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Abstract

Perovskite solar cells offer numerous benefits like simplified production,
adaptability, and affordability in contrast to silicon-based counterparts. Yet,
enhancing their power conversion efficiency remains difficult due to the diverse
effects of various layer parameters variability. This research work proposes the
utilization of metaheuristic approach in optimizing multiple layer parameters of
Perovskite Solar Cell (PSC) for better output properties. The metaheuristic
approach sequentially employs the L27 orthogonal array (OA) Taguchi-based
design of experiment (DoE), Grey Relational Analysis (GRA), Multiple Linear
Regression (MLR) and Grey Wolf Optimizer (GWO). The L27 OA Taguchi-based
DoE is initially employed to mine sufficient output data simulated using one
dimensional solar cell capacitance simulator (SCAPS-1D). GRA is utilized to
merge the Jic and PCE into a single representative grade called Grey Relational
Grade (GRG) for holistically improved PSC performances. MLR is then
performed to establish the linear relationship between layer parameters and the
computed GRGs, thereby modeling the objective function. The best solutions of
the MLR model are finally predicted by using GWO algorithm where both Jsc
and PCE are successfully optimized to 25.67 mA/cm? and 24.73%, respectively.

Keywords: Grey relational analysis, Grey wolf optimizer, Power conversion
efficiency, Short circuit current density, Taguchi.

2064



Metaheuristic Optimization of Perovskite Solar Cell Performance using. . . . . 2065

1. Introduction

Currently, the global need for energy relies significantly on fossil fuels.
Nevertheless, this finite reserve of fossil fuels is on the brink of exhaustion.
Furthermore, it poses environmental hazards due to its emission of greenhouse
gases. Thus, in the absence of exploration into alternative or renewable sources, the
world is poised to encounter a grave energy predicament in the foreseeable future.
Renewable energies represent a pure form of energy, emitting no hazardous
substances towards environments. Amid the spectrum of renewable energy choices,
solar energy emerges as the swiftest expanding resource owing to its simple
adoption. Solar panels, often known as PV cells or photovoltaic cells, directly
convert sunlight into electrical power. Thin-film solar cells, distinct from
conventional photovoltaic cells, employ a thin semiconductor layer, like
perovskite-based absorbers, making them flexible and lightweight, and
consequently more cost-effective than silicon solar cells [1].

Numerous researchers have rigorously attempted to attain the exceptional
photovoltaic efficiency of perovskite solar cells (PSCs) utilizing the CH3NH;3Pbl3
absorber material [2-5]. Nevertheless, a fundamental hurdle to their extensive
commercial deployment lies in the stability issue confronting perovskite solar cells
(PSCs), necessitating resolution. Researchers have put forward various techniques
to enhance both the power conversion efficiency (PCE) and stability of PSCs.
Dimensionality and parameter optimization involve the utilization of a stable
organic cation during perovskite material formation, while interface engineering
stands as a pivotal strategy in enhancing both stability and efficiency.

In recent times, several optimization approaches have been employed to discover
the most effective blend of material parameters for solar cells, resulting in superior
electrical and optical performance. Analysis of MAPbI3-based perovskite solar cells
(PSCs) was conducted by combining machine learning (ML) models with SCAPS-1D
simulations [6]. XGBoost ML algorithm achieved the highest accuracy in predicting
PCE in which the optimal structure reached a PCE of 34.65%. Additionally, an ANN-
based ML model accurately predicted PCE (R? = 0.999) using five semiconductor
parameters of thin-film solar cells (TFSCs) [7]. The best configuration achieved a PCE
0f30.18%. Real Coded Genetic Algorithm (RCGA) was integrated with MATLAB and
Atlas Silvaco for multi-dimensional optimization [8].

The proposed method closely matched experimental results and outperformed
conventional techniques, achieving a solar cell PCE of 26.08% under AMI.5
conditions. Employing response surface methodology (RSM), researchers crafted and
optimized nanocrystalline transparent coatings for Si solar cells. The outcome was
reflection values below 5% across a wide spectrum of wavelengths, with minimal
reflection recorded at 560 nm for a ZnO nanoparticle size of 38 nm, suggesting
significant advancements in photo-activity [9]. The utilization of RSM for optimization
purposes in an organic tandem solar cell has yielded a significant 47.7% increase in
PCE, driven by modifications in the thicknesses of the front and back cells [10].

Apart from that, the utilization of the Taguchi approach in estimating the
optimal thickness of cadmium sulfide (CdS), perovskite (CHsNH3Pbls), and copper
telluride (CuTe) yielded elevated overall PSC performances [11]. The utilization of
the Taguchi method also extended to the fabrication of photoanodes for dye-
sensitized solar cells (DSSC), showcasing a significant improvement in FF and
PCE [12]. Using the Taguchi technique, the optimal bandgap combination for the
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CIGS solar cell was established, resulting in enhanced photovoltaic performance,
achieving an average efficiency of 22.08% [13]. Moreover, metaheuristic
algorithms such as the bald eagle search and genetic algorithm were applied to
determine the optimal parametric configuration of solar cells [14-18]. These
algorithms have shown promise in forecasting the ideal material parameters for
enhanced solar cell efficiency.

