Mohd Azlishah Othman⁴, Azahari Salleh⁵, Ridza Azri Ramlee⁶, Norbayah Yusop⁷, Shadia Suhaimi⁸, Mohd Zahid Idris⁹. 'Transfer Efficiency Enhancement using Double Negative Metamaterial in Wireless Power Transfer System, *International Journal of Electrical and Electronics Research* (*IJEER*) 13 (1). pp. 30-36, 2025, DOI: https://doi.org/10.37391/IJEER.130105

Muhammad Sukriyllah Yusri¹, Mohamad Harris Misran², Maizatul Alice Meor Said³, Mohd Azlishah Othman⁴, Azahari Salleh⁵, Ridza Azri Ramlee⁶, Shahrul Kamal Abdul Rahim⁷, Mohd Zahid Idris ⁸, "Optimizing Wireless Power Transfer Efficiency at 13.56 MHz Using Double Negative Metamaterials," *Progress In Electromagnetics Research B*, Vol. 111, pp 125-133, 2025 DOI: 10.2528/PIERB24122701

INTRODUCTION

1.1 Research Background

In the modern era, it is usual for individuals to own a wireless mobile device that serves multiple functions in both their professional and personal lives. Mobile gadgets, such as smartphones and tablets, have quickly become essential components in fulfilling the requirements of everyday living. The wire infrastructure is susceptible to potential breakdowns because of broken cables caused by natural disasters. This imperfection possesses the capacity to result in electrical leakage, presenting a substantial hazard to human well-being and security. Considerable efforts have been devoted to improve the Wireless Power Transfer (WPT) through careful experimentation and extensive research.

WPT is based on two primary types of principles: far-field (C. M. Song, 2021) (D. Sharma, S. Kumar, N. Singh, B. K. Kanaujia, 2023)(X. Gu, P. Burasa, 2021) and near-field energy transfers (J. H. Park, N. M. Tran, S. I. Hwang, 2021)(Degen, 2021), often known as radiative and non-radiative WPT, respectively. WPT systems can be classified into three categories: capacitive, inductive, and magnetic couplings, based on their unique features (M. Behnamfar, 2022) (X. Hou, Z. Wang, Y. Su, 2022). Every variant of WPT system possesses distinct characteristics and is well-suited for applications. Nevertheless, a shared characteristic across these devices is the wireless conveyance of energy from a specific origin to a recipient, with the two entities being physically separated by an empty space and lacking any tangible connections.

A fundamental configuration of a wireless energy system comprises two coils: a transmitter coil and a receiving coil, which are positioned apart from each other with air as the medium. The flow of alternating current (AC) via the transmitter coil results in the generation of a magnetic

field. The magnetic field generated by the transmitter coil causes an electric current to be produced in the receiver coil, facilitating the wireless transmission of electric power from the transmitter to the receiver (Agbinya, 2022).

Antennas are used in the field of far-field radiative coupling to transmit electrical power by transmitting Radio Frequency (RF) waves (L. Xie, X. Cao, 2021)(Hassan et al., 2021). The receiver antenna intercepts these waves and transforms them into direct current (DC). Nikola Tesla coined the term "wireless power transfer" referred to the transmission of energy using radiation. Nevertheless, ongoing research has redirected its focus towards utilizing ambient radio frequency (RF) waves for the purpose of energizing low-power devices. This method, known for its capacity to transmit energy across long distances and its exceptional mobility, has garnered significant interest in the energy harvesting area. It involves generating a small amount of electricity to power several electronic devices across a large area, demonstrating a new facet of renewable energy research. Radiated WPT is appropriate for transmitting power over long distances, while non-radiated WPT is employed for communication within shorter distances, particularly in the intermediate range, utilizing electromagnetic fields (Mohammadnia A, Ziapour BM, Ghaebi H, 2021).

Non-radiated WPT is widely employed in various sectors to meet the power requirements, ranging from low to high, without the usage of radiation. Non-radiated WPT systems are commonly categorized into two types: capacitive and inductive energy transfer link. Capacitive transfer, on the other hand, encounters safety limits as a result of the impacts of the electric field (Moon J., 2021). On the other hand, inductive energy transmission is frequently preferred because to its capacity to reduce direct electrical field interactions between persons and gadgets (Bao J, Hu S, Xie Z, Hu G, Lu Y, 2022).

Significant advancements have been made in the fields of biomedicine, low-power charging devices, and wireless communication (Harshitha, H. M., 2021)(Pokharel, Ramesh K., 2021) (Ashraf, Nausheen, 2021). Nevertheless, the inductive WPT technology is recognised to