

**MATERIAL SELECTION, CHARACTERIZATION,
OPTIMIZATION, AND USABILITY OF BIO-COMPOSITES USING
FUSED DEPOSITION MODELLING**

اوینیورسیتی تیکنیکال ملیسیا ملاک

HAZLIZA AIDA BINTI CHE HAMID

DOCTOR OF PHILOSOPHY

2025

Faculty of Mechanical Technology and Engineering

**MATERIAL SELECTION, CHARACTERIZATION, OPTIMIZATION,
AND USABILITY OF BIO-COMPOSITES USING FUSED
DEPOSITION MODELLING**

اوینیورسیتی تیکنیکل ملیسیا ملاک
Hazliza Aida Binti Che Hamid

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Doctor of Philosophy

2025

**MATERIAL SELECTION, CHARACTERIZATION, OPTIMIZATION, AND
USABILITY OF BIO-COMPOSITES USING FUSED DEPOSITION MODELLING**

HAZLIZA AIDA BINTI CHE HAMID

A thesis submitted
in fulfillment of the requirements for the degree of
Doctor of Philosophy

اونیورسیتی تکنیکال ملیسیا ملاک

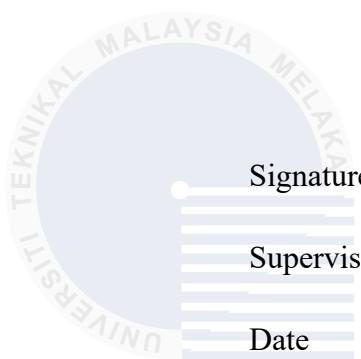
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
Faculty of Mechanical Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2025

DECLARATION

I declare that this thesis entitled “Material Selection, Characterization, Optimization, And Usability Of Bio-Composites Using Fused Deposition Modelling” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.


Signature :
Name : Hazliza Aida Binti Che Hamid
Date : 28/05/2025

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature

Supervisor Name

Date

:

Dr. Mastura Binti Mohammad Taha

:

28/05/2025

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

This research is dedicated to my family and friends who have consistently provided unwavering attention and affection during my research journey.

This research is also dedicated to my supervisor, Dr. Mastura Binti Mohammad Taha and co. supervisor, Dr. Syahibudil Ikhwan Bin Abdul Kudus, who has provided me with diligent guidance and inspired me to strive for greater objectives in order to create exceptional research.

Lastly, I would want to express my gratitude to all UTeM instructors, personnel, and my research partners for their valuable collaboration in contributing to this work.

جامعة ملaka التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

This research examines the material selection, characterization, optimization, and usability of bio-composites in additive manufacturing (AM). Development of environmentally sustainable egg carton packaging is used as case study and fabricate using Fused Deposition Modelling (FDM). The case study comprises of four primary phases: identifying appropriate bio-composite filament materials, characterizing their mechanical and printing characteristics, optimizing FDM settings, and assessing the usability of the final egg carton prototype. The Fuzzy Analytic Network Process (FANP) identified polylactic acid (PLA) reinforced with 7.5 wt.% sugar palm fibre (SPF) as the ideal material. The SPF-PLA composite containing 7.5 wt.% SPF was selected as the optimum material in this study, owing to its superior mechanical strength, printability, environmental sustainability, and processing stability, as corroborated by both FANP ranking and experimental validation. The printing settings were first optimized by the Taguchi technique, establishing optimal circumstances of 0.1 mm layer thickness, 100% infill density, and a print speed of 25 mm/s to guarantee better print quality and structural integrity. Mechanical and physical evaluations validated the printability and efficacy of the SPF-PLA composite. A functioning egg carton prototype was then produced using FDM based on these proven features. Usability testing was performed with 10 volunteers using the System Usability Scale (SUS), in which participants evaluated 10 assertions on a Likert scale. The findings produced an average SUS score of 80, categorizing the prototype as good within the 4th quartile range. Participants expressed positive opinions about the carton's durability, usability, and environmental benefits. The results confirm the SPF-PLA bio-composite as a feasible material for sustainable egg carton packaging and illustrate the potential of FDM technology for scalable, environmentally responsible production.