In the quest to improve electrical performances, solar cell simulation can be
merged with multiple optimization techniques [19-21]. These methodologies offer
predictive insights into device performance prior to real-world testing and
manufacturing, thus offering substantial time and cost savings. This research
introduces an approach that combines SCAPS-1D simulation with a hybrid
optimization strategy involving L27 Taguchi Grey relational analysis (GRA),
multiple linear regression (MLR), and Grey wolf optimizer (GWO) algorithm to
optimize perovskite solar cell layer parameters for enhanced Js. and PCE.

Significant elements in enhancing the optimization strategy for the perovskite
solar cell include developing a novel hybrid optimization method that incorporates
L27 Taguchi-GRA, multiple linear regression (MLR), and Grey wolf optimizer
(GWO) algorithm; determining the most significant layer parameters impacting J
and PCE; forecasting the optimal combination of layer parameters for achieving
maximum Js. and PCE; validating the proposed metaheuristic approach by
comparing it with pre-metaheuristic outputs.

2. Simulation and Metaheuristic Optimization

The simulation work performed in this recent study was referenced from the work of
Kohnehpoushi et al. [22] and Sobayel et al. [23] in which both hole and electron
transport layer of the PSC device employed molybdenum disulfide (MoS2) and
tungsten disulfide (WS2) material respectively. SCAPS-1D software invented by
Department of Electronics and Information Systems University of Gent Belgium [24]
was utilized to perform numerical simulation of the PSC device. The modelling of the
PSC device was assisted by the proposed metaheuristic approach involving L,; Grey
Relational Grade (GRG), Multiple Linear Regression (MLR) and Grey Wolf Optimizer
(GWO) algorithm which will be further explained in the following sections.

2.1. PSC device simulation

The PSC device was initially developed and simulated with multiple stacked layers
as depicted in Fig. 1. The SCAPS-1D simulation essentially solved three
semiconductors equations: Poisson, hole continuity and electron continuity. The
impact of multiple layer thickness and doping concentration for each material was
hypothetically investigated in order to outline their ideal magnitudes as the PSC
device mechanism was explored in term of efficacy and stability especially in
ambient conditions. In this work, CH3;NH3Pbl; perovskite was utilized as an
absorber layer sandwiched between MoS, and WS, as hole transport layer (HTL)
and electron transport layer (ETL) respectively.

Spray Pyrolyzed Fluorine-Doped Tin Oxide (SnO::F) was utilized as
transparent conducting oxide (TCO) layer that acted as a medium for low
resistance’s contacts without having to block the sunlight. The illumination for
this simulation employed a standard AM1.5G spectrum (1000 W/m?) at
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temperature of 300 K. Metal work function (WF) for both front and back
contacts of the PSC device were tuned at 4.4 eV and 5.1 eV respectively. The
initial layer parameters for each material type utilized in the numerical study
are supported by previous literature studies [25-28] as summarized in Table 1
in which y, E. Eg, ttn, ttp, Nv, No, Na, Ng and N; represents electron affinity,
relative permittivity, bandgap energy, electron mobility, hole mobility,
effective valence band density, effective conduction band density, acceptor
density, donor density and defect density respectively.

Source of Light

Front Contact (WF = 4.4 V)

SnOxF (TCO)

WS, (ETL)

MoSz (HTL)

Back Contact (WF = 5.1 eV)

Fig. 1. Multiple Stacked Layers of the PSC device.

Table 1. Simulation parameters for multiple layers of materials.

Parameters SnO2:F WS: CH;NHsPbIs MoS:
(TCO) (ETL) (Absorber) (HTL)
Thickness 0.2 0.2 0.2 0.2
(pm)
x (eV) 4 3.95 3.9 42
E: 9 13.6 6.5 3
E;(eV) 3.5 1.8 1.55 1.29
Jn (cm?/Vs) 20 100 2 100
Hp (cm?/Vs) 10 100 2 150
Ny (em™) 1.8x10" 1x10"° 1.8x10" 1.8x10"
Ne(cm?) 2.2x10'8 1x10"? 2.2x10'8 2.2x10'8
Na(cm) - - - 1x10"7
Na(cm) 1x10'8 1x10'8 1x1013 -
N:(cm?) 1x10'3 1x10% 2.5%10"3 1x10'

2.2.Metaheuristic optimization

In mathematical optimization, a metaheuristic is defined as a higher level process
to form, generate, or opt partial search algorithm that may recommend an
acceptably decent solution to a specific optimization problem. In this work, a
combined set of statistical method and machine learning is proposed to form a
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metaheuristic approach in modelling multiple layer parameters of the PSC device
for sufficiently better output performances. Figure 2 depicts the proposed flowchart
of the metaheuristic modelling of the PSC device involving L,7 Grey Relational
Analysis (GRA), Multiple Linear Regression (MLR) and Grey Wolf Optimizer
(GWO) algorithm. Taguchi OA is a fractional design based on a design matrix
proposed by Dr. Genichi Taguchi, commonly used for consideration of a selected
subset of combined multiple inputs at multiple levels.

