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Abstract 

Perovskite solar cells offer numerous benefits like simplified production, 

adaptability, and affordability in contrast to silicon-based counterparts. Yet, 

enhancing their power conversion efficiency remains difficult due to the diverse 

effects of various layer parameters variability. This research work proposes the 

utilization of metaheuristic approach in optimizing multiple layer parameters of 

Perovskite Solar Cell (PSC) for better output properties. The metaheuristic 

approach sequentially employs the L27 orthogonal array (OA) Taguchi-based 

design of experiment (DoE), Grey Relational Analysis (GRA), Multiple Linear 

Regression (MLR) and Grey Wolf Optimizer (GWO). The L27 OA Taguchi-based 

DoE is initially employed to mine sufficient output data simulated using one 

dimensional solar cell capacitance simulator (SCAPS-1D). GRA is utilized to 

merge the Jsc and PCE into a single representative grade called Grey Relational 

Grade (GRG) for holistically improved PSC performances. MLR is then 

performed to establish the linear relationship between layer parameters and the 

computed GRGs, thereby modeling the objective function. The best solutions of 

the MLR model are finally predicted by using GWO algorithm where both Jsc 

and PCE are successfully optimized to 25.67 mA/cm2 and 24.73%, respectively. 

Keywords: Grey relational analysis, Grey wolf optimizer, Power conversion 

efficiency, Short circuit current density, Taguchi. 

  



Metaheuristic Optimization of Perovskite Solar Cell Performance using. . . . . 2065 

 
 
Journal of Engineering Science and Technology      December 2025, Vol. 20(6) 

 

1.  Introduction 

Currently, the global need for energy relies significantly on fossil fuels. 

Nevertheless, this finite reserve of fossil fuels is on the brink of exhaustion. 

Furthermore, it poses environmental hazards due to its emission of greenhouse 

gases. Thus, in the absence of exploration into alternative or renewable sources, the 

world is poised to encounter a grave energy predicament in the foreseeable future. 

Renewable energies represent a pure form of energy, emitting no hazardous 

substances towards environments. Amid the spectrum of renewable energy choices, 

solar energy emerges as the swiftest expanding resource owing to its simple 

adoption. Solar panels, often known as PV cells or photovoltaic cells, directly 

convert sunlight into electrical power. Thin-film solar cells, distinct from 

conventional photovoltaic cells, employ a thin semiconductor layer, like 

perovskite-based absorbers, making them flexible and lightweight, and 

consequently more cost-effective than silicon solar cells [1].  

Numerous researchers have rigorously attempted to attain the exceptional 

photovoltaic efficiency of perovskite solar cells (PSCs) utilizing the CH3NH3PbI3 

absorber material [2-5]. Nevertheless, a fundamental hurdle to their extensive 

commercial deployment lies in the stability issue confronting perovskite solar cells 

(PSCs), necessitating resolution. Researchers have put forward various techniques 

to enhance both the power conversion efficiency (PCE) and stability of PSCs. 

Dimensionality and parameter optimization involve the utilization of a stable 

organic cation during perovskite material formation, while interface engineering 

stands as a pivotal strategy in enhancing both stability and efficiency. 

In recent times, several optimization approaches have been employed to discover 

the most effective blend of material parameters for solar cells, resulting in superior 

electrical and optical performance. Analysis of MAPbI3-based perovskite solar cells 

(PSCs) was conducted by combining machine learning (ML) models with SCAPS-1D 

simulations [6]. XGBoost ML algorithm achieved the highest accuracy in predicting 

PCE in which the optimal structure reached a PCE of 34.65%. Additionally, an ANN-

based ML model accurately predicted PCE (R² ≈ 0.999) using five semiconductor 

parameters of thin-film solar cells (TFSCs) [7]. The best configuration achieved a PCE 

of 30.18%. Real Coded Genetic Algorithm (RCGA) was integrated with MATLAB and 

Atlas Silvaco for multi-dimensional optimization [8].  

The proposed method closely matched experimental results and outperformed 

conventional techniques, achieving a solar cell PCE of 26.08% under AM1.5 

conditions. Employing response surface methodology (RSM), researchers crafted and 

optimized nanocrystalline transparent coatings for Si solar cells. The outcome was 

reflection values below 5% across a wide spectrum of wavelengths, with minimal 

reflection recorded at 560 nm for a ZnO nanoparticle size of 38 nm, suggesting 

significant advancements in photo-activity [9]. The utilization of RSM for optimization 

purposes in an organic tandem solar cell has yielded a significant 47.7% increase in 

PCE, driven by modifications in the thicknesses of the front and back cells [10].  

Apart from that, the utilization of the Taguchi approach in estimating the 

optimal thickness of cadmium sulfide (CdS), perovskite (CH3NH3PbI3), and copper 

telluride (CuTe) yielded elevated overall PSC performances [11]. The utilization of 

the Taguchi method also extended to the fabrication of photoanodes for dye-

sensitized solar cells (DSSC), showcasing a significant improvement in FF and 

PCE [12]. Using the Taguchi technique, the optimal bandgap combination for the 
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CIGS solar cell was established, resulting in enhanced photovoltaic performance, 

achieving an average efficiency of 22.08% [13]. Moreover, metaheuristic 

algorithms such as the bald eagle search and genetic algorithm were applied to 

determine the optimal parametric configuration of solar cells [14-18]. These 

algorithms have shown promise in forecasting the ideal material parameters for 

enhanced solar cell efficiency. 