PEMILIHAN BAHAN, PENCIRIAN, PENGOPTIMUMAN DAN KEBOLEHGUNAAN BIO KOMPOSIT MENGGUNAKAN PERMODELAN PEMENDAPAN BERSATU

ABSTRAK

Kajian ini meneliti pemilihan bahan, pencirian, pengoptimuman, dan kebolehgunaan bio-komposit dalam pembuatan tambahan (AM). Pembangunan pembungkusan karton telur yang mesra alam sekitar digunakan sebagai kajian kes dan dihasilkan menggunakan Pemodelan Pemendapan Bersatu (FDM). Kajian kes ini merangkumi empat fasa utama: mengenal pasti bahan filamen bio-komposit yang sesuai, mencirikan sifat mekanikal dan keupayaan cetakannya, mengoptimumkan tetapan FDM, serta menilai kebolehgunaan prototaip akhir kotak telur tersebut. Proses Rangkaian Analitik Kabur (FANP) telah mengenal pasti asid polilaktik (PLA) yang diperkuuh dengan 7.5 wt.% serat kelapa sawit (SPF) sebagai bahan yang paling ideal. Komposit SPF-PLA dengan kandungan 7.5 wt.% SPF telah dipilih sebagai bahan optimum dalam kajian ini, berdasarkan kekuatan mekanikalnya yang unggul, keupayaan cetak, kelestarian alam sekitar, dan kestabilan pemprosesan, seperti yang disahkan oleh kedudukan FANP dan pengesahan eksperimen. Tetapan percetakan telah dioptimumkan terlebih dahulu menggunakan teknik Taguchi, yang menetapkan keadaan optimum pada ketebalan lapisan 0.1 mm, ketumpatan pengisian 100%, dan kelajuan cetakan 25 mm/s bagi menjamin kualiti cetakan dan integriti struktur yang lebih baik. Penilaian mekanikal dan fizikal mengesahkan kebolehgcatannya serta keberkesanan komposit SPF-PLA tersebut. Prototaip karton telur berfungsi kemudiannya telah dihasilkan menggunakan FDM berdasarkan ciri-ciri yang telah terbukti ini. Ujian kebolehgunaan telah dijalankan bersama 10 orang sukarelawan menggunakan Skala Kebolehgunaan Sistem (SUS), di mana para peserta menilai 10 pernyataan menggunakan skala Likert. Dapatan menunjukkan purata skor SUS sebanyak 80, yang meletakkan prototaip tersebut dalam julat kuartil ke-4 sebagai "baik." Para peserta memberikan maklum balas positif mengenai ketahanan, kebolehgunaan, dan manfaat alam sekitar bagi karton tersebut. Keputusan ini mengesahkan bahawa bio-komposit SPF-PLA merupakan bahan yang berdaya maju untuk pembungkusan karton telur yang mampan dan menggambarkan potensi teknologi FDM untuk pengeluaran yang berskala dan mesra alam.

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious, the Most Merciful. First and foremost, I would like to take this opportunity to express my sincere acknowledgement to Dr. Mastura Binti Mohammad Taha, Chairman of the Supervisory Committee, for her unwavering support and insightful mentorship during the whole of this research project. I would like to express my sincere appreciation to Dr. Syahibudil Ikhwan Bin Abdul Kudus, a member of the Supervisory Committee, for the confidence placed in me, the profound insight provided, and the helpful counsel given over the duration of this research project. I am grateful to all member of the DSAM team, including PM. Ts. Dr. Muhd Ridzuan Bin Mansor, Ts. Dr. Mohd Adrinata Bin Sharuzaman, Ts. Dr. Nazri Huzaimi Bin Zakaria, Dr. Ridhwan Bin Jumaidin, Dr. Nadlene Binti Razali, Dr. Noryani Binti Muhammad, Dr. Yusliza Binti Yusuf and Dr. Nuzaimah Bte Mustafa, for their unwavering support and encouragement in my academic endeavours. Above all, I am very grateful for the financial assistance provided by Universiti Teknikal Malaysia Melaka for sponsoring my Ph.D. studies.

I am very grateful for the unwavering support of my parents, Che Hamid Bin Che Hassan and Hasnah Binti Zakaria. Their sacrifices and ceaseless prayers have been instrumental in enabling me to persevere and reach this point. Dear siblings and cherished companions, I express my gratitude for the exquisite support and empathy you have shown. Your assistance has enabled me to work diligently towards reaching the end goal. Ibrahim Bin Abdul Anis, the central figure, has consistently comprehended and embraced my fervour for self-improvement and the pursuit of knowledge. Thank you for your assistance and affection. I will forever be appreciative. Furthermore, I want to emphasise my deep affection for my

beloved children, Nur Anis Sophea Binti Ibrahim. I, as a mother, love you more than anything in this world. I really appreciate your patience and understanding during this process. Only Allah is deserving to worship. Allah is the Supreme Being. There is no authority or strength save with the permission of Allah, the Supreme and Powerful. I humbly request your forgiveness, my Lord.

