

اویورسیتی تکنیک ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

**ADAPTIVE TRANSFER LEARNING AND WORD STIMULATION
FOR ROBUST EEG-BASED AUTHENTICATION**

YAP HUI YEN

اویورسیتی تکنیک ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DOCTOR OF PHILOSOPHY

2025

Faculty of Information and Communications Technology

**ADAPTIVE TRANSFER LEARNING AND WORD STIMULATION
FOR ROBUST EEG-BASED AUTHENTICATION**

اونیورسیتی تکنیکال ملیسیا ملاک
Yap Hui Yen

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Doctor of Philosophy

2025

**ADAPTIVE TRANSFER LEARNING AND WORD STIMULATION FOR ROBUST
EEG-BASED AUTHENTICATION**

YAP HUI YEN

A thesis submitted
in fulfillment of the requirements for the degree of
Doctor of Philosophy

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
Faculty of Information and Communications Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2025

DECLARATION

I declare that this thesis entitled “Adaptive Transfer Learning and Word Stimulation for Robust EEG-Based Authentication” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

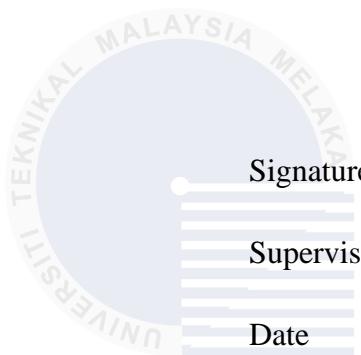
Signature :
Name : YAP HUI YEN.....
Date : 20 June 2025

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.



Signature :

Supervisor Name : Associate Professor Ts. Dr. Choo Yun Huoy

Date : 20 June 2025

جامعة ملاكا التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved son, Zhi Rui, my supportive husband, Wee How, my beloved parents, and all my family members. Your love, encouragement, and sacrifices have been my greatest strength and inspiration throughout this journey.

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Electroencephalogram (EEG)-based authentication has gained increasing attention as an alternative to conventional biometric systems due to its resistance to spoofing and privacy compliance. However, practical adoption remains limited, primarily due to high noise levels in consumer-grade EEG devices, high signal variation in different sessions, and the extensive training data requirements for deep learning models. Apart from ensuring biometric system performance, an EEG-based authentication system must also be user-friendly with a reasonable acquisition time to maintain user engagement. This study explores the feasibility of using consumer-grade EEG devices for authentication to address challenges such as noise and signal variability. It involves the design of a reasonably timed word-stimulation acquisition protocol to enhance signal reliability while minimizing cognitive fatigue. Additionally, due to the limited availability of training data, the performance of deep learning with transfer learning using pre-trained CNN models is investigated. The frequency spectra of the preprocessed EEG signals were extracted and used as input for pre-trained models. Experiments were conducted on a database of 30 subjects recorded over two separate sessions to evaluate the performance of the proposed method. Baseline evaluations compared pre-trained CNN models against traditional classifiers: SVM and k-NN. The results show that deep learning provides better performance within the same session. However, all methods, including pre-trained CNN models, SVM, and k-NN, experience performance degradation when tested on a different session dataset, revealing the challenge of EEG variability. In order to address this issue, an adaptive retraining strategy is proposed, which improves classification accuracy across sessions compared to direct deep learning transfer. These findings confirm the applicability of consumer-grade EEG devices for biometric authentication while addressing key challenges such as noise reduction, limited training data, and session variability. The proposed methodology contributes to the advancement of EEG-based biometric security, paving the way for practical deployment of EEG authentication systems in real-world applications.