START IEEamiion of i Formation of initial
parameters (no. of grey

- — population of grey wolves

iteration and etc.) @[3 6
v
L,; OA Taguchi-based I Estimation and evolution
DoE of grey wolves position in
Extraction of objective accordance' to the prey
function via multiple linear ROSIUOR
regression (MLR) ¢
Data normalization (Jsc¢ Gr(adatl;)n‘the gfreﬁ/ VEOIVeS No
and PCE) based on the I ° the best
. solution)
larger-the-better objective
problem
Calculation of Grey
relational grades (GRGs)
Stopping criteria

satisfied

T

i Y
Calculation of deviation Cetlsebsitm el Cirgy ;o

—» relational coefficients

Fig. 2. Proposed flowchart of the
metaheuristic modelling of the PSC device.

In this work, the L,7 OA Taguchi-based DoE is employed in order to utilize
multiple combinations of layer parameters in attaining 27 variations of J,. and PCE
of'the PSC device. The layer parameters of the PSC device are varied into low level,
medium level and high level as listed in Table 2.

Table 2. Levels of layer parameters.

Sym Layer Parameters Units Low MI;‘;;’ELI High
a SnO,:F thickness pm 0.2 0.5 0.8
b SnO,:F donor density (x10"¥)em™ 1 5 9
c WS, thickness um 0.2 0.5 0.8
d WS, donor density (x10'%) cm 1 5 9
e CH3NH;Pbl; thickness um 0.2 0.5 0.8
f  CH3;NH;Pbl; donor density  (x103)cm™ 1 5 9
g MoS, thickness pm 0.2 0.5 0.8
h MoS; acceptor density ~ (x10'7)em3 1 5 9
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The magnitudes of J,. and PCE for each row are simulated and recorded
accordingly in Table 3. To simplify the optimization process, the Grey relational
analysis (GRA) is employed in which the magnitudes of both J,. and PCE are
manipulated by merging them into a single representative unit called Grey
relational grade (GRG). The GRA is originally developed by Professor Julong
Deng [29] from Huazhong University of Science and Technology, commonly
utilized to solve uncertainty in data or information.

Table 3. L27 Taguchi-based DoE and the corresponding magnitudes.

Exp.no. a b ¢ d e f g h (m ,:;émz) I();:f
1 02 1 02 1 02 1 02 1 21.21 19.38
2 02 1 02 1 05 5 05 5 24.65 23.60
3 02 1 02 1 08 9 08 9 25.64 24.72
4 02 5 05 5 02 1 02 5 22.1 21.02
5 02 5 05 5 05 5 05 9 24.73 23.90
6 02 5 05 5 08 9 08 1 25.6 23.99
7 02 9 08 9 02 1 02 9 22.23 21.38
8 02 9 08 9 05 5 05 1 24.63 23.04
9 02 9 08 9 08 9 08 5 25.49 24.43
10 05 1 05 9 02 5 08 1 22.2 20.18
11 05 1 05 9 05 9 02 5 24.62 23.58
12 05 1 05 9 08 1 05 9 25.5 24.60
13 05 5 08 1 02 5 08 5 22.14 21.07
14 05 5 08 1 05 9 02 9 24.55 23.07
15 05 5 08 1 08 1 05 1 25.39 23.80
16 05 9 02 5 02 5 08 9 21.13 20.24
17 05 9 02 5 05 9 02 1 24.55 22.93
18 05 9 02 5 08 1 05 5 25.55 24.48
19 08 1 08 5 02 9 05 1 22.16 20.27
20 08 1 08 5 05 1 08 5 24.49 23.46
21 08 1 08 5 08 5 02 9 25.34 24.44
22 08 5 02 9 02 9 05 5 87.78 19.96
23 08 5 02 9 05 1 08 9 24.52 23.68
24 08 5 02 9 08 5 02 1 25.49 23.88
25 08 9 05 1 02 9 05 9 21.96 21.10
26 08 9 05 1 05 1 08 1 24.57 22.97
27 08 9 05 1 08 5 02 5 25.46 24.39

Basically, the primary aim of the optimization was to find the optimal layer
parameters that may generate larger J,. and PCE of the PSC device. For that reason,
the magnitudes of both J,. and PCE need to be normalized with respect to their
corresponding problem which is larger-the-better. The mathematical formulation
for normalizing larger-the-better objective problem is given as follows:
~_ Zo(m)—minZ,(n) (1)
o maxZ,(n)—minZ,(n)
where Z,(n), min Z,(n) and max Z,(n) represent the output parameters of the PSC
device (Jic and PCE), the minimum magnitude of the output parameter in a column
and the maximum magnitude of the output parameter in a column respectively.
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Subsequently, the deviation sequence, A,(n) for each row is calculated by
subtracting the reference value from the normalized magnitude of each
corresponding row as follows:

A(n) = 1Z;(n) — Zy(n)] 2
where Z.*(n) is the reference value which is commonly set to 1 (unity). The
calculated A,(n) for every row is then used to compute the Grey relational
coefficient (GRC) as follows:

GRC(Tl) — Amint&Dmax (3)

Ao (M) +ebmax

where ¢ stands for the distinguishing coefficient that commonly ranged from 0 to
1. For this case, the magnitude of ¢ is preferred to be 0.5 because it does contribute
moderate distinguishing impact and stability in which the calculated GRC and
overall rank of grades will not much affected. The Amax and Amin stand for maximum
and minimum magnitude of the deviation for each column respectively. The
computed GRC of each row is then divided with the total output parameters (two)
as mathematically formulated as:

GRG(n) = % [GRC}5c(n) + GRCpcp ()] (4)

Extensively, the importance of each layer parameters on the GRG discrepancy
can be investigated via multiple linear regression (MLR). Moreover, MLR is
utilized to extract the objective function that relates the eight input layer parameters
and the computed GRG for each individual row. Hence, the linear regression model
that describes the relationship between eight independent inputs and a single
dependable output can be formulated as:

y=ry+na+mnb+rc+nd+rse+ryf +r,g+rghte &)
for which a, b, ¢, d, e, f, g and & stand for the input layer parameters, 7y is the
intercept, rrorsrarsrersrs are the regression coefficients for the respective layer

parameters and € is the error term. The error term (€) is neglected when estimating
the regression coefficients in which the objective function is finally expressed as:
y =rg+na+nb+rct+ndtrse+ref +r,9 +15h (6)

The objective function is then evaluated using the grey wolf optimizer (GWO)
algorithm in which the leadership hierarchy and hunting mechanism of the grey
wolf in nature are emulated. The GWO algorithm is a metaheuristic optimization
algorithm inspired by the social hierarchy and hunting behavior of grey wolves. It
was proposed by Mirjalili et al. [30] in 2014. The algorithm mimics the hunting
mechanism of grey wolves in the wild, where they follow three main roles: alpha,
beta, and delta wolves [31].

However, in this work, the leadership hierarchy of the grey wolf is emulated by
categorizing the initial population into four different groups namely as alpha (a),
beta (B), delta (6) and omega (®). The a acts as the leader of a pack of wolves
allocated at the first level in the hierarchy. The £ is subordinated to o that might
provide assistance in making decisions and activities of the pack. The ¢ is
subordinated to the £ and the w is the lowest ranking of the hierarchy. Although the
0 hierarchically dominates the w, both still must submit to the o and w.

The GWO algorithm is basically based on the mathematical modeling of the
hunting approaches and social behaviors of the grey wolves. Figure 3 shows the
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pseudo code of the GWO algorithm where k represents the current iteration, s is a
parameter which linearly decreased from 2 to 0 over the course of iterations, A and
C are coefficient vectors, X, Xz and Xs are the position vectors of grey wolves.

initialize the grey wolves population Xi(i = 1,2, ....,n)
initialize a, A and C

compute the fitness of search agent

X, = the best search agent

Xp = the second best search agent

Xs = the third best search agent

While (k<maximum number of iterations)

for each search agent

update the position of the current search agent
end for

update s, A and C

compute the fitness of all search agents

update X, Xg and X

s=s+1

end while

return X,

Fig. 3. Pseudo code of the GWO algorithm.

Since the primary aim of this research work is to search the maximum
magnitude of the objective function, it is then inverted and formulated within the
pre-specified lower and upper boundaries. Thus, the main preferences for the GWO
algorithm applied in this work are shown as follows:

Population size of grey wolves = 300
Max. no. of iterations = 100

No. of input variables = 8
Minimize -f(GRG)

Subject to the constraints:

0.1 ym<a<0.9 pm

0.5x10"® cm>< 5 <9.5x10'% cm
0.1 um<¢<0.9 pum

0.5x10"% cm3<d <9.5x10"® ¢cm™®
0.1l um<e<0.9 um

0.5x10" cm3<£<9.5x10" em™
0.1 um<g<0.9 um

0.5x10"7 cm3< £ <9.5x10" cm™

3. Results and Discussion

This section comprehensively discusses the overall results of the metaheuristic
modelling of multiple layer parameter devices SC device. Data manipulation is
conducted by employing GRA in order to ease the modelling complexity. Table
4 comprises the computed magnitudes of deviation sequences, GRCs and GRGs
based on L27 OA Taguchi-based DoE.
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Table 4. Computed magnitudes of deviation sequences, GRCs and GRGs.