TABLE OF CONTENTS

	PAGES
DECLARATION	i
APPROVAL	ii
DEDICATION	iii
ABSTRACT	v
ABSTRAK	vii
ACKNOWLEDGEMENT	ix
TABLE OF CONTENTS	xiii
LIST OF TABLES	xvii
LIST OF FIGURES	xx
LIST OF ABBREVIATIONS	xxi
LIST OF SYMBOLS	
LIST OF APPENDICES	
LIST OF PUBLICATIONS	
 CHAPTER	
1. INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	2
1.3 Research Objective	5
1.4 Scope of Research	5
1.5 Thesis Outline	6
1.6 Summary	7
2. LITERATURE REVIEW	8
2.1 Introduction	8
2.2 Overview of FDM	8
2.2.1 Design Phase	21
2.2.2 3D Printing	27
2.2.3 Post-Processing Methods	37
2.3 Bio-Composite Filament Material for FDM	38
2.3.1 Natural Fibre	39
2.3.2 Bio-Composite Filament Production	52
2.3.3 Properties of Bio-Composite Filament	64
2.3.4 Future Trends in FDM Bio-Composite	75
2.4 Sustainable Packaging	77
2.4.1 The Importance of Sustainable Packaging	82
2.4.2 Case Studies on Bio Egg Carton Packaging	85
2.4.3 Manufacturing Process of Egg Carton	88
2.5 Summary	91
3. METHODOLOGY	98
3.1 Introduction	98
3.2 Research Design	98
3.3 Stage 1: Selection of Bio-Composite Filament	100

3.3.1	Phase 1: Data Collection	100
3.3.2	Phase 2: Prioritizing Criteria	107
3.3.3	Phase 3: Development of the FANP Model for the Selection Process	109
3.4	Stage 2: Optimizing of FDM 3D Printing Parameters using Taguchi Method	114
3.4.1	Design of Experiment (DOE)	115
3.4.2	Sample Preparation	117
3.4.3	Experimental Method on Mechanical Properties Testing	118
3.4.4	Experimental Method on Physical Appearance	120
3.4.5	Morphological Analysis	122
3.5	Usability Evaluation of Egg Carton Packaging	123
3.5.1	Prototype of Egg Carton Packaging	125
3.5.2	Preparing System Usability Scale (SUS) Questionnaire	128
3.5.3	Test Procedure	130
3.5.4	Questionnaire Administration	132
3.5.5	System Usability Scale (SUS)	132
3.6	Summary	134
4.	RESULT AND DISCUSSION	135
4.1	Introduction	135
4.2	Selection of Bio-Composite Filament Material for FDM Process	135
4.3	Optimization of FDM Printing Parameters for 3D Printed Bio-Composite Egg Carton Packaging	150
4.4	Evaluation Outcomes for Egg Carton Packaging	169
4.5	Summary	176
5.	CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH	178
5.1	Conclusion	178
5.2	Recommendations for Future Research	179
REFERENCES		182
APPENDICES		216

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	The methods, typical materials produces, applications, benefits, and drawbacks of the seven systems	14
Table 2.2	FDM design features	26
Table 2.3	Mechanical properties of natural and synthetic fibre	41
Table 2.4	Biochemical composition (Cellulose, Hemicellulose, Lignin, Pectins concentration, and micro-fibrillar angle (MFA)) and mechanical properties of several natural fibres utilized in FDM	44
Table 2.5	Comprehensive overview of MCDM	47
Table 2.6	The linguistic scales with the fuzzy level scale	50
Table 2.7	Advantages and disadvantages of fuzzy set theory in material selection	51
Table 2.8	Various mixing and manufacturing methods composed from diverse natural fibre sources with differing lengths	55
Table 2.9	The effect of chemical treatments on natural fibre's performance	58
Table 2.10	Printing temperature range of polymer filament materials	66
Table 2.11	Mechanical characteristics of typical thermoplastics	67
Table 2.12	Examples of food packaging and disposal food contact products fabricated from bio-based polymers	81
Table 2.13	Design requirements for sustainable egg carton packaging	86
Table 2.14	Summary of research on material selection using MCDM and FANP methods	93
Table 2.15	Review of studies on FDM process optimization using the Taguchi method	95
Table 2.16	Summary of studies utilizing the SUS in usability evaluation	96