PEMBELAJARAN PEMINDAHAN ADAPTIF DAN RANGSANGAN PERKATAAN

UNTUK PENGESAHAN EEG YANG KUKUH

ABSTRAK

Autentikasi berdasarkan Electroencephalogram (EEG) semakin mendapat perhatian sebagai alternatif kepada sistem biometrik konvensional kerana ketahanannya terhadap serangan penipuan (spoofing) dan pematuhan terhadap privasi. Walau bagaimanapun, penggunaannya dalam dunia sebenar masih terhad, terutamanya disebabkan oleh tahap hingar yang tinggi dalam peranti EEG gred pengguna, variasi isyarat yang ketara merentasi sesi yang berbeza, serta keperluan data latihan yang besar bagi model pembelajaran mendalam. Selain memastikan prestasi sistem biometrik, sistem autentikasi EEG juga mesti mesra pengguna dengan masa pemerolehan yang munasabah bagi mengekalkan penglibatan pengguna. Kajian ini meneroka kebolehlaksanaan penggunaan peranti EEG gred pengguna untuk tujuan autentikasi dalam menangani cabaran seperti tahap hingar yang tinggi dan variasi isyarat EEG. Ia melibatkan reka bentuk protokol pemerolehan rangsangan perkataan yang mempunyai tempoh yang munasabah bagi meningkatkan kebolehpercayaan isyarat EEG sambil mengurangkan keletihan kognitif. Selain itu, disebabkan ketersediaan data latihan yang terhad, prestasi pembelajaran mendalam dengan pembelajaran pemindahan menggunakan model CNN pralatih turut dikaji. Spektrum frekuensi isyarat EEG yang telah dipra-proses diekstrak dan digunakan sebagai input untuk model pralatih. Eksperimen telah dijalankan ke atas pangkalan data yang mengandungi 30 subjek, yang direkodkan dalam dua sesi berasingan, bagi menilai prestasi kaedah yang dicadangkan. Penilaian asas membandingkan model CNN pralatih dengan pengelas tradisional seperti SVM dan k-NN. Keputusan menunjukkan bahawa pembelajaran mendalam memberikan prestasi lebih baik dalam sesi yang sama. Walau bagaimanapun, semua kaedah, termasuk model CNN pralatih, SVM, dan k-NN, mengalami penurunan ketara dalam prestasi apabila diuji pada pangkalan data sesi yang berbeza, yang menyerlahkan cabaran variasi isyarat EEG. Bagi menangani isu ini, strategi latihan semula adaptif dicadangkan, yang meningkatkan ketepatan klasifikasi merentasi sesi berbanding pemindahan pembelajaran mendalam secara langsung. Penemuan ini mengesahkan kebolehlaksanaan penggunaan peranti EEG gred pengguna untuk tujuan autentikasi biometrik, sambil menangani cabaran utama seperti pengurangan hingar, data latihan yang terhad, dan variasi sesi. Metodologi yang dicadangkan ini menyumbang kepada kemajuan dalam keselamatan biometrik berdasarkan EEG, sekali gus membuka laluan kepada penggunaan sistem autentikasi EEG dalam aplikasi dunia sebenar.

ACKNOWLEDGEMENT

First and foremost, I offer my sincerest gratitude to my supervisor, Associate Professor Dr. Choo Yun Huoy, and my co-supervisor, Associate Professor Dr. Zeratul Izzah Mohd Yusoh, for their support throughout my PhD journey. Their excellent guidance, extensive knowledge, and patience have been a source of inspiration, motivation, and direction, enabling me to complete this study.

Many thanks go to my husband, Wee How, who has been not only my soul mate but also my steadfast supporter throughout this journey. His support, patience, and understanding have been my pillar of strength. I am deeply indebted to him for his valuable advice on Matlab discussions and for sharing ideas on my research through insightful comments.

To my newborn baby, Zhi Rui, his arrival brought huge joy and encouragement into my life. His presence has made me stronger and more resilient in facing any challenges.

Lastly, I would like to extend my heartfelt thanks to my beloved family members. I am grateful to my grandmother, who has taken care of me since childhood and nurtured me with great kindness and compassion. I am deeply appreciative of my father and my aunt, who are no longer with us. I truly appreciate their commitment as financial supporter of our family since my childhood. Their dedication and sacrifices have been a source of inspiration for me. I also deeply appreciate my mother, who has always emphasized the importance of education and made it possible for me to pursue this PhD journey. To those who contributed indirectly to this research, my profound thanks for your kindness and support.