Deviation Sequences,

'g‘(f" Aoi (1) GRC (n) GRG (n) Rank
: Jue PCE Jue PCE
1 0.9988 1 03336 0333333 0333467 27
2 0047187 0209738 0345498 0704485 0.524992 13
3 0.932333 0 0.34908 1 1 067454 2
4 0985446 0.692884 0336599 0419152 0377876 23
5 0.045986  0.153558 0345785 0765043 0555414 9
6 0932033 0.136704 0348935 0785294 0567114 8
7 0983496 0.625468 0337042 044426 0390651 20
8 0.047487 0314607 0345426 0613793 047961 17
9 0.934584 0054307 0348533 0902027 0.62528 6
10 0983046  0.850187 0336939 0370319 0353629 25
11 0047637 0213483 034539 0700787 0523089 14
12 0034434 0022472 034857 0956989 0.652779 3
13 0.084846  0.683521 0336735 0422468 0379602 22
14 0.048687 0308980 034514 0.618056 0481598 16
15 0036084  0.172285 0348169 0743733 0.545951 11
16 ! 0.838051 0333333 0373427 035338 26
17 0048687 0335206 034514 0598655 0471897 19
18 0933683  0.044944 0348752 0917526 0633139 4
19 0084546 0833333 0336803 0375 0355902 24
20 0.049587 0235955 0344926 0.679389 0.512158 15
21 0036834 0052434 0347987 0905085 0.626536 5
2 0 0.891386 1 0359354 0.679677 1
23 0049137  0.194757 0345033 0719677 0532355 12
24 0.934584  0.157303 0348533 0.760684 0.554608 10
25 0987547  0.677903 0336124 0424483 0380304 21
26 0.048387 0327715 0345212 0.604072 0474642 18
27 0935034 0.061798  0.348424 089 0619212 7

The rank of GRGs is evaluated based on their higher order of magnitude. The
quality of multiple responses (Jsc and PCE) is portrayed by the magnitude of
calculated GRG in each row. In this case, experimental row no. 22" exhibits the
highest calculated GRG, implying that the combinational layer parameters
employed in row no. 22" would produce the optimal J;. and PCE magnitudes.

Applying the MLR approach with aim of modeling the regression equation
is a crucial step in linking the correlation between multiple layer parameters
and the GRG. Forming up a correlation between the calculated GRGs and the
layer parameters such as SnO»:F thickness, SnO,:F donor density, WS>
thickness, WS, donor density, CH3NH3Pbl; thickness, CH3NH3;Pblz donor
density, MoS; thickness and MoS; acceptor density is essential in formulating
the objective function. The correlation between eight input layer parameters
and the GRGs is statistically described in normal Q-Q plot (Fig. 4). The results
of the MLR analysis are summarized in Table 5.
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Fig. 4. Normal Q-Q for eight layer parameters.

Table 5. Summary of MLR Analysis.

Term Regression Coefficients Std. Error tvalue Pr (>|t)) Sclgg:ef.
Intercept 0.262084 0.064622 4.056  0.000742 ok
a 0.038231 0.050733 0.754  0.460843
b -0.001791 0.003805  -0.471 0.643442
c -0.066809 0.050733  -1.317 0.204398
d 0.005241 0.003805 1.377  0.185250
e 0.350866 0.050733 6916  1.83e-06 S
f 0.004255 0.003805 1.118  0.278113
g 0.017364 0.050733 0.342 0.736114
h 0.007094 0.003805 1.864  0.078673

Significant Code: 0 “***°, 0.001 ‘**°, 0.01 ‘**, 0.05 . 0.1-1 ¢’
Residual standard error: 0.06457 on 18 degrees of freedom
Multiple R-squared: 0.7603, Adjusted R-squared: 0.6538
F-statistic: 7.137 on 8 and 18 DF, p-value: 0.0002778

Layer parameter e (CH3NH;3Pbl; thickness) is regarded as the most dominant
factor influencing the GRGs with probability value (1.83e-06). Diversely, the rest
of the layer parameters are regarded as neutral factors (probability value > 0.05) in
which their magnitudes do not contribute much influence on the GRG. The
developed MLR model in this work is mathematically formulated as:

F(GRG) = 0.262084 + 0.038231%a - 0.001791%b - 0.066809*c + 0.005241*d +
0.350866%¢ + 0.004255%1+0.017364%g + 0.00709%h )

The model is then inverted within the specified upper and lower boundaries in
order to fit into GWO algorithm for solving the maximization problem. Therefore,
the objective function of the maximization problem for GWO algorithm can be
mathematically written as:

f(GRG)™* = —0.262084 - 0.038231*a + 0.001791*b + 0.066809*¢ - 0.005241*d
- 0.350866*¢ - 0.004255*%f-0.017364*g - 0.00709*h ¢))
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The GWO algorithms are implemented using MATLAB software. After
100™ iterations, the minimum magnitude of the inverted objective function is
converged at -0.7531 as depicted in Fig. 5. The optimum layer parameters
yielding the most minimum magnitude of the objective function are predicted
as; SnOy:F thickness (0.614 pm), SnOx:F density (0.5x10'"® cm?3), WS,
thickness (0.1 um), WS, donor density (9.5%10'8 ¢cm™), CH;NH;Pbl; thickness
(0.9 um), CH3NH;Pbl; donor density (9.5x10'3 cm™), MoS, thickness (0.1 pm)
and MoS; acceptor density (9.5x10'7 cm™).

-0.69 T T T T T T

0.7

071

0721

0731

Fitness value

074

075 \ 1

-0.76

0 10 20 30 4 50 60 70 B8O 90 100
[teration number

Fig. 5. Convergence plot of GWO.

