

MODEL REFERENCE ADAPTIVE CONTROL BASED MOPID CONTROLLER FOR INDEPENDENT STEER-BYWIRE SYSTEM

UNIVERSIT MUHAMMAD HAZIQ BIN HAMDI AKA

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Faculty of Mechanical Technology and Engineering

MODEL REFERENCE ADAPTIVE CONTROL BASED MOPID CONTROLLER FOR INDEPENDENT STEER-BY-WIRE SYSTEM

Muhammad Haziq bin Hamdi

Master of Science in Mechanical Engineering

MODEL REFERENCE ADAPTIVE CONTROL BASED MOPID CONTROLLER FOR INDEPENDENT STEER-BY-WIRE SYSTEM

MUHAMMAD HAZIQ BIN HAMDI

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Enigineering

Faculty of Mechanical Technology and Engineering

DECLARATION

I declare that this thesis entitled "Model Reference Adaptive Control Based MOPID Controller for Independent Steer-By-Wire System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	·
Name	. MUHAMMAD HAZIQ BIN HAMDI
Date	. 18/6/2025
نيڪ	اونین سن نیک

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Enigineering.

Signature	
	IR TS DR FAUZI BIN AHMAD
Supervisor Name	
	18/6/2025
Date	······

DEDICATION

To my beloved mother and father.

ABSTRACT

Recent developments in Steer-by-Wire (SBW) systems have opened new possibilities for vehicle steering without mechanical linkages. However, most existing research either applies advanced control strategies to simplified vehicle models or uses basic controllers on high-fidelity models, limiting the accuracy of performance evaluation. This study addresses that gap by integrating a Model Reference Adaptive Control (MRAC) strategy with a comprehensive 14 Degrees of Freedom (DOF) full-vehicle model, enabling a realistic and robust assessment of an Independent Steer-by-Wire (ISBW) system. The proposed controller is implemented and tested using MATLAB Simulink and validated against CarSim as a benchmark. Simulation results from a Double Lane Change test at 110 km/h show that MRAC reduces yaw rate error from 11.67% (PID) and 16.67% (MOPID) to 3.33%, reflecting improvements of 71.45% and 80%, respectively. MRAC also maintains lateral acceleration and sideslip angle errors below 5%, outperforming conventional controllers in both accuracy and stability. These results demonstrate that combining a highorder vehicle model with an adaptive control approach yields significant improvements in steering performance, offering valuable insights for the development of safer and more responsive steering systems.

اوبيوسيني نيكنيكل مليسيا ملاك

SISTEM KAEDAH MOPID BERASASKAN MODEL RUJUKAN ADAPTIF UNTUK KEMUDI BEBAS WAYAR

ABSTRAK

Kemajuan dalam sistem kemudi kenderaan telah membawa kepada kemunculan teknologi Steer-by-Wire (SBW) yang menggantikan sambungan mekanikal bersama kawalan elektronik. Namun begitu, kebanyakan kajian terdahulu hanya menggunakan model kenderaan ringkas bersama sistem kawalan yang canggih, atau sebaliknya, menjadikan penilaian prestasi sistem kurang tepat. Kajian ini menangani jurang tersebut dengan menggabungkan strategi kawalan Model Reference Adaptive Control (MRAC) bersama model kenderaan penuh 14 Darjah Kebebasan (DOF), sekali gus membolehkan penilaian sistem Independent Steer-by-Wire (ISBW) yang lebih realistik dan menyeluruh. Model ini dibangunkan dalam perisian MATLAB Simulink dan divalidasi menggunakan perisian CarSim sebagai penanda aras. Hasil simulasi ujian Double Lane Change pada kelajuan 110 km/j menunjukkan bahawa MRAC mengurangkan ralat yaw rate daripada 11.67% (PID) dan 16.67% (MOPID) kepada 3.33%, iaitu penambahbaikan sebanyak 71.45% dan 80% masing-masing. Selain itu, MRAC mengekalkan ralat pecutan lateral dan sudut gelincir sisi di bawah 5%, dengan prestasi yang lebih unggul berbanding sistem kawalan konvensional dari segi ketepatan, kestabilan, dan tindak balas dinamik. Hasil dapatan ini membuktikan bahawa gabungan model kenderaan kompleks dengan kawalan adaptif dapat meningkatkan keupayaan sistem kemudi, ke arah kenderaan yang lebih selamat dan responsif.