TABLE OF CONTENTS

	PAGES
DECLARATION	i
APPROVAL	ii
DEDICATION	iii
ABSTRACT	iv
ABSTRAK	vii
ACKNOWLEDGEMENT	vii
TABLE OF CONTENTS	vii
LIST OF TABLES	xiv
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	
LIST OF PUBLICATIONS	
 CHAPTER	
1. INTRODUCTION	1
1.1 Overview	1
1.2 Background Study	2
1.3 Problem Statements	6
1.4 Research Questions	8
1.5 Research Objectives	8
1.6 Research Contributions	9
1.7 Research Significance	10
1.8 Research Scope	11
1.9 Thesis Organization	12
2. LITERATURE REVIEW	14
2.1 BCIs Background and How it Works?	14
2.2 Signal Acquisition	15
2.2.1 Functional Magnetic Resonance Imaging (fMRI)	16
2.2.2 Magnetoencephalography (MEG)	16
2.2.3 Functional Near-Infrared Spectroscopy (fNIRS)	16
2.2.4 Electroencephalogram (EEG)	17
2.3 EEG-based BCIs	18
2.4 EEG-based Authentication	19
2.5 Requirements of EEG-based Biometric Systems	25
2.6 EEG Acquisition Protocol	28
2.7 Feature Extraction	35
2.8 Classification	44
2.8.1 Support Vector Machine (SVM)	44
2.8.2 k -Nearest Neighbor (k -NN)	53
2.8.3 Deep Learning for EEG Authentication	60
2.9 CNNs Architecture	63
2.9.1 Transfer Learning and Adaptive Fine-Tuning in EEG	65
2.9.2 GoogLeNet	66
2.9.3 Inception-V3	68

2.9.4	ResNet-50 and ResNet-100	68
2.9.5	EfficientNet-B0	69
2.9.6	DenseNet-201	70
2.10	Comparative Analysis of Classification Methods	71
2.11	Summary	72
3.	RESEARCH METHODOLOGY	74
3.1	Introduction	74
3.2	Investigation Phase	74
3.3	Experimental Design Phase	76
3.4	Implementation Phase	78
3.5	EEG Data Acquisition	81
3.6	EEG Signal Preprocessing	82
3.7	EEG Feature Extraction	83
3.8	EEG Biometric Modeling	86
3.9	Benchmark Classifiers	87
3.10	Classification with CNN	88
3.11	Improving CNN Learning Model with Transfer Learning Method	89
3.12	Performance Metrics	91
3.13	Example Scenarios of Implementation of the Proposed Methodology	93
4.	PROPOSED WORD STIMULATION EEG ACQUISITION PROTOCOL	95
4.1	Introduction	95
4.2	Rationale for Word-Based Stimulation	95
4.3	Protocol Design	95
4.4	Word Stimulation Presentation Design	97
4.5	Preliminary Study	99
4.6	Preliminary Study: Setup and Initial Classification Results	99
5.	PROPOSED ADAPTIVE TRANSFER LEARNING	107
5.1	Introduction	107
5.2	Transfer Learning Models	107
5.3	Fine-Tuning Strategy	109
5.4	Adaptive Transfer Learning Models	111
6.	EXPERIMENTAL ANALYSIS	114
6.1	Introduction	114
6.2	Experimental Performance Analysis Protocols and Evaluation Metrics	114
6.3	Experimental Analysis of k -NN	117
6.4	Experimental Analysis of SVM	127
6.5	Experimental Analysis of Adaptive Pre-trained Models – Stage 1	131
6.6	Adaptive Transfer Learning Models – Stage 2	136
7.	DISCUSSION	146
7.1	Performance Analysis of Classifiers	146
7.2	Performance Comparison between k -NN, SVM, and CNN Classifiers	161
7.3	Performance Analysis of Adaptive Pre-Trained Models	164

7.4	Achievement of Research Objectives	169
7.5	Research Limitations	171
8.	CONCLUSION AND FUTURE DIRECTION	172
8.1	Introduction	172
8.2	Summary of Research Findings	172
8.3	Research Contributions	174
8.4	Research Strengths	175
8.5	Future Directions	177
REFERENCES		179
APPENDIX		199