In the quest to improve electrical performances, solar cell simulation can be 

merged with multiple optimization techniques [19-21]. These methodologies offer 

predictive insights into device performance prior to real-world testing and 

manufacturing, thus offering substantial time and cost savings. This research 

introduces an approach that combines SCAPS-1D simulation with a hybrid 

optimization strategy involving L27 Taguchi Grey relational analysis (GRA), 

multiple linear regression (MLR), and Grey wolf optimizer (GWO) algorithm to 

optimize perovskite solar cell layer parameters for enhanced Jsc and PCE.  

Significant elements in enhancing the optimization strategy for the perovskite 

solar cell include developing a novel hybrid optimization method that incorporates 

L27 Taguchi-GRA, multiple linear regression (MLR), and Grey wolf optimizer 

(GWO) algorithm; determining the most significant layer parameters impacting Jsc 

and PCE; forecasting the optimal combination of layer parameters for achieving 

maximum Jsc and PCE; validating the proposed metaheuristic approach by 

comparing it with pre-metaheuristic outputs. 

2.  Simulation and Metaheuristic Optimization 

The simulation work performed in this recent study was referenced from the work of 

Kohnehpoushi et al. [22] and Sobayel et al. [23] in which both hole and electron 

transport layer of the PSC device employed molybdenum disulfide (MoS2) and 

tungsten disulfide (WS2) material respectively. SCAPS-1D software invented by 

Department of Electronics and Information Systems University of Gent Belgium [24] 

was utilized to perform numerical simulation of the PSC device. The modelling of the 

PSC device was assisted by the proposed metaheuristic approach involving L27 Grey 

Relational Grade (GRG), Multiple Linear Regression (MLR) and Grey Wolf Optimizer 

(GWO) algorithm which will be further explained in the following sections. 

2.1.  PSC device simulation 

The PSC device was initially developed and simulated with multiple stacked layers 

as depicted in Fig. 1. The SCAPS-1D simulation essentially solved three 

semiconductors equations: Poisson, hole continuity and electron continuity. The 

impact of multiple layer thickness and doping concentration for each material was 

hypothetically investigated in order to outline their ideal magnitudes as the PSC 

device mechanism was explored in term of efficacy and stability especially in 

ambient conditions. In this work, CH3NH3PbI3 perovskite was utilized as an 

absorber layer sandwiched between MoS2 and WS2 as hole transport layer (HTL) 

and electron transport layer (ETL) respectively.  

Spray Pyrolyzed Fluorine-Doped Tin Oxide (SnO2:F) was utilized as 

transparent conducting oxide (TCO) layer that acted as a medium for low 

resistance’s contacts without having to block the sunlight. The illumination for 

this simulation employed a standard AM1.5G spectrum (1000 W/m2) at 
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temperature of 300 K. Metal work function (WF) for both front and back 

contacts of the PSC device were tuned at 4.4 eV and 5.1 eV respectively. The 

initial layer parameters for each material type utilized in the numerical study 

are supported by previous literature studies [25-28] as summarized in Table 1 

in which χ, Er, Eg, μn, μp, Nv, Nc, Na, Nd and Nt represents electron affinity, 

relative permittivity, bandgap energy, electron mobility, hole mobility, 

effective valence band density, effective conduction band density, acceptor 

density, donor density and defect density respectively. 

 

Fig. 1. Multiple Stacked Layers of the PSC device. 

Table 1. Simulation parameters for multiple layers of materials. 

Parameters SnO2:F 

(TCO) 

WS2 

(ETL) 

CH3NH3PbI3 

(Absorber) 

MoS2 

(HTL) 

Thickness 

(μm) 

0.2 0.2 0.2 0.2 

χ (eV) 4 3.95 3.9 4.2 

Er  9 13.6 6.5 3 

Eg (eV) 3.5 1.8 1.55 1.29 

μn (cm2/Vs) 20 100 2 100 

μp (cm2/Vs) 10 100 2 150 

Nv (cm-3) 1.8×1019 1×1019 1.8×1019 1.8×1019 

Nc (cm-3) 2.2×1018 1×1019 2.2×1018 2.2×1018 

Na (cm-3) - - - 1×1017 

Nd (cm-3) 1×1018 1×1018 1×1013 - 

Nt (cm-3) 1×1015 1×1015 2.5×1013 1×1014 

2.2. Metaheuristic optimization 

In mathematical optimization, a metaheuristic is defined as a higher level process 

to form, generate, or opt partial search algorithm that may recommend an 

acceptably decent solution to a specific optimization problem. In this work, a 

combined set of statistical method and machine learning is proposed to form a 
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metaheuristic approach in modelling multiple layer parameters of the PSC device 

for sufficiently better output performances. Figure 2 depicts the proposed flowchart 

of the metaheuristic modelling of the PSC device involving L27 Grey Relational 

Analysis (GRA), Multiple Linear Regression (MLR) and Grey Wolf Optimizer 

(GWO) algorithm. Taguchi OA is a fractional design based on a design matrix 

proposed by Dr. Genichi Taguchi, commonly used for consideration of a selected 

subset of combined multiple inputs at multiple levels. 

 L27 OA Taguchi-based 

DoE

Data normalization (Jsc 

and PCE) based on the 

larger-the-better objective 

problem

START

Stopping criteria 

satisfied

END

Calculation of deviation 

sequences

Calculation of Grey 

relational coefficients 

(GRCs)

Calculation of Grey 

relational grades (GRGs)

 Extraction of objective 

function via multiple linear 

regression (MLR)

Execution of initial 

parameters (no. of grey 

wolves, no.of max 

iteration and etc.) 