DIVIVERSITI TERMINAL MALATSIA MELANA

ACKNOWLEDGEMENT

First and foremost, I am deeply grateful to Allah, the Creator, the Sustainer, for all the blessings I have received throughout my life. My sincere thanks go to my primary supervisor, Ir. Ts. Dr. Fauzi bin Ahmad, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), for his unwavering support, guidance, and inspiration. His patience and insightful direction will always be remembered. I would also like to extend my gratitude to my co-supervisor, Ts. Dr. Hanif bin Hasan, Faculty of Electrical and Electronic Engineering Technology, UTeM, for their continued encouragement during this journey.

I would like to express my special appreciation to Habirafidi bin Ramly and Nor Izwan bin Junoh, Faculty of Mechanical Engineering, UTeM, for their invaluable help, advice, and shared experiences during my studies. Additionally, my heartfelt thanks go to my lab mates, Mohd Asri bin Azizul, Mohd Shukri Azizi bin Razak and Sarweash Rao for their enthusiasm and dedication in assisting with the investigation and helping to obtain the results. I would also like to convey my gratitude to Universiti Teknikal Malaysia Melaka (UTeM) for providing the research platform.

Finally, I wish to express my profound gratitude to my parents (Hamdi bin Md Fadzali and Malinah binti Abd Manap) and family for their unending support, love, and encouragement. My special appreciation to Majlis Amanah Rakyat (MARA) to assit me with the funds during this study. Each one of this people play a role part to make my study happened. Once again thank you.

TABLE OF CONTENTS

	PAGES
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	X
LIST OF SYMBOLS	xi
LIST OF APPENDICES	xviii
LIST OF PUBLICATIONS	xix
CHAPTER	
1. INTRODUCTION	20
1.1 Overview	20
1.2 Background of Study	21
1.3 Problem Statement	24
1.4 Objective of Study	25
1.5 Scopes of Study	26
1.6 Thesis Organization	27
2. LITERATURE REVIEW	29
2.1 Evolution of Vehicle Steering Systems	29
2.1.1 Historical Context of Steering Mechanisms	29
2.1.2 Emergence of Steer-by-Wire Technology	32
2.2 Control Strategies in Vehicle Dynamics	34
2.2.1 PID Controllers in Automotive Applications	35
2.2.2 Multi Order PID (MOPID) Application	36
2.2.3 Model Reference Adaptive Control (MRAC) Application	on 38
2.3 Mathematical Modelling of Vehicle Dynamics	40
2.3.1 Degress of Freedom in Vehicle Models	40
2.3.2 Wheel Model	41
2.3.3 Tyre Model	42
2.4 Adaptive Control in Autonomous Vehicle Systems	43
2.4.1 Integration of MRAC in Autonomous Vehicles	43
2.4.2 Case Studies and Experimental Prototypes	45
2.5 Summary	49
3. METHODOLOGY	51
3.1 Introduction	51
3.2 Mathematical Description of Vehicle Employing Independent	
Steering Steer-by-wire System	53