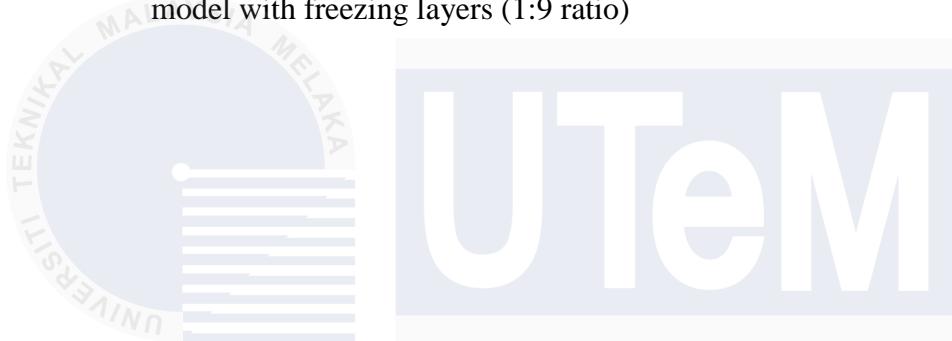
LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Summary of EEG device applied.	24
Table 2.2	Acquisition protocol of the existing works	33
Table 2.3	Summary of EEG Feature Extraction for EEG-Based User Authentication	43
Table 2.4	Evaluation of Classifiers for EEG-Based User Authentication	71
Table 3.1	Summary of Investigation Phase	75
Table 3.2	An overall research plan	79
Table 3.3	Summary of study subjects	81
Table 4.1	Type of word items	97
Table 4.2	Experimental results for Task 1 and Task 2 in the morning session, <i>S1</i>	103
Table 4.3	Experimental results for Task 1 and Task 2 in the afternoon session, <i>S2</i>	103
Table 4.4	Experimental results for Task 1 and Task 2 in the combined sessions, <i>S1+S2</i>	103
Table 4.5	Performance comparison of the existing works	105
Table 6.1	Experimental results for <i>S1S</i> and <i>S1R</i> in the first session based on <i>k</i> -NN Classifier (<i>k</i> = 1)	118
Table 6.2	Experimental results for <i>S1S</i> and <i>S1R</i> in the first session based on <i>k</i> -NN Classifier (<i>k</i> = 3)	118
Table 6.3	Experimental results for <i>S1S</i> and <i>S1R</i> in the first session based on <i>k</i> -NN Classifier (<i>k</i> = 5)	119
Table 6.4	Experimental results for <i>S1S</i> and <i>S1R</i> in the first session based on <i>k</i> -NN Classifier (<i>k</i> = 7)	119
Table 6.5	Experimental results for <i>S2S</i> and <i>S2R</i> in the first session based on <i>k</i> -NN Classifier (<i>k</i> = 1)	119

Table 6.6	Experimental results for $S2_S$ and $S2_R$ in the first session based on k -NN Classifier ($k = 3$)	120
Table 6.7	Experimental results for $S2_S$ and $S2_R$ in the first session based on k -NN Classifier ($k = 5$)	120
Table 6.8	Experimental results for $S2_S$ and $S2_R$ in the first session based on k -NN Classifier ($k = 7$)	120
Table 6.9	Experimental results for combined sessions – $Seq(S1_S + S2_S)$ and $Rand(S1_R + S2_R)$ based on k -NN Classifier ($k = 1$)	121
Table 6.10	Experimental results for combined sessions - $Seq(S1_S + S2_S)$ and $Rand(S1_R + S2_R)$ based on k -NN Classifier ($k = 3$)	122
Table 6.11	Experimental results for combined sessions - $Seq(S1_S + S2_S)$ and $Rand(S1_R + S2_R)$ based on k -NN Classifier ($k = 5$)	122
Table 6.12	Experimental results for combined sessions - $Seq(S1_S + S2_S)$ and $Rand(S1_R + S2_R)$ based on k -NN Classifier ($k = 7$)	122
Table 6.13	Experimental results for <i>Session 1</i> ($S1_S + S1_R$) and <i>Session 2</i> ($S2_S + S2_R$) based on based on k -NN Classifier ($k = 1$)	123
Table 6.14	Experimental results for <i>Session 1</i> ($S1_S + S1_R$) and <i>Session 2</i> ($S2_S + S2_R$) based on based on k -NN Classifier ($k = 3$)	124
Table 6.15	Experimental results for <i>Session 1</i> ($S1_S + S1_R$) and <i>Session 2</i> ($S2_S + S2_R$) based on based on k -NN Classifier ($k = 5$)	124
Table 6.16	Experimental results for <i>Session 1</i> ($S1_S + S1_R$) and <i>Session 2</i> ($S2_S + S2_R$) based on based on k -NN Classifier ($k = 7$)	124
Table 6.17	Experimental results for <i>Session Seq</i> ($S1_S + S2_S$) and <i>Session Rand</i> ($S1_R + S2_R$) based on based on k -NN Classifier ($k = 1$)	125
Table 6.18	Experimental results for <i>Session Seq</i> ($S1_S + S2_S$) and <i>Session Rand</i> ($S1_R + S2_R$) based on based on k -NN Classifier ($k = 3$)	125
Table 6.19	Experimental results for <i>Session Seq</i> ($S1_S + S2_S$) and <i>Session Rand</i> ($S1_R + S2_R$) based on based on k -NN Classifier ($k = 5$)	126
Table 6.20	Experimental results for <i>Session Seq</i> ($S1_S + S2_S$) and <i>Session Rand</i> ($S1_R + S2_R$) based on based on k -NN Classifier ($k = 7$)	126
Table 6.21	Experimental results for $S1_S$ and $S1_R$ in the first session based on SVM classifier	128