Formation of initial 

population of grey wolves 

(α, β,  δ, ω)  

Estimation and evolution 

of grey wolves position in 

accordance to the prey 

position

Gradation the grey wolves 

(revelation of the best 

solution)

No

Yes

 

Fig. 2. Proposed flowchart of the  

metaheuristic modelling of the PSC device. 

In this work, the L27 OA Taguchi-based DoE is employed in order to utilize 

multiple combinations of layer parameters in attaining 27 variations of Jsc and PCE 

of the PSC device. The layer parameters of the PSC device are varied into low level, 

medium level and high level as listed in Table 2.  

Table 2. Levels of layer parameters. 

Sym. Layer Parameters Units 
Level 

Low Medium High 

a SnO2:F thickness μm 0.2 0.5 0.8 

b SnO2:F donor density (×1018 ) cm-3 1 5 9 

c WS2 thickness μm 0.2 0.5 0.8 

d WS2 donor density (×1018) cm-3 1 5 9 

e CH3NH3PbI3 thickness μm 0.2 0.5 0.8 

f CH3NH3PbI3 donor density (×1013 ) cm-3 1 5 9 

g MoS2 thickness μm 0.2 0.5 0.8 

h MoS2 acceptor density (×1017 ) cm-3 1 5 9 
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The magnitudes of Jsc and PCE for each row are simulated and recorded 

accordingly in Table 3. To simplify the optimization process, the Grey relational 

analysis (GRA) is employed in which the magnitudes of both Jsc and PCE are 

manipulated by merging them into a single representative unit called Grey 

relational grade (GRG). The GRA is originally developed by Professor Julong 

Deng [29] from Huazhong University of Science and Technology, commonly 

utilized to solve uncertainty in data or information. 

Table 3. L27 Taguchi-based DoE and the corresponding magnitudes. 

Exp. no. a b c d e f g h 
Jsc 

(mA/cm2) 

PCE 

(%) 

1 0.2 1 0.2 1 0.2 1 0.2 1 21.21 19.38 

2 0.2 1 0.2 1 0.5 5 0.5 5 24.65 23.60 

3 0.2 1 0.2 1 0.8 9 0.8 9 25.64 24.72 

4 0.2 5 0.5 5 0.2 1 0.2 5 22.1 21.02 

5 0.2 5 0.5 5 0.5 5 0.5 9 24.73 23.90 

6 0.2 5 0.5 5 0.8 9 0.8 1 25.6 23.99 

7 0.2 9 0.8 9 0.2 1 0.2 9 22.23 21.38 

8 0.2 9 0.8 9 0.5 5 0.5 1 24.63 23.04 

9 0.2 9 0.8 9 0.8 9 0.8 5 25.49 24.43 

10 0.5 1 0.5 9 0.2 5 0.8 1 22.2 20.18 

11 0.5 1 0.5 9 0.5 9 0.2 5 24.62 23.58 

12 0.5 1 0.5 9 0.8 1 0.5 9 25.5 24.60 

13 0.5 5 0.8 1 0.2 5 0.8 5 22.14 21.07 

14 0.5 5 0.8 1 0.5 9 0.2 9 24.55 23.07 

15 0.5 5 0.8 1 0.8 1 0.5 1 25.39 23.80 

16 0.5 9 0.2 5 0.2 5 0.8 9 21.13 20.24 

17 0.5 9 0.2 5 0.5 9 0.2 1 24.55 22.93 

18 0.5 9 0.2 5 0.8 1 0.5 5 25.55 24.48 

19 0.8 1 0.8 5 0.2 9 0.5 1 22.16 20.27 

20 0.8 1 0.8 5 0.5 1 0.8 5 24.49 23.46 

21 0.8 1 0.8 5 0.8 5 0.2 9 25.34 24.44 

22 0.8 5 0.2 9 0.2 9 0.5 5 87.78 19.96 

23 0.8 5 0.2 9 0.5 1 0.8 9 24.52 23.68 

24 0.8 5 0.2 9 0.8 5 0.2 1 25.49 23.88 

25 0.8 9 0.5 1 0.2 9 0.5 9 21.96 21.10 

26 0.8 9 0.5 1 0.5 1 0.8 1 24.57 22.97 

27 0.8 9 0.5 1 0.8 5 0.2 5 25.46 24.39 

Basically, the primary aim of the optimization was to find the optimal layer 

parameters that may generate larger Jsc and PCE of the PSC device. For that reason, 

the magnitudes of both Jsc and PCE need to be normalized with respect to their 

corresponding problem which is larger-the-better. The mathematical formulation 

for normalizing larger-the-better objective problem is given as follows: 

𝑍𝑜
^ =

𝑍𝑜(𝑛)−𝑚𝑖𝑛𝑍𝑜(𝑛)

𝑚𝑎𝑥𝑍𝑜(𝑛)−𝑚𝑖𝑛𝑍𝑜(𝑛)
                                                                                                 (1) 

where Zo(n), min Zo(n) and max Zo(n) represent the output parameters of the PSC 

device (Jsc and PCE), the minimum magnitude of the output parameter in a column  

and the maximum magnitude of the output parameter in a column respectively. 
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Subsequently, the deviation sequence, ∆o(n) for each row is calculated by 

subtracting the reference value from the normalized magnitude of each 

corresponding row as follows: 

∆𝑜(𝑛) = |𝑍𝑟
∗(𝑛) − 𝑍𝑜

^(𝑛)|                                                                                      (2) 

where Zr*(n) is the reference value which is commonly set to 1 (unity). The 

calculated ∆o(n) for every row is then used to compute the Grey relational 

coefficient (GRC) as follows:  