Table 3.1	Criteria for bio-composite filaments material selection	101
Table 3.2	Bio-composite filament materials	104
Table 3.3	Fuzzy comparison matrix	110
Table 3.4	Control variables and their corresponding values for the printing parameters in the Taguchi method	115
Table 3.5	Experiment plan based on L9 (3 ⁴) Taguchi orthogonal array design	116
Table 3.6	Five-point closed-ended Likert scale	129
Table 3.7	Evaluation framework for egg carton packaging	131
Table 4.1	Decision matrix for bio-composite filaments material selection problem	136
Table 4.2	Fuzzy decision matrix for bio-composite filament material selection problem	137
Table 4.3	Various criteria pairwise comparison matrix	137
Table 4.4	The unweighted supermatrix	141
Table 4.5	The weighted supermatrix	142
Table 4.6	The limit supermatrix	143
Table 4.7	The final outcomes	144
Table 4.8	Summary of sensitivity analysis results based on four circumstances	149
Table 4.9	Mechanical and physical properties results	151
Table 4.10	Summary table of the normal probability for experimental data	156
Table 4.11	SNR results for mechanical properties and physical appearance	157
Table 4.12	Type and number of participants	171
Table 4.13	SUS questionnaire results	173
Table 4.14	SUS score final results	174

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	The AM process flow	11
Figure 2.2	Classification of AM technologies	13
Figure 2.3	An overview of the steps involved in FDM, where the print head travels in the x-y plane, and the platform descends in the z-axis	18
Figure 2.4	All in one 3D printer test model	22
Figure 2.5	3D printer test sample demonstrates that support is only necessary in specific regions of curved surfaces	23
Figure 2.6	The effect on print quality with a number of FDM-printers bridges of varying spans	24
Figure 2.7	The difference between the slicer diameter and the printed diameter of vertical holes is due to the extruded profile is compressed	25
Figure 2.8	List of parameters affecting the materials' mechanical, thermal, and physical characteristics using the FDM process	30
Figure 2.9	Types of raster angle	31
Figure 2.10	Raster width and air gap in process parameters	32
Figure 2.11	Types of infill pattern	33
Figure 2.12	Build orientation of dog-bone structure. (a) "flat"; (b) "on-edge"; (c) "upright"	35
Figure 2.13	Classification of natural fibres	39
Figure 2.14	An overview of some of the most common sources of natural fibres	40

Figure 2.15	Plant constituents' influence. The rightward-pointing arrows indicate an increase	43
Figure 2.16	The categorizing of currently available filament materials	53
Figure 2.17	Fibre composite filament fabrication process	54
Figure 2.18a	A layout of filament fabrication for single-screw extruder	61
Figure 2.18b	Schematic diagram of twin-screw extrusion	61
Figure 2.19	Twin-screw extruder cross-section; (a) co-rotating screws and (b) counter-rotating screws	63
Figure 2.20	(a) WF/PLA composite filament; (b) Specimens for tensile properties measurements; (c) a barrel made by FDM 3D printer	68
Figure 2.21	Schematic representation of printed specimen geometry	70
Figure 2.22	Characterization of typical packaging plastics by feedstock origin and biodegradability, bio-based plastic market shares in brackets	81
Figure 2.23	Current design of egg cartons from patents search	88
Figure 2.24	Moulded pulp egg tray making process	90
Figure 3.1	The framework for comprehensive examination	99
Figure 3.2	(a) Procedure for tensile testing, (b) Procedure for flexural testing and (c) Procedure for IZOD impact testing	107
Figure 3.3	Basic structure of the FANP model	108
Figure 3.4	FANP model	108
Figure 3.5	Network structure of the bio-composite filament material selection problem	109
Figure 3.6	Printing parameters for optimization: (a) layer thickness and printing speed; and (b) infill density	118
Figure 3.7	The specimens intended for tensile testing have been produced in accordance with the experimental design	119
Figure 3.8	The specimens intended for flexural testing have been produced in accordance with the experimental design	120