Table 6.22	Experimental results for SI_S and SI_R in the first session based on SVM classifier	128
Table 6.23	Experimental results for combined sessions - $Seq(SI_S + S2_S)$ based on SVM Classifier	129
Table 6.24	Experimental results for combined sessions - $Rand(SI_R + S2_R)$ based on SVM Classifier	129
Table 6.25	Experimental results for Session 1($SI_S + SI_R$) and Session 2($S2_s + S2_R$) based on based on SVM Classifier	130
Table 6.26	Experimental results for Session $Seq(SI_S + S2_s)$ and Session $Rand(SI_R + S2_R)$ based on based on SVM Classifier	131
Table 6.27	Experimental results for SI_S and SI_R in the first session based on different pre-trained models	132
Table 6.28	Experimental results for $S2_S$ and $S2_R$ in the first session based on different pre-trained models	133
Table 6.29	Experimental results for combined sessions - $Seq(SI_S + S2_S)$ based on different pre-trained models	134
Table 6.30	Experimental results for combined sessions - $Rand(SI_R + S2_R)$ based on different pre-trained models	134
Table 6.31	Experimental results for Session 1($SI_S + SI_R$) and Session 2($S2_s + S2_R$) based on different pre-trained models	135
Table 6.32	Experimental results for Session $Seq(SI_S + S2_s)$ and Session $Rand(SI_R + S2_R)$ based on different pre-trained models	136
Table 6.33	Experimental results of retraining process without freezing layers based on different pre-trained models	138
Table 6.34	Experimental results of retraining process based on ResNet-50 model with freezing layers (3:7 ratio)	141
Table 6.35	Experimental results of retraining process based on ResNet-50 model with freezing layers (2:8 ratio)	141
Table 6.36	Experimental results of retraining process based on ResNet-50 model with freezing layers (1:9 ratio)	142
Table 6.37	Experimental results of retraining process based on ResNet-101 model with freezing layers (3:7 ratio)	142

Table 6.38	Experimental results of retraining process based on ResNet-101 model with freezing layers (2:8 ratio)	143
Table 6.39	Experimental results of retraining process based on ResNet-101 model with freezing layers (1:9 ratio)	143
Table 6.40	Experimental results of retraining process based on DenseNet-201 model with freezing layers (3:7 ratio)	144
Table 6.41	Experimental results of retraining process based on DenseNet-201 model with freezing layers (2:8 ratio)	144
Table 6.42	Experimental results of retraining process based on DenseNet-201 model with freezing layers (1:9 ratio)	145



UNIVERSITI TEKNIKAL MELAKA

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	BCI application fields	18
Figure 2.2	Types of EEG devices (a) Medical grade, (b) Consumer grade	22
Figure 2.3	Hyperplane with maximum margin in SVM	46
Figure 2.4	Data Mapping from Original Input Space to Higher Dimensional Feature Space	49
Figure 2.5	Example of k-NN classifier when k has different values	53
Figure 2.6	Inception model: Naïve version (Adopted from Szegedy et al., 2015)	67
Figure 2.7	Inception model: Improved version (Adopted from Szegedy et al., 2015)	67
Figure 3.1	Overflow of the proposed method	75
Figure 3.2	EEG Emotiv EPOC+ wireless headset	78
Figure 3.3	Scalp locations covered by the headset in the standard 10-20 system	78
Figure 3.4	Methodology flowchart	80
Figure 3.5	Sample of trials of different EEG channels of three different users	83
Figure 3.6	FFT features of EEG of two-sided frequency spectrum (left) and single-sided frequency spectrum (right)	85
Figure 3.7	FFT matrix image for three different users	86
Figure 3.8	Overview architecture of the proposed scheme	87
Figure 3.9	Traditional CNN training from scratch versus transfer learning	90
Figure 3.10	Confusion matrix and performance metrics	92
Figure 4.1	Visual stimulation design	98