𝐺𝑅𝐶(𝑛) =
∆𝑚𝑖𝑛+𝜀∆𝑚𝑎𝑥

∆𝑜(𝑛)+𝜀∆𝑚𝑎𝑥
                                                                                            (3) 

where ε stands for the distinguishing coefficient that commonly ranged from 0 to 

1. For this case, the magnitude of ε is preferred to be 0.5 because it does contribute 

moderate distinguishing impact and stability in which the calculated GRC and 

overall rank of grades will not much affected. The ∆max and ∆min stand for maximum 

and minimum magnitude of the deviation for each column respectively. The 

computed GRC of each row is then divided with the total output parameters (two) 

as mathematically formulated as: 

𝐺𝑅𝐺(𝑛) =
1

2
[𝐺𝑅𝐶𝐽𝑠𝑐(𝑛) + 𝐺𝑅𝐶𝑃𝐶𝐸(𝑛)]                                                                (4) 

Extensively, the importance of each layer parameters on the GRG discrepancy 

can be investigated via multiple linear regression (MLR). Moreover, MLR is 

utilized to extract the objective function that relates the eight input layer parameters 

and the computed GRG for each individual row. Hence, the linear regression model 

that describes the relationship between eight independent inputs and a single 

dependable output can be formulated as: 

𝑦 = 𝑟0 + 𝑟1𝑎 + 𝑟2𝑏 + 𝑟3𝑐 + 𝑟4𝑑 + 𝑟5𝑒 + 𝑟6𝑓 + 𝑟7𝑔 + 𝑟8ℎ+∈                               (5) 

for which a, b, c, d, e, f, g and h stand for the input layer parameters, r0 is the 

intercept, r1r2r3r4r5r6r7r8 are the regression coefficients for the respective layer 

parameters and ∈ is the error term. The error term (∈) is neglected when estimating 

the regression coefficients in which the objective function is finally expressed as: 

𝑦′ = 𝑟0 + 𝑟1𝑎 + 𝑟2𝑏 + 𝑟3𝑐 + 𝑟4𝑑 + 𝑟5𝑒 + 𝑟6𝑓 + 𝑟7𝑔 + 𝑟8ℎ                                  (6) 

The objective function is then evaluated using the grey wolf optimizer (GWO) 

algorithm in which the leadership hierarchy and hunting mechanism of the grey 

wolf in nature are emulated. The GWO algorithm is a metaheuristic optimization 

algorithm inspired by the social hierarchy and hunting behavior of grey wolves. It 

was proposed by Mirjalili et al. [30] in 2014. The algorithm mimics the hunting 

mechanism of grey wolves in the wild, where they follow three main roles: alpha, 

beta, and delta wolves [31]. 

However, in this work, the leadership hierarchy of the grey wolf is emulated by 

categorizing the initial population into four different groups namely as alpha (α), 

beta (β), delta (δ) and omega (ω). The α acts as the leader of a pack of wolves 

allocated at the first level in the hierarchy. The β is subordinated to α that might 

provide assistance in making decisions and activities of the pack. The δ is 

subordinated to the β and the ω is the lowest ranking of the hierarchy. Although the 

δ hierarchically dominates the ω, both still must submit to the α and ω.  

The GWO algorithm is basically based on the mathematical modeling of the 

hunting approaches and social behaviors of the grey wolves. Figure 3 shows the 
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pseudo code of the GWO algorithm where k represents the current iteration, s is a 

parameter which linearly decreased from 2 to 0 over the course of iterations, A and 

C are coefficient vectors, Xα Xβ and Xδ are the position vectors of grey wolves. 

initialize the grey wolves population Xi(i = 1,2,….,n) 

initialize α, A and C 

compute the fitness of search agent 

Xα = the best search agent 

Xβ = the second best search agent 

Xδ = the third best search agent 

While (k<maximum number of iterations) 

for each search agent 

update the position of the current search agent 

end for 

update s, A and C 

compute the fitness of all search agents 

update Xα Xβ and Xδ 

s=s+1 

end while 

return Xα 

Fig. 3. Pseudo code of the GWO algorithm. 

Since the primary aim of this research work is to search the maximum 

magnitude of the objective function, it is then inverted and formulated within the 

pre-specified lower and upper boundaries. Thus, the main preferences for the GWO 

algorithm applied in this work are shown as follows: 

Population size of grey wolves = 300 

Max. no. of iterations = 100 

No. of input variables = 8 

Minimize -f(GRG) 

Subject to the constraints: 

0.1 μm ≤ a ≤ 0.9 μm 

0.5×1018 cm-3≤ b ≤ 9.5×1018 cm-3 

0.1 μm ≤ c ≤ 0.9 μm 

0.5×1018 cm-3 ≤ d ≤ 9.5×1018 cm-3 

0.1 μm ≤ e ≤ 0.9 μm 

0.5×1013 cm-3 ≤ f ≤ 9.5×1013 cm-3 

0.1 μm ≤ g ≤ 0.9 μm 

0.5×1017 cm-3 ≤ h ≤ 9.5×1017 cm-3 

3.  Results and Discussion  

This section comprehensively discusses the overall results of the metaheuristic 

modelling of multiple layer parameter devices SC device. Data manipulation is 

conducted by employing GRA in order to ease the modelling complexity. Table 

4 comprises the computed magnitudes of deviation sequences, GRCs and GRGs 

based on L27 OA Taguchi-based DoE. 
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Table 4. Computed magnitudes of deviation sequences, GRCs and GRGs. 

Exp. 

No. 