		3.2.1 Seven Degress of Freedom for Ride Model	55
		3.2.2 Seven Degress of Freedom Handling Model	60
		3.2.3 Tyre Model	65
	3.3	Proposed Mathematical equation for Independent Steer	
		Based Steer-By-Wire System	70
		3.3.1 Steering Wheel Dynamic	72
		3.3.2 Integrated Suspension Steering Arm Dynamic	74
	3.4	Full Vehicle Model Integrated with Independent	
		Steer-by-Wire System in Matlab Simulink Software	77
	3.5	Control Strategy Applied to the Independent Steer-by-Wire System	78
		3.5.1 Proportional-Integral-Derivative control of Independent	
		Steer-by-Wire System	79
		3.5.2 Multi-Order Proportional-Integral-Derivative Control of	
		Independent Steer-by-Wire System	80
		3.5.3 Model Reference Adaptive Control Based MOPID Controller	
		of Independent Steer-by-Wire System	82
	3.6	Simulation Parameters	86
	3.7	Summary	88
1	DEC	SULT AND DISCUSSION	90
7.		Introduction	90
		Performance of MRAC-Based Independent SBW System	90
	4.2	4.2.1 Double Lane Change (DLC)	91
		4.2.1 Double Lane Change (DLC) 4.2.2 Slalom	91 95
		4.2.3 J-Turn	93 98
	4.3	Summary	102
	4.5		102
5.	CON	NCLUSION AND RECOMMENDATIONS	
	FOR	R FUTURE RESEARCH	104
	5.1	Introduction	104
		5.1.1 The Dynamic Mathematical Model of New Independent	
		Steer-by-wire	104
		5.1.2 The ISBW Controller	105
		5.1.3 Performance evaluation of ISBW	106
	5.2	Contribution of the Thesis	108
	5.3	Recommendation for Future Works	109
REFE	DEN	CES	111
APPE			111
TILL	1111		117

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.3	Independent SBW paramateres	87
Table 4.1	RMS value for each controller during DLC at 110km/h	94
Table 4.2	RMS value for each controller during Slalom at 60km/h	98
Table 4.3	RMS value for each controller during J-Turn at 65km/h	102

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	A basic rack-and-pinion system (Suryavanshi et al., 2017)	30
Figure 2.2	Power Steering applied in rack-and-pinion system (Autobutler, 2024)	31
Figure 2.3	(a) Conventional Steering System; (b) Steer by Wire System (SBW) (Fahami et al., 2013)	32
Figure 2.4	Toyota Fine-T and Nissan Pivo 3 (Peng and Xinbo,2021)	33
Figure 2.5	Inegral of Absolute Error and Integral of Squared Error of the controllers (Hoikka,2024)	35
Figure 2.6	An example of MOPID Control Structure (Adel abd Rabah, 2020)	37
Figure 2.7	Comparison of lateral stability for different control strategies (Narjes et al., 2020)	39
Figure 2.8	Control framework for vehicle path tracking (Mengyuan et al., 2023)	44
Figure 2.9	Simulation Results for Double-Lane Change (Mengyuan et al., 2023)	45
Figure 2.10	Simulation Results for Slalom-Like Maneuver (Mengyuan et al., 2023)	46
Figure 2.11	Protypes of 4WID-4WIS EV: (a) Toyota Fine-T; (b) Nissan PIVO3; (c)ROboMObil; (d) DFKIEO Smart 2; (e) Schaeffler Mover; (f) Jilin University; (g)CUHK OK-1; (h) MIT Hiriko; (i) UTM; (j) Tongji University (Peng and Xinbo, 2021)	47

Figure 2.12	Steering modes of 4WID-4WIS EV: (a) FWS; (b) RWS; (c) 4WS; (d) oblique moving; (e) crab moving; (f) pivot steering. (Peng and Xinbo, 2021)	48
Figure 2.13	Geometric description of DuSP-MFAC (Shida et al., 2019)	49
Figure 3.1	Flow chart of the research methodology	52
Figure 3.2	The ISBW implemented in a vehicle	54
Figure 3.3	A 7-DOF full-vehicle ride and handling model	56
Figure 3.4 ALAY	A 7-DOF vehicle handling model	61
Figure 3.5	FBD of a wheel	64
Figure 3.6	Tyre dynamic while at a slip angle	66
Figure 3.7	System configuration of vehicle integrate with independent steering system	71
Figure 3.8	Free body Diagram of steering wheel	72
Figure 3.9	Free body diagram of integrated suspension steering arm	75
Figure 3.10	Full vehicle model integrated with independent steer by wire system	78
Figure 3.11	Independent Steer-by-wire control structure based PID controller	79
Figure 3.12	Independent Steer-by-wire control structure based MOPID controller	81
Figure 3.13	Modified MRAC Control Structure Scheme Adopted in this study	83
Figure 4.1	(a) Steering Wheel Angle vs Time; (b) Steering Angle Front	92
	Left vs Time; (c) Lateral Acceleration vs Time; (d) Sideslip	
	Angle vs Time; (e) Yawrate vs Time Results from the DLC	
	test at 110 km/h are shown, with panels (b)-(e) illustrating	