Figure 3.9	The arrangement for measuring surface roughness, Ra, with (a) showing the setup and (b) illustrating the layout of FDM prints and the measurement	121
Figure 3.10	The geographic location of the measurements conducted on the produced items	122
Figure 3.11	The arrangement for measuring morphology of the fracture surface, with (a) SEM machine for morphological and (b) the coating process	123
Figure 3.12	The procedure for usability evaluation of egg carton packaging	125
Figure 3.13	Prototype of 6-egg carton design; (a) top egg box and (b) bottom egg box	128
Figure 3.14	SUS questionnaire	130
Figure 3.15	An examination of the average SUS scores in relation to adjective ratings, overall SUS scores acceptability, and quartile means	134
Figure 4.1	Comparison matrix for “tensile strength” that compares several criteria in terms of their pairwise similarities and differences	138
Figure 4.2	Matrix of pairwise comparisons based on several measures of “flexural strength”	138
Figure 4.3	Impact strength comparison matrix with any criteria	138
Figure 4.4	Various printability measures are compared in a pairwise matrix	139
Figure 4.5	Priorities of the criteria	144
Figure 4.6	Ranking of the bio-composite filaments material with induced disturbance on the FANP derived weightages of (a) tensile strength; (b) flexural strength; (c) impact strength; and (d) printability	147
Figure 4.7	Interaction plot for mechanical properties and physical appearance of: (a) tensile strength; (b) Young’s modulus; (c) flexural strength; (d) surface roughness; and (e) dimensional accuracy	153

Figure 4.8	Normal probability plots for mechanical properties and physical appearance of: (a) tensile strength; (b) Young's modulus; (c) flexural strength; (d) surface roughness; and (e) dimensional accuracy	155
Figure 4.9	The main effects graphic illustrates the SNR, where a higher value indicates better performance, for three variables: (a) tensile strength; (b) Young's modulus; and (c) flexural strength	160
Figure 4.10	Main effect plot for SNR (smaller is better) for: (a) surface roughness; and (b) % error of dimensional accuracy	163
Figure 4.11	Composite optimization plot	165
Figure 4.12	SEM images of specimens with fractured surfaces: (a) Run 1; (b) Run 2; (c) Run 3; (d) Run 4; (e) Run 5; (f) Run 6; (g) Run 7; (h) Run 8; and (i) Run 9	167
Figure 4.13	Gender of respondent	172
Figure 4.14	Age of respondent	172
Figure 4.15	Behavioral aspects related to egg carton packaging. (a) The frequency of egg purchases; (b) Purchase of egg carton packaging; and (c) Interest in the concept of environmentally friendly bio-composite egg carton packaging	173

LIST OF ABBREVIATIONS

<i>ABS</i>	-	Acrylonitrile Butadiene Styrene
<i>AD</i>	-	Anderson-Darling
<i>AHP</i>	-	Analytic Hierarchy Process
<i>AM</i>	-	Additive Manufacturing
<i>ANOVA</i>	-	Analysis of Variance
<i>ANP</i>	-	Analytic Network Process
<i>ASTM</i>	-	American Society for Testing and Materials
<i>ASQ</i>	-	After-Scenario Questionnaire
<i>bioPe</i>	-	Biobased Polyethylene
<i>BJ</i>	-	Binder Jetting
<i>C</i>	-	Carbon
<i>C</i>	-	Celcius
<i>CAD</i>	-	Computer-Aided Design
<i>CAM</i>	-	Computer-Aided Manufacturing
<i>CC</i>	-	Contour Crafting
<i>CE</i>	-	Closed-ended
<i>CF</i>	-	Carbon Fibre
<i>CSUQ</i>	-	Computer System Usability Questionnaire
<i>DC</i>	-	Direct Current
<i>DLP</i>	-	Direct Light Processing
<i>DMLS</i>	-	Direct Metal Laser Sintering
<i>DOD</i>	-	Drop on Demand
<i>DOE</i>	-	Design of Experiment

<i>EBM</i>	- Electron Beam Melting
<i>ELECTRE</i>	- Elimination and Choice Expressing the Reality
<i>FANP</i>	- Fuzzy Analytic Network Process
<i>FBG</i>	- Fibre Bragg Grating
<i>FDM</i>	- Fused Deposition Modelling
<i>FEA</i>	- Finite Element Analysis
<i>FFF</i>	- Fused Filament Fabrication
<i>FG</i>	- Fibre Glass
<i>FPP</i>	- Fuzzy Preference Programming
<i>G-codes</i>	- Geometric Code
<i>H</i>	- Hydrogen
<i>HDPE</i>	- High-Density Polyethylene
<i>HIPS</i>	- High Impact Polystyrene
<i>KRABS</i>	- Kenaf fibre-reinforced ABS
<i>LBMD</i>	- Laser-Based Metal Deposition
<i>LCA</i>	- Lifecycle Analysis
<i>LENS</i>	- Laser Engineering Net Shaping
<i>LOM</i>	- Laminated Object Manufacturing
<i>MAUT</i>	- Multi-Attribute Utility Theory
<i>MCC</i>	- Microcrystalline Cellulose
<i>MCDM</i>	- Multi-Criteria Decision-Making
<i>N</i>	- Number of run
<i>NFRC</i>	- Natural Fibre-Reinforced Composite
<i>O</i>	- Oxygen
<i>OL</i>	- Whole Length