Deviation Sequences, 

∆oi (n) 
GRC (n) 

GRG (n) Rank 

Jsc PCE Jsc PCE 

1 0.9988 1 0.3336 0.333333 0.333467 27 

2 0.947187 0.209738 0.345498 0.704485 0.524992 13 

3 0.932333 0 0.349081 1 0.67454 2 

4 0.985446 0.692884 0.336599 0.419152 0.377876 23 

5 0.945986 0.153558 0.345785 0.765043 0.555414 9 

6 0.932933 0.136704 0.348935 0.785294 0.567114 8 

7 0.983496 0.625468 0.337042 0.44426 0.390651 20 

8 0.947487 0.314607 0.345426 0.613793 0.47961 17 

9 0.934584 0.054307 0.348533 0.902027 0.62528 6 

10 0.983946 0.850187 0.336939 0.370319 0.353629 25 

11 0.947637 0.213483 0.34539 0.700787 0.523089 14 

12 0.934434 0.022472 0.34857 0.956989 0.652779 3 

13 0.984846 0.683521 0.336735 0.422468 0.379602 22 

14 0.948687 0.308989 0.34514 0.618056 0.481598 16 

15 0.936084 0.172285 0.348169 0.743733 0.545951 11 

16 1 0.838951 0.333333 0.373427 0.35338 26 

17 0.948687 0.335206 0.34514 0.598655 0.471897 19 

18 0.933683 0.044944 0.348752 0.917526 0.633139 4 

19 0.984546 0.833333 0.336803 0.375 0.355902 24 

20 0.949587 0.235955 0.344926 0.679389 0.512158 15 

21 0.936834 0.052434 0.347987 0.905085 0.626536 5 

22 0 0.891386 1 0.359354 0.679677 1 

23 0.949137 0.194757 0.345033 0.719677 0.532355 12 

24 0.934584 0.157303 0.348533 0.760684 0.554608 10 

25 0.987547 0.677903 0.336124 0.424483 0.380304 21 

26 0.948387 0.327715 0.345212 0.604072 0.474642 18 

27 0.935034 0.061798 0.348424 0.89 0.619212 7 

The rank of GRGs is evaluated based on their higher order of magnitude. The 

quality of multiple responses (Jsc and PCE) is portrayed by the magnitude of 

calculated GRG in each row. In this case, experimental row no. 22nd exhibits the 

highest calculated GRG, implying that the combinational layer parameters 

employed in row no. 22nd would produce the optimal Jsc and PCE magnitudes.  

Applying the MLR approach with aim of modeling the regression equation 

is a crucial step in linking the correlation between multiple layer parameters 

and the GRG. Forming up a correlation between the calculated GRGs and the 

layer parameters such as SnO2:F thickness, SnO2:F donor density, WS2 

thickness, WS2 donor density, CH3NH3PbI3 thickness, CH3NH3PbI3 donor 

density, MoS2 thickness and MoS2 acceptor density is essential in formulating 

the objective function. The correlation between eight input layer parameters 

and the GRGs is statistically described in normal Q-Q plot (Fig. 4). The results 

of the MLR analysis are summarized in Table 5.  
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Fig. 4. Normal Q-Q for eight layer parameters. 

Table 5. Summary of MLR Analysis. 

Term Regression Coefficients Std. Error t value Pr (>|t|) 
Signif. 

code 

Intercept 0.262084 0.064622 4.056 0.000742 *** 

a 0.038231 0.050733 0.754 0.460843  

b -0.001791 0.003805 -0.471 0.643442  

c -0.066809 0.050733 -1.317 0.204398  

d 0.005241 0.003805 1.377 0.185250  

e 0.350866 0.050733 6.916 1.83e-06 *** 

f 0.004255 0.003805 1.118 0.278113  

g 0.017364 0.050733 0.342 0.736114  

h 0.007094 0.003805 1.864 0.078673  

Significant Code: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’ 0.1-1 ‘ ’ 

Residual standard error: 0.06457 on 18 degrees of freedom 

Multiple R-squared: 0.7603, Adjusted R-squared: 0.6538  

F-statistic: 7.137 on 8 and 18 DF, p-value: 0.0002778 

Layer parameter e (CH3NH3PbI3 thickness) is regarded as the most dominant 

factor influencing the GRGs with probability value (1.83e-06). Diversely, the rest 

of the layer parameters are regarded as neutral factors (probability value > 0.05) in 

which their magnitudes do not contribute much influence on the GRG. The 

developed MLR model in this work is mathematically formulated as: 

𝑓(𝐺𝑅𝐺) = 0.262084 + 0.038231*a - 0.001791*b - 0.066809*c + 0.005241*d + 

0.350866*e + 0.004255*f +0.017364*g + 0.00709*h                                        (7) 

The model is then inverted within the specified upper and lower boundaries in 

order to fit into GWO algorithm for solving the maximization problem. Therefore, 

the objective function of the maximization problem for GWO algorithm can be 

mathematically written as: 

𝑓(𝐺𝑅𝐺)−1 =  −0.262084 - 0.038231*a + 0.001791*b + 0.066809*c - 0.005241*d 

- 0.350866*e - 0.004255*f -0.017364*g - 0.00709*h                                              (8) 
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The GWO algorithms are implemented using MATLAB software. After 

100th iterations, the minimum magnitude of the inverted objective function is 

converged at -0.7531 as depicted in Fig. 5. The optimum layer parameters 

yielding the most minimum magnitude of the objective function are predicted 

as; SnO2:F thickness (0.614 μm), SnO2:F density (0.5×1018 cm-3), WS2 

thickness (0.1 μm), WS2 donor density (9.5×1018 cm-3), CH3NH3PbI3 thickness 

(0.9 μm), CH3NH3PbI3 donor density (9.5×1013 cm-3), MoS2 thickness (0.1 μm) 

and MoS2 acceptor density (9.5×1017 cm-3). 