To verify the predictive performance of the proposed metaheuristic approach,
the PSC device is re-simulated using the predicted layer parameters. The band of
energy in a PSC represents the energy states of electrons and is fundamental for
converting sunlight into electrical power. PSCs rely on multiple energy levels,
typically showing the p-type and n-type region which is halved by intersection.
Implanting process in p-type PSCs leads to an excess of positively charged "holes,"
where the valence band is nearly proximate to the Fermi level. In n-type PSC,
doping results in more negatively charged electrons, forcing the conduction band
proximate to the Fermi level. The meeting point forms a depletion layer without
free carriers and creates an electric field. Photons striking the solar cell excite
electrons, generating electron-hole pairs. Figure 6 depicts the energy band diagram
of the optimized PSC configuration.

The disparity in lattice parameters at interfaces induces defects, which
promote exciton recombination. At these interfaces, two types of band
alignments, known as cliff and spike structures, can arise, often facilitating
charge carrier recombination. The cliff structure specifically causes bending of
the conduction band, while achieving optimal efficiency at the p-n junction
requires a positive band offset—akin to the spike structure. In the optimized
PSC design, the positive spike offset measures +0.33 eV (refer to Fig. 6),
indicating enhanced device performance due to effective band alignment. This
improvement is associated with the absorber layer (CH3;NH3Pbls)
recombination activation energy (E.), which is crucial for device functionality.
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Within the depletion region, the electric field separates excitons (electrons
and holes), producing current upon connection to an external circuit [32]. The
band diagram illustrates electron energy states and shows how absorbed
photons elevate electrons from the valence to conduction bands, thereby
generating electrical current [32]. In the optimized PSC, the band alignment
shifts subtly, with the band gap narrowing progressively with distance, a result
of band bending at the interfaces.
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Fig. 6. Energy band diagram of the optimized PSC configuration.

The band structure reveals a built-in voltage gap of approximately +1.1 eV, with
potential variations caused by band bending across various interfaces. The built-in
voltage (Vui), which represents the potential difference between the valence band
of a p-type semiconductor and the conduction band of an n-type semiconductor,
measures 1.1 eV at 300K under thermal equilibrium. In this state, electron flow is
steady at a constant temperature. As temperature rises, lattice vibrations increase,
which can lead to a reduction in the semiconductor’s bandgap (E,), or the energy
separation between the valence and conduction bands.

With a narrowed bandgap, the energy gap between the Fermi levels (Fp for p-
type and Fn for n-type) decreases, leading to a reduced Vy; within the PSC structure.
In the energy diagram, MoS,’s LUMO level acts as the electron-blocking layer
(EBL) at 3.46 eV, while in the CH3NH;3Pbls region, the valence band edge is at 1.29
eV, and the conduction band edge at 1.8 eV. The HOMO level of WS; functions as
the hole-blocking layer (HBL) at 1.55 eV, with these energy levels and temperature
effects influencing PSC performance.

An interface resembling a "cliff" emerges between CH3NH3Pbl; and MoS,,
where the conduction band offset (CBO) of +0.28 ¢V forms an electron-blocking
barrier from the absorber layer toward the hole transport layer (HTL). This barrier
is unfavourable as it increases charge carrier recombination, thus lowering the
device’s efficiency by permitting electron backflow across the junction. In a similar
way, a cliff interface between CH3;NH;Pbl; and WS, shows a valence band offset
(VBO) of -0.15 eV, leading to a potential drop that restricts hole movement from
the absorber to the electron transport layer (ETL). Such cliff interfaces can lead to
hole accumulation, raising recombination rates. The VBO at the WS,/CH3;NH3Pbl;
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boundary measures 0.15 eV, creating a minor barrier, whereas the
MoS,/CH3NH3Pbl; interface displays a larger barrier of 1.53 eV, posing a
substantial restriction for hole transfer. Meanwhile, the CBO at the
WS,/CH3NH3Pbl; interface is 0.33 eV, forming a strong electron barrier, while that
at the MoS; interface is slightly lower at 0.28 eV, creating a lesser obstacle.

Modifying the voltage in PSCs has a pronounced effect on capacitance, directly
impacting the cell’s charge storage capability. In PSCs, capacitance is inherently
tied to the electronic properties of the materials used. Shifts in voltage affect energy
states, adjust the Fermi level, and modify the concentration of charge carriers, all
of which alter capacitance. Furthermore, temperature has a significant influence on
the dielectric properties, leading to increased capacitance. This temperature impact
on solar cell performance can be assessed through Mott-Schottky (MS) analysis,
represented by specific measurements denoted as.