the comparative performance of various controllers (CarSim, PID, MOPID, and MRAC) on each respective variable

Figure 4.2

(a) Steering Wheel Angle vs Time; (b) Steering Angle Front 96
Left vs Time; (c) Lateral Acceleration vs Time; (d) Sideslip
Angle vs Time; (e) Yawrate vs Time Results from the
Slalom test at 60 km/h are shown, with panels (b)-(e)
illustrating the comparative performance of various
controllers (CarSim, PID, MOPID, and MRAC) on each
respective variable.

Figure 4.3

(a) Steering Wheel Angle vs Time; (b) Steering Angle Front 99 Left vs Time; (c) Lateral Acceleration vs Time; (d) Sideslip Angle vs Time; (e) Yawrate vs Time Results from the J-Turn test at 65 km/h are shown, with panels (b)-(e) illustrating the comparative performance of various controllers (CarSim, PID, MOPID, and MRAC) on each respective variable.

LIST OF ABBREVIATIONS

AFS - Active Front Steering

CG - Center of Gravity

DC - Direct Current

DLC - Double Lane Change

DOF - Degree of Freedom

EV - Electric Vehicle

FBD - Free Body Diagram

HIL - Hardware-in-the-Loop

IAE - Integral of Absolute Error

ISBW - Independent Steer-By-Wire

ISE - Integral of Squared Error

MOPID - Multi-Order Proportional-Integral-Derivative

MRAC - Model Reference Adaptive Control

PID - Proportional-Integral-Derivative

RA - Arm resistance

SBW - Steer-By-Wire

UTeM - Universiti Teknikal Malaysia Melaka

4WID- - Four-Wheel Independent Drive/Steering Electric Vehicles

4WISEVs

4WIS - Four-Wheel Independent Steering

LIST OF SYMBOLS

a_x	-	Longitudinal acceleration
a_y	-	Lateral acceleration
A	-	Frontal area of the vehicle
a	-	Distance front axle to CG
a MALAY	S-1A	Side Slip Angle
a	-	Distance between front axle and CG
B_{b1}	-	Damping coefficient of the bearing 1
B_{b2}	-	Damping coefficient of the bearing 2
$B_{bearing1}$	-	Arm upper bearing stiffness
B_m	-	Damping due to the motor
B_{mArm}	- **	Motor arm damping coefficient
B_{ms} ERS	T	The damping coefficient of motor steering
B_{sc}	-	The damping coefficient of the steering column
B_{sc}	-	The damping coefficient of the steering column
b	-	Distance rear axle to CG
b	-	Distance between rear axle and CG
C_{df}	-	Suspension damping coefficient front
C_{dr}	-	Suspension damping coefficient rear
_		Event left demning stiffness
C_{sfl}	-	Front-left damping stiffness
C_{sfl} C_{srl}	-	Rear-left damping stiffness
,	-	