 

Fig. 5. Convergence plot of GWO. 

To verify the predictive performance of the proposed metaheuristic approach, 

the PSC device is re-simulated using the predicted layer parameters. The band of 

energy in a PSC represents the energy states of electrons and is fundamental for 

converting sunlight into electrical power. PSCs rely on multiple energy levels, 

typically showing the p-type and n-type region which is halved by intersection. 

Implanting process in p-type PSCs leads to an excess of positively charged "holes," 

where the valence band is nearly proximate to the Fermi level. In n-type PSC, 

doping results in more negatively charged electrons, forcing the conduction band 

proximate to the Fermi level. The meeting point forms a depletion layer without 

free carriers and creates an electric field. Photons striking the solar cell excite 

electrons, generating electron-hole pairs. Figure 6 depicts the energy band diagram 

of the optimized PSC configuration.  

The disparity in lattice parameters at interfaces induces defects, which 

promote exciton recombination. At these interfaces, two types of band 

alignments, known as cliff and spike structures, can arise, often facilitating 

charge carrier recombination. The cliff structure specifically causes bending of 

the conduction band, while achieving optimal efficiency at the p-n junction 

requires a positive band offset—akin to the spike structure. In the optimized 

PSC design, the positive spike offset measures +0.33 eV (refer to Fig. 6), 

indicating enhanced device performance due to effective band alignment. This 

improvement is associated with the absorber layer (CH3NH3PbI3) 

recombination activation energy (Ea), which is crucial for device functionality.  
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Within the depletion region, the electric field separates excitons (electrons 

and holes), producing current upon connection to an external circuit [32]. The 

band diagram illustrates electron energy states and shows how absorbed 

photons elevate electrons from the valence to conduction bands, thereby 

generating electrical current [32]. In the optimized PSC, the band alignment 

shifts subtly, with the band gap narrowing progressively with distance, a result 

of band bending at the interfaces. 

 

Fig. 6. Energy band diagram of the optimized PSC configuration. 

The band structure reveals a built-in voltage gap of approximately +1.1 eV, with 

potential variations caused by band bending across various interfaces. The built-in 

voltage (Vbi), which represents the potential difference between the valence band 

of a p-type semiconductor and the conduction band of an n-type semiconductor, 

measures 1.1 eV at 300K under thermal equilibrium. In this state, electron flow is 

steady at a constant temperature. As temperature rises, lattice vibrations increase, 

which can lead to a reduction in the semiconductor’s bandgap (Eg), or the energy 

separation between the valence and conduction bands.  

With a narrowed bandgap, the energy gap between the Fermi levels (Fp for p-

type and Fn for n-type) decreases, leading to a reduced Vbi within the PSC structure. 

In the energy diagram, MoS2’s LUMO level acts as the electron-blocking layer 

(EBL) at 3.46 eV, while in the CH3NH3PbI3 region, the valence band edge is at 1.29 

eV, and the conduction band edge at 1.8 eV. The HOMO level of WS2 functions as 

the hole-blocking layer (HBL) at 1.55 eV, with these energy levels and temperature 

effects influencing PSC performance. 

An interface resembling a "cliff" emerges between CH3NH3PbI3 and MoS2, 

where the conduction band offset (CBO) of +0.28 eV forms an electron-blocking 

barrier from the absorber layer toward the hole transport layer (HTL). This barrier 

is unfavourable as it increases charge carrier recombination, thus lowering the 

device’s efficiency by permitting electron backflow across the junction. In a similar 

way, a cliff interface between CH3NH3PbI3 and WS2 shows a valence band offset 

(VBO) of -0.15 eV, leading to a potential drop that restricts hole movement from 

the absorber to the electron transport layer (ETL). Such cliff interfaces can lead to 

hole accumulation, raising recombination rates. The VBO at the WS2/CH3NH3PbI3 
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boundary measures 0.15 eV, creating a minor barrier, whereas the 

MoS2/CH3NH3PbI3 interface displays a larger barrier of 1.53 eV, posing a 

substantial restriction for hole transfer. Meanwhile, the CBO at the 

WS2/CH3NH3PbI3 interface is 0.33 eV, forming a strong electron barrier, while that 

at the MoS2 interface is slightly lower at 0.28 eV, creating a lesser obstacle. 

Modifying the voltage in PSCs has a pronounced effect on capacitance, directly 

impacting the cell’s charge storage capability. In PSCs, capacitance is inherently 

tied to the electronic properties of the materials used. Shifts in voltage affect energy 

states, adjust the Fermi level, and modify the concentration of charge carriers, all 

of which alter capacitance. Furthermore, temperature has a significant influence on 

the dielectric properties, leading to increased capacitance. This temperature impact 

on solar cell performance can be assessed through Mott-Schottky (MS) analysis, 

represented by specific measurements denoted as. 

1

𝐶2 =
1

𝑆2.𝜀.𝑞
×

1

𝑁𝑎
× (𝑉 − 𝑉𝑏𝑖 −

𝑘𝑏𝑇

𝑞
)                                                                    (9) 

In this case, C corresponds to capacitance, S to surface area, q to the 

elementary charge, and ε to the space permittivity. Na indicates the acceptor 

density, Vbi refers to the built-in voltage (flat band potential), kB is the 

Boltzmann constant, and T stands for temperature in Kelvin units. As shown in 

Fig. 7(a), low bias below 0.5 V has no effect on capacitance, while a higher 

bias above 0.5 V alters the capacitance. The Vbi is determined at the point where 

the tangent line meets the voltage axis on the MS plots, as illustrated in Fig. 7 

(b). In Fig. 7(b), at 300 K, the Vbi registers at +1.1 eV, corresponding with the 

band diagram shown in Fig. 6 for the same temperature.  