B — V.. — kT
€2 Ss2eq ><Na>< (V Vpi q ) )

In this case, C corresponds to capacitance, S to surface area, g to the
elementary charge, and ¢ to the space permittivity. N, indicates the acceptor
density, Vp refers to the built-in voltage (flat band potential), kB is the
Boltzmann constant, and T stands for temperature in Kelvin units. As shown in
Fig. 7(a), low bias below 0.5 V has no effect on capacitance, while a higher
bias above 0.5 V alters the capacitance. The V}; is determined at the point where
the tangent line meets the voltage axis on the MS plots, as illustrated in Fig. 7
(b). In Fig. 7(b), at 300 K, the V}; registers at +1.1 eV, corresponding with the
band diagram shown in Fig. 6 for the same temperature.
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Fig. 7. (a) The impact of voltage on capacitance
and (b) Mott-Schottky (IMS) analysis.

This result indicates that the band alignment in the optimized PSC design is
stable. However, as the temperature rises from 300 K to 500 K, the V; decreases
from +1.1 eV to +0.68 V, pointing to increased exciton recombination likely
due to higher series resistance. The PSC design maintains an efficiency of 8§2%
at 350 K, though efficiency declines to approximately 62% at 500 K due to
substantial recombination losses. The V}; arises due to the potential difference
established at equilibrium between the p-type and n-type regions of a p-n
junction, caused by the movement of charges.
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At first, the diffusion of majority carriers creates zones of opposite charges,
forming a depletion region that determines V3. Changes in temperature can affect
carrier density and the width of the depletion region, impacting V5. The alignment
of energy bands across the junction controls how current flows through the device.
Voltage fluctuations alter charge carrier movement, field strength, and material
properties, impacting charge storage and the overall efficiency and stability of PSC
devices. A thorough grasp of the generation and recombination behaviors of a PSC
requires knowledge of fundamental principles. Charge carriers are generated when
photons are absorbed, provided their energy is equal to or exceeds the material’s
bandgap energy (E,), allowing electron-hole pairs to be created [33]. Materials with
higher absorption coefficients (o) enhance photon uptake, leading to increased
production of charge carriers [34], as illustrated in Eq. (10).

G =. & (10)

The photon flux and generation process are symbolized by ® and G,
respectively. The recombination of electrons and holes results in the emission of a
photon, particularly in materials with a direct bandgap. The energy produced from
this recombination is given to a different charge carrier. SRH recombination,
significant in defective materials, happens through defect states within the bandgap
[35]. The rate of this recombination is defined by Eq. (11).

nP-n?

Rsgpy = ——— (11)
p(n+n;)+(P+n;)
Carrier lifetimes are denoted by 7, and 7,, and n; refers to the inherent
concentration of charge carriers. When in a state of equilibrium, the rates of
generation and recombination processes are identical, as shown in Eq. (12).

G=R (12)

Light exposure raises the rate of generation, creating additional electron-
hole pairs and disrupting the balance. Consequently, this results in an increase
in photocurrent; however, recombination decreases the open-circuit voltage
(Vo) by diminishing the number of available carriers. Elevated rates of
recombination reduce the overall carrier count which decreases V,.. Quantum
efficiency (QE) gauges the effectiveness of photon absorption in generating
carriers, and excessive recombination weakens QE by limiting carrier
collection. Surface passivation, through reducing defects and passivating
dangling bonds, decreases SRH recombination events [36].

The rates of carrier generation and recombination influenced by optical
excitation. In the design of the perovskite solar cell (PSC), light enters through the
electron transport layer (ETL), where the rates of exciton generation and
recombination are lower than those on the hole transport layer (HTL) side within
the absorbing layer. Figure 8 indicates that the generation rate exceeds the
recombination rate, which enhances the operational efficiency of the cell and results
in more consistent electrical performance.

An increased surface area allows for better light absorption without
substantially increasing recombination, thereby improving the device's overall
performance. The PSC's efficiency hinges on optimizing both the generation and
recombination processes. By selecting superior materials and refining structural
design to enhance electron-hole pair generation while minimizing recombination
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through defect passivation, the power conversion efficiency (PCE) can be
improved. This interplay is more clearly illustrated by examining the right and left
axes of Fig. 8. The comparison of J-V transfer curves between the pre-metaheuristic
and post-metaheuristic are depicted in Fig. 9.
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Fig. 9. J-V transfer curves of PSC device during
pre-metaheuristic and post-metaheuristic optimization.

Based on the graph, the J,. of the PSC device has improved by ~17.4% after
going through metaheuristic modeling. The J;, magnitude of the PSC device after
metaheuristic modeling has increased to 25.67 mA/cm?. Figure 10 shows the
cylindrical graph indicating the improvement of both J. and PCE of the PSC device
during pre-metaheuristic and post-metaheuristic. The PCE of the PSC device has
been observed to have a decent improvement after the metaheuristic modeling
where the PCE has improved to 24.73% compared to 19.38% (pre-metaheuristic).
There is a decent increase of 5.35% in PCE magnitude.
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Fig. 10. Comparative cylindrical graph of Js.
and PCE between pre-metaheuristic and post-metaheuristic.

Based on the previous variance analysis, the MoS, (HTL) acceptor density has
been identified as the most dominant factor influencing both J,. and PCE
magnitude. The acceptor concentration of MoS; plays a crucial role in enhancing
Jie and PCE as a suitably higher-level density (9.5x10'7 c¢m™) is applied as
previously predicted by metaheuristic approach. The scattering event occurred in
the MoS; layer at lower doping density does affect the hole mobility.