$rac{de_m}{d heta}$	-	The sensitivity
d	-	Displacement from the centre tyre to centre of the shaft
e_a	-	Motor back electromotive force (back emf)
e_m	-	The model error
F_{dfl}	-	Front-left damper force
F_{dfr}	-	Front-right damper force
F_{drl}	YSIA	Rear-left damper force
F_{drr}	-	Rear-right damper force
F_{sfl}	-	Front-left spring force
F_{sfr}	-	Front-right spring force
F_{srl}	<u>-</u>	Rear-left spring force
F_{srr}	لبيا	Rear-right spring force
F_{tfl}	- **	Front-left tyre force
F_{tfr}	ЫТІ	Front-right tyre force AAYSIA MELAKA
F_{trl}	-	Rear-left tyre force
F_{trr}	-	Rear-right tyre force
F_{xfl}	-	Longitudinal force at the front-left
F_{xfr}	-	Longitudinal force at the front-right
F_{xrl}	-	Longitudinal force at the rear-left
F_{xrr}	-	Longitudinal force at the rear-right
F_{yfl}	-	Lateral force at the front-left
F_{yfr}	-	Lateral force at the front-right
F_{yrl}	-	Lateral force at the rear-left

 F_{yrr} Lateral force at the rear-right F_{zfi} Normal force at the front tyre, where *i* indicates left or right tyre G_m Reference Model h Distance from ground to CG Pitch moment of inertia I_{θ} Roll moment of inertia Yaw moment of inertia Motor arm armature current i_a Stiffness of the bearing 1 K_{b1} K_{b2} Stiffness of the bearing 2 Arm upper bearing stiffness $K_{bearing1}$ $K_{bearing2}$ Arm lower bearing stiffness K_m Torque constant of the motor The spring stiffness of the steering column K_{sc} K_{sf} Suspension spring stiffness front K_{sfl} Front-left spring stiffness K_{sfr} Front-right spring stiffness K_{sr} Suspension spring stiffness front K_{srl} Rear-left spring stiffness K_{srr} Rear-right spring stiffness K_{tfl} Front-left tyre stiffness Front-right tyre stiffness K_{tfr}

Motor arm stiffness

 K_{tmArm}

 K_{trl} - Rear-left tyre stiffness

 K_{trr} - Rear-right tyre stiffness

l - Wheelbase

L - Motor electric inductance

 M_s - Sprung mass weight

 M_{ufl} - Unsprung mass at the front-left

 M_{ufr} - Unsprung mass at the front-right

 M_{url} - Unsprung mass at the rear-left

 M_{urr} - Unsprung mass at the rear-right

 M_w - Mass wheel

 M_z - Moment at the center of gravity

 M_{zfi} - Front wheel self-aligning moment, where i indicate the left or the right tyre