<i>OW</i>	- Overall Width
<i>PALF</i>	- Pineapple Leaves Fibre
<i>PCL</i>	- Polycaprolactone
<i>PEEK</i>	- Poly-ether-ether-ketone
<i>PEI</i>	- Polyetherimide
<i>PHA</i>	- Polyhydroxyalkanoates
<i>PLA</i>	- Polylactic Acid
<i>POE</i>	- Polyethene-co-octene
<i>PP</i>	- Polypropylene
<i>PROMETHEE</i>	- Preference Ranking Organization Method for Enrichment Evaluations
<i>PS</i>	- Polystyrene
<i>PSSUQ</i>	- Post-Study System Usability Questionnaire
<i>POE</i>	- Polyethene-co-octene
<i>rPP</i>	- Recycled Polypropylene
<i>RSM</i>	- Response Surface Methodology
<i>r-WOPPC</i>	- Recycled wood PP composite
<i>SEM</i>	- Scanning Electron Microscope
<i>SLA</i>	- Stereolithography
<i>SLM</i>	- Selective Laser Melting
<i>SLS</i>	- Selective Laser Sintering
<i>SNR</i>	- Signal-to-Noise Ratio
<i>SPF</i>	- Sugar Palm Fibre
<i>St. Dev</i>	- Standard Deviation
<i>SUMI</i>	- Software Usability Measurement Inventory
<i>SUS</i>	- System Usability Scale

<i>T</i>	-	Thickness
<i>TBC</i>	-	Tributyl Citrate
<i>TOPSIS</i>	-	Technique of Ranking Preferences by the Similarity of the Ideal Solutions
<i>TPU</i>	-	Thermoplastic Polyurethane
<i>TSL</i>	-	Surface Tessellation Language
<i>UAM</i>	-	Ultrasonic Additive Manufacturing
<i>USE</i>	-	Usefulness, Satisfaction and Ease of use
<i>UV</i>	-	Ultraviolet
<i>V</i>	-	Voltage
<i>VIKOR</i>	-	Vlse Kriterijumska Optimizacija Kompromisno Resenje
<i>W</i>	-	Width
<i>WF</i>	-	Wood Flour
<i>WAMMI</i>	-	Website Analysis Measurement Inventory
<i>3D</i>	-	Three-Dimensional
<i>3PB</i>	-	Three-point Bend

LIST OF SYMBOLS

mm	- Millimeter
XY	- The x-coordinate is measured along the east-west axis, the y-coordinate is measured along the north-south axis
Z	- The z-coordinate measures height or elevation
mm/min	- Millimeter per minutes
$^\circ$	- Degree
$\%$	- Percent
μm	- Micrometer
$S1$	- Outside layer
$S2$	- Middle layer
$S3$	- Interior layer
L/d	- Length/diameter
$Pa.s$	- Pascal-second
GPa	- Giga Pascal
MPa	- Mega Pascal
ρ	- Density
Tg	- Glass transition temperature
Tm	- Melting point
S	- Tensile strength
E	- Tensile modulus
E/ρ	- Specific modulus
$wt.$	- Weight

kg/h	- Kilogram per hour
m^3	- Cubic meter
G	- Target
n	- Number of groups
C_i	- Element groups
SC_{jl}	- Main criteria
k	- Number of experts
l_{iuv}	- Lower limit
SC_{iu} and SC_{iv}	- Weights of components
w_u/w_v	- Degree of membership
S_{iuv}	- Represents the agreement between the solution weight and expert opinion
0^T	- Weight vector
W_{ij}	- Submatrix
W	- Unweighted supermatrix
A	- Weighted matrix
\bar{W}	- Super-weighted matrix
T	- Network layer
w_{pq}	- One-step priority
p	- The degree to which indicator
q	- Influence indicator
ω_k	- Criterion weight
$\dot{\omega}_k$	- Altered criterion weights
β_k	- Unitary ratio
mm/s	- Millimeter per second