As temperature increases deliberately, the effects of scattering significantly
reduce the hole mobility. Hence, increasing the acceptor density of the MoS,
layer would subsequently increase the probability of carrier’s collision where
the hole mobility is tremendously boosted as well as total current density.
Higher generated J;. may definitely contribute a significant impact on achieving
better PCE as the ratio of energy output from the PSC device to input energy
from the sun becoming much higher. Table 6 summarizes the optimized
magnitudes of the layer parameters as compared to pre-metaheuristic.

Table 6. Summary of Optimized Parameters of the PSC device.

Input/output Units Pre- Post-
Parameter metaheuristic metaheuristic
SnOz:F thickness um 0.2 0.614
SnO::F donor density cm 1x10'8 0.5x10'8
WS: thickness um 0.2 0.1
WS: donor density cm 1x10'8 9.5x10'8
CH:NH3PbIs thickness pm 0.2 0.9
CH:NH3PbIs donor density cm 1x1013 9.5x1013
MoS: thickness pm 0.2 0.1
MoS: acceptor density cm? 1x10Y7 9.5x107
Power conversion efficiency % 19.38 24.73
(PCE)

Current Density (Jsc) Alcm? 21.21x1073 25.67x1073

It can be concluded that the proposed metaheuristic approach involving multiple
methods such as L, OA Taguchi-based DoE, GRA, MLR and GWO has been
successfully modeling multiple layer parameters of the PSC device for much
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improved Jy. and PCE. The proposed predictive approach is capable of estimating
the most optimal value of layer parameters within the specified/desired lower and
upper boundaries for higher J,. and PCE of the PSC device.

4. Conclusions

Multiple layer parameters of the PSC device have been predictively modeled
through a metaheuristic approach combining simulation tool (SCAPS), L7 OA
Taguchi-based DoE, GRA, MLR and GWO. The output data are retrieved via
SCAPS simulation guided by L,; OA Taguchi-based DoE. The output data (J.
and PCE) are then manipulated to be a single representative unit by using GRA
purposely for much easier computation. The MLR analysis is subsequently
conducted in order to develop the objective function that relates multiple input
layer parameters to the GRG variations. From the analysis, CH3NH;3Pbl;
thickness is identified as the most dominant layer parameter influencing the
GRG. Since the GWO algorithms are specifically developed to search for the
minimum value of the objective function, the objective function has to be inverted
(for searching the maximum point). After 100%™ iterations, the minimum
magnitude of the inverted objective function is converged at -0.7531.

The final results reveal that the metaheuristic approach has successfully predicted
the most optimal value of layer parameters within the specified/desired lower and upper
boundaries where both J,. and PCE of the PSC device are optimized to 25.67 mA/cm?
and 24.73%, respectively. Future research could examine and integrate alternative
computational intelligence methods beyond the GWO algorithm with Taguchi-GRA
for more precise and thorough outcomes. These important discoveries showcase the
advancements made in modeling PSC structures. Ultimately, the results of this work
can guide future efforts in developing highly efficient PSCs.
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Nomenclatures

A A coefficient vector

C A coefficient vector

E, Bandgap Energy

E, Relative Permittivity

Jse Short Circuit Current Density
N, Acceptor Density

N, Conduction Band Density

Ny Donor Density

N; Defect Density

s A parameter which linearly decreased from 2 to 0 over the

course of iterations
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X, Best Search Agent

Xy Second Best Search Agent

X5 Third Best Search Agent

zy Normalizing larger-the-better objective problem
Zo(n) Output parameters of the PSC device (Js. and PCE)
Greek Symbols

a Alpha

B Beta

) Delta

® Omega

e Distinguishing Coefficient

€ Error term

Un Electron Mobility

Uy Hole Mobility

x Electron Affinity

Abbreviations

CIGS Copper Indium Gallium Selenide Solar Cell
CBO Conduction Band Offset

Cds Cadmium Sulfide

CH:3;NH3Pbl;  Methylammonium Lead lodide

CuTe Copper Telluride

DoE Design of Experiments

DSSC Dye-sensitized Solar Cell

EBL Electron Blocking Layer

ETL Electron Transport Layer

FF Fill Factor

GRA Grey Relational Analysis

GRC Grey Relational Coefficient

GRG Grey Relational Grade

GWO Grey Wolf Optimizer

HBL Hole Blocking Layer

HTL Hole Transport Layer

HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
MLR Multiple Linear Regression

MoS; Molybdenum Disulfide

OA Orthogonal Array

PCE Power Conversion Efficiency

PSC Perovskite Solar Cell

PV Photovoltaic

RSM Response Surface Methodology
SCAPS Solar Cell Capacitance Simulator
SnO»:F Spray Pyrolyzed Fluorine-Doped Tin Oxide
SRH Shockley-Read-Hall Recombination
TCO Transparent Conducting Oxide

VBO Valance Band Offset

WS, Tungsten Disulfide
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