 M_{zfl} - Moment at the front-left

 M_{zfr} - Moment at the front-right

 M_{zrl} - Moment at the rear-left

 M_{zrr} - Moment at the rear-right

 m_t - Total vehicle mass

 R_a - Motor electric resistance

 R_w - Wheel radius

 \dot{r} - Angular velocity of the vehicle around the z-axis

 S_{wa} - Steering Wheel Angle

 T_b - Braking torque

 T_d - Drive Torque

T_{ms}	-	The torque on the motor steering
T_{rr}	-	Rolling resistance torque
T_{sw}	-	Steering torque applied
T_{tr}	-	Traction torque
t	-	Track width
v_{x}	-	Longitudinal velocity
v_{xw}	AYSI	Velocity at the wheel in longitudinal direction
v_y	-	Lateral velocity
χ̈́	-	Longitudinal velocity of the vehicle
Ϊ	-	Longitudinal acceleration of the vehicle
ÿ	-	Lateral acceleration of the vehicle
ý		Lateral velocity of the vehicle
\ddot{Z}_s	لسيا	Acceleration of the sprung mass at the body center of gravity (CG)
\ddot{Z}_s	لیسیا RSITI	
NIIVE I	لیسیا RSITI	(CG)
\dot{Z}_{sfl}	RSITI	(CG) Sprung mass vertical velocity at the front-left
\dot{Z}_{sfl} \dot{Z}_{sfr}	ليسيا RSITI - -	(CG) Sprung mass vertical velocity at the front-left Sprung mass vertical velocity at the front-right
\dot{Z}_{sfl} \dot{Z}_{sfr} \dot{Z}_{srl}	ليسيا RSITI - -	Sprung mass vertical velocity at the front-left Sprung mass vertical velocity at the front-right Sprung mass vertical velocity at the rear-left
\dot{Z}_{sfl} \dot{Z}_{sfr} \dot{Z}_{srl} \dot{Z}_{srr}	RSITI	Sprung mass vertical velocity at the front-left Sprung mass vertical velocity at the front-right Sprung mass vertical velocity at the rear-left Sprung mass vertical velocity at the rear-right
\dot{Z}_{sfl} \dot{Z}_{sfr} \dot{Z}_{srr} \dot{Z}_{srr} \dot{Z}_{srr} \dot{Z}_{ufl}	RSITI	Sprung mass vertical velocity at the front-left Sprung mass vertical velocity at the front-right Sprung mass vertical velocity at the rear-left Sprung mass vertical velocity at the rear-right Unsprung mass vertical velocity at the front-left
\dot{Z}_{sfl} \dot{Z}_{sfr} \dot{Z}_{srl} \dot{Z}_{srr} \dot{Z}_{srr} \dot{Z}_{ufl} \dot{Z}_{ufr}	RSITI	Sprung mass vertical velocity at the front-left Sprung mass vertical velocity at the front-right Sprung mass vertical velocity at the rear-left Sprung mass vertical velocity at the rear-right Unsprung mass vertical velocity at the front-left Unsprung mass vertical velocity at the front-right
\dot{Z}_{sfl} \dot{Z}_{sfr} \dot{Z}_{srl} \dot{Z}_{srr} \dot{Z}_{ufl} \dot{Z}_{ufr} \dot{Z}_{url}	RSITI	Sprung mass vertical velocity at the front-left Sprung mass vertical velocity at the front-right Sprung mass vertical velocity at the rear-left Sprung mass vertical velocity at the rear-right Unsprung mass vertical velocity at the front-left Unsprung mass vertical velocity at the front-right Unsprung mass vertical velocity at the front-right

Z_{rrl}	-	Road profile applied to the rear-left
Z_{rrr}	-	Road profile applied to the rear-right
Z_{sfl}	-	Sprung mass vertical displacement at the front-left
Z_{sfr}	-	Sprung mass vertical displacement at the front-right
Z_{srl}	-	Sprung mass vertical displacement at the rear-left
Z_{srr}	-	Sprung mass vertical displacement at the rear-right
Z_{ufl}	SIA	Unsprung mass vertical displacement at the front-left
Z_{ufr}	-	Unsprung mass vertical displacement at the front-right
Z_{url}	-	Unsprung mass vertical displacement at the rear-right
Z_{urr}	-	Unsprung mass vertical displacement at the rear-right
δ	-	Steering angle
\ddot{arphi}	-	Body roll acceleration at CG
سا ماق	لىيى	Body pitch acceleration at CG
NIVERS	ΙŤΙ	Steering angle _ MALAYSIA MELAKA
$\ddot{\psi}$	-	Yaw acceleration
ψ	-	Yaw angle
σ	-	Steering torque
ω	-	Angular velocity of the wheel
ω_{ij}	-	Angular velocity of wheel
δ	-	Steering angle
J_{sw}	-	Steering wheel inertia
$\ddot{ heta}_{sw}$	-	Steering wheel acceleration
$ heta_{sw}$	-	Angle of the steering wheel

 θ_{ms} Angle of the motor steering wheel The angular velocity of the motor steering $\dot{\theta}_{ms}$ Motor arm torque τ_{mArm} Moment inertia of the motor arm J_{mArm} Total integrated suspension-steering arm inertia J_{Arm} $\dot{\vartheta}_{mArm}$ Motor arm angular velocity ϑ_{mArm} Motor arm angular displacement $\ddot{\delta}$ Wheel steer angular acceleration Wheel steer angular velocity Wheel steer angular displacement The controller parameter The learning rate

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A Results for l	DLC, Slalom and J-Turn for other speeds	119
Appendix B List of detail	l drawings	127
Appendix C Patentability	Search Report	135