 

Fig. 7. (a) The impact of voltage on capacitance  

and (b) Mott-Schottky (MS) analysis. 

This result indicates that the band alignment in the optimized PSC design is 

stable. However, as the temperature rises from 300 K to 500 K, the Vbi decreases 

from +1.1 eV to +0.68 V, pointing to increased exciton recombination likely 

due to higher series resistance. The PSC design maintains an efficiency of 82% 

at 350 K, though efficiency declines to approximately 62% at 500 K due to 

substantial recombination losses. The Vbi arises due to the potential difference 

established at equilibrium between the p-type and n-type regions of a p-n 

junction, caused by the movement of charges.  
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At first, the diffusion of majority carriers creates zones of opposite charges, 

forming a depletion region that determines Vbi. Changes in temperature can affect 

carrier density and the width of the depletion region, impacting Vbi. The alignment 

of energy bands across the junction controls how current flows through the device. 

Voltage fluctuations alter charge carrier movement, field strength, and material 

properties, impacting charge storage and the overall efficiency and stability of PSC 

devices. A thorough grasp of the generation and recombination behaviors of a PSC 

requires knowledge of fundamental principles. Charge carriers are generated when 

photons are absorbed, provided their energy is equal to or exceeds the material’s 

bandgap energy (Eg), allowing electron-hole pairs to be created [33]. Materials with 

higher absorption coefficients (α) enhance photon uptake, leading to increased 

production of charge carriers [34], as illustrated in Eq. (10). 

𝐺 =∝. 𝛷                                                         (10) 

The photon flux and generation process are symbolized by Φ and G, 

respectively. The recombination of electrons and holes results in the emission of a 

photon, particularly in materials with a direct bandgap. The energy produced from 

this recombination is given to a different charge carrier. SRH recombination, 

significant in defective materials, happens through defect states within the bandgap 

[35]. The rate of this recombination is defined by Eq. (11). 

𝑅𝑆𝑅𝐻 =
𝑛𝑃−𝑛𝑖

2

𝜏𝑝(𝑛+𝑛𝑖)+(𝑃+𝑛𝑖)

                        (11) 

Carrier lifetimes are denoted by 𝜏𝑝  and 𝜏𝑛 , and ni refers to the inherent 

concentration of charge carriers. When in a state of equilibrium, the rates of 

generation and recombination processes are identical, as shown in Eq. (12).  

𝐺 = 𝑅                   (12) 

Light exposure raises the rate of generation, creating additional electron-

hole pairs and disrupting the balance. Consequently, this results in an increase 

in photocurrent; however, recombination decreases the open-circuit voltage 

(Voc) by diminishing the number of available carriers. Elevated rates of 

recombination reduce the overall carrier count which decreases Voc. Quantum 

efficiency (QE) gauges the effectiveness of photon absorption in generating 

carriers, and excessive recombination weakens QE by limiting carrier 

collection. Surface passivation, through reducing defects and passivating 

dangling bonds, decreases SRH recombination events [36].  

The rates of carrier generation and recombination influenced by optical 

excitation. In the design of the perovskite solar cell (PSC), light enters through the 

electron transport layer (ETL), where the rates of exciton generation and 

recombination are lower than those on the hole transport layer (HTL) side within 

the absorbing layer. Figure 8 indicates that the generation rate exceeds the 

recombination rate, which enhances the operational efficiency of the cell and results 

in more consistent electrical performance. 

An increased surface area allows for better light absorption without 

substantially increasing recombination, thereby improving the device's overall 

performance. The PSC's efficiency hinges on optimizing both the generation and 

recombination processes. By selecting superior materials and refining structural 

design to enhance electron-hole pair generation while minimizing recombination 
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through defect passivation, the power conversion efficiency (PCE) can be 

improved. This interplay is more clearly illustrated by examining the right and left 

axes of Fig. 8. The comparison of J-V transfer curves between the pre-metaheuristic 

and post-metaheuristic are depicted in Fig. 9. 

 

Fig. 8. Generation -recombination characteristics. 

 

Fig. 9. J-V transfer curves of PSC device during  

pre-metaheuristic and post-metaheuristic optimization. 

Based on the graph, the Jsc of the PSC device has improved by ~17.4% after 

going through metaheuristic modeling. The Jsc magnitude of the PSC device after 

metaheuristic modeling has increased to 25.67 mA/cm2. Figure 10 shows the 

cylindrical graph indicating the improvement of both Jsc and PCE of the PSC device 

during pre-metaheuristic and post-metaheuristic. The PCE of the PSC device has 

been observed to have a decent improvement after the metaheuristic modeling 

where the PCE has improved to 24.73% compared to 19.38% (pre-metaheuristic). 

There is a decent increase of 5.35% in PCE magnitude. 
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Fig. 10. Comparative cylindrical graph of Jsc  

and PCE between pre-metaheuristic and post-metaheuristic. 

Based on the previous variance analysis, the MoS2 (HTL) acceptor density has 

been identified as the most dominant factor influencing both Jsc and PCE 

magnitude. The acceptor concentration of MoS2 plays a crucial role in enhancing 

Jsc and PCE as a suitably higher-level density (9.5×1017 cm-3) is applied as 

previously predicted by metaheuristic approach. The scattering event occurred in 

the MoS2 layer at lower doping density does affect the hole mobility.  

As temperature increases deliberately, the effects of scattering significantly 

reduce the hole mobility. Hence, increasing the acceptor density of the MoS 2 

layer would subsequently increase the probability of carrier’s collision where 

the hole mobility is tremendously boosted as well as total current density. 

Higher generated Jsc may definitely contribute a significant impact on achieving 

better PCE as the ratio of energy output from the PSC device to input energy 

from the sun becoming much higher. Table 6 summarizes the optimized 

magnitudes of the layer parameters as compared to pre-metaheuristic.  

Table 6. Summary of Optimized Parameters of the PSC device. 

Input/output 

Parameter 
Units 

Pre-

metaheuristic 

Post-

metaheuristic 

SnO2:F thickness µm 0.2 0.614 

SnO2:F donor density cm-3 1×1018 0.5×1018 

WS2 thickness µm 0.2 0.1 

WS2 donor density cm-3 1×1018 9.5×1018 

CH3NH3PbI3 thickness µm 0.2 0.9 

CH3NH3PbI3 donor density cm-3 1×1013 9.5×1013 

MoS2 thickness µm 0.2 0.1 

MoS2 acceptor density cm-3 1×1017 9.5×1017 

Power conversion efficiency 

(PCE) 

% 19.38 24.73 

Current Density (Jsc) A/cm2 21.21×10-3 25.67×10-3 

It can be concluded that the proposed metaheuristic approach involving multiple 

methods such as L27 OA Taguchi-based DoE, GRA, MLR and GWO has been 

successfully modeling multiple layer parameters of the PSC device for much 
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improved Jsc and PCE. The proposed predictive approach is capable of estimating 

the most optimal value of layer parameters within the specified/desired lower and 

upper boundaries for higher Jsc and PCE of the PSC device. 

4.  Conclusions 

Multiple layer parameters of the PSC device have been predictively modeled 

through a metaheuristic approach combining simulation tool (SCAPS), L27 OA 

Taguchi-based DoE, GRA, MLR and GWO. The output data are retrieved via 

SCAPS simulation guided by L27 OA Taguchi-based DoE. The output data (Jsc 

and PCE) are then manipulated to be a single representative unit by using GRA 

purposely for much easier computation. The MLR analysis is subsequently 

conducted in order to develop the objective function that relates multiple input 

layer parameters to the GRG variations. From the analysis, CH3NH3PbI3 

thickness is identified as the most dominant layer parameter influencing the 

GRG. Since the GWO algorithms are specifically developed to search for the 

minimum value of the objective function, the objective function has to be inverted 

(for searching the maximum point). After 100 th iterations, the minimum 

magnitude of the inverted objective function is converged at -0.7531.  

The final results reveal that the metaheuristic approach has successfully predicted 

the most optimal value of layer parameters within the specified/desired lower and upper 

boundaries where both Jsc and PCE of the PSC device are optimized to 25.67 mA/cm2 

and 24.73%, respectively. Future research could examine and integrate alternative 

computational intelligence methods beyond the GWO algorithm with Taguchi-GRA 

for more precise and thorough outcomes. These important discoveries showcase the 

advancements made in modeling PSC structures. Ultimately, the results of this work 

can guide future efforts in developing highly efficient PSCs. 
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Nomenclatures 
 

A A coefficient vector 

C A coefficient vector 

Eg Bandgap Energy 

Er Relative Permittivity 

Jsc Short Circuit Current Density 

Na Acceptor Density 

Nc Conduction Band Density 

Nd Donor Density 

Nt Defect Density 

s A parameter which linearly decreased from 2 to 0 over the 

course of iterations 
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Xα Best Search Agent 
Xβ Second Best Search Agent 
Xδ Third Best Search Agent 
Z^

0 Normalizing larger-the-better objective problem 
Zo(n) Output parameters of the PSC device (Jsc and PCE) 
 

Greek Symbols 

 Alpha 

 Beta 

δ Delta 

ω Omega 

ε Distinguishing Coefficient 

ϵ Error term 

μn Electron Mobility 

μp Hole Mobility 

χ Electron Affinity 
 

Abbreviations 

CIGS Copper Indium Gallium Selenide Solar Cell 

CBO Conduction Band Offset 

CdS Cadmium Sulfide 

CH3NH3PbI3 Methylammonium Lead Iodide  

CuTe Copper Telluride 

DoE Design of Experiments 

DSSC Dye-sensitized Solar Cell 

EBL Electron Blocking Layer 

ETL Electron Transport Layer 

FF Fill Factor 

GRA Grey Relational Analysis 

GRC Grey Relational Coefficient 

GRG Grey Relational Grade 

GWO Grey Wolf Optimizer 

HBL Hole Blocking Layer 

HTL Hole Transport Layer 

HOMO Highest Occupied Molecular Orbital 

LUMO Lowest Unoccupied Molecular Orbital 

MLR Multiple Linear Regression 

MoS2 Molybdenum Disulfide 

OA Orthogonal Array 

PCE Power Conversion Efficiency 

PSC Perovskite Solar Cell 

PV Photovoltaic 

RSM Response Surface Methodology 

SCAPS Solar Cell Capacitance Simulator 

SnO2:F Spray Pyrolyzed Fluorine-Doped Tin Oxide 

SRH Shockley-Read-Hall Recombination  

TCO Transparent Conducting Oxide 

VBO Valance Band Offset 

WS2 Tungsten Disulfide 
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