Figure 4.2	Comparison results of EEG acquisition protocols for the morning session, $S1$	103
Figure 4.3	Comparison results of EEG acquisition protocols for the afternoon session, $S2$	104
Figure 4.4	Comparison results of EEG acquisition protocols for the combined sessions, $S1+S2$.	104
Figure 4.5	Proposed adaptive retraining process	113
Figure 5.1	Size-similarity matrix for fine-tuning	110
Figure 5.2	Proposed adaptive retraining process	113
Figure 7.1	Experiment 1: Accuracy performance for $S1_s$ on k -NN	148
Figure 7.2	Experiment 1: Accuracy performance for $S1_R$ on k -NN	148
Figure 7.3	Experiment 1: Accuracy performance for $S2_s$ on k -NN	149
Figure 7.4	Experiment 1: Accuracy performance for $S2_R$ on k -NN	149
Figure 7.5	Experiment 2: Accuracy performance for Combined Sessions – <i>Seq</i> ($S1_s + S2_s$) on k -NN	150
Figure 7.6	Experiment 2: Accuracy performance for Combined Sessions – <i>Seq</i> ($S1_R + S2_R$) on k -NN	150
Figure 7.7	Experiment 3: Accuracy performance for <i>Sessions 1</i> ($S1_s + S1_R$) on k -NN	151
Figure 7.8	Experiment 3: Accuracy performance for <i>Sessions 2</i> ($S2_s + S2_R$) on k -NN	151
Figure 7.9	Experiment 4: Accuracy performance for <i>Sessions Seq</i> ($S1_s + S2_s$) on k -NN	152
Figure 7.10	Experiment 4: Accuracy performance for <i>Sessions Rand</i> ($S1_R + S2_R$) on k -NN	152
Figure 7.11	Experiment 1: Accuracy performance on SVM	154
Figure 7.12	Experiment 2: Accuracy performance on SVM	154
Figure 7.13	Experiment 3: Accuracy performance on SVM	155
Figure 7.14	Experiment 4: Accuracy performance on SVM	155

Figure 7.15	Experiment 1: Accuracy performances on pre-trained models	156
Figure 7.16	Experiment 2: Accuracy performances on pre-trained models	157
Figure 7.17	Experiment 3: Accuracy performances on pre-trained models	157
Figure 7.18	Experiment 3: Accuracy performances on pre-trained models	158
Figure 7.19	Experiment 1: Best accuracy performance comparisons of k -NN, SVM and pre-trained CNN	162
Figure 7.20	Experiment 2: Best accuracy performance comparisons of k -NN, SVM and pre-trained CNN	163
Figure 7.21	Experiment 3: Best accuracy performance comparisons of k -NN, SVM and pre-trained CNN	163
Figure 7.22	Experiment 4: Best accuracy performance comparisons of k -NN, SVM and pre-trained CNN	164
Figure 7.23	Best Accuracy performances on retraining for Pre-trained Models – Configuration I	166
Figure 7.24	Best accuracy performance on retraining with different freezing layers for ResNet-50 – Configuration II	167
Figure 7.25	Best accuracy performance on retraining with different freezing layers for ResNet-101 – Configuration II	168
Figure 7.26	Best accuracy performance on retraining with different freezing layers for DenseNet-201 – Configuration II	168

LIST OF ABBREVIATIONS

<i>UTeM</i>	-	Universiti Teknikal Malaysia Melaka
BCI	-	Brain-Computer Interface
HCI	-	Human-to-Computer Interactions
EEG	-	Electroencephalogram
CNN	-	Convolutional Neural Network
DNA	-	Deoxyribonucleic Acid
FFT	-	Fast Fourier Transform
SVM	-	Support Vector Machine
<i>k</i> -NN	-	<i>k</i> -Nearest Neighbor
fMRI	-	functional Magnetic Resonance Imaging
fNIRS	-	functional Near-Infrared Spectroscopy
MEG	--	Magnetoencephalography
SQUID	-	Superconducting Quantum Interference Device
PET	-	Positron Emission Tomography
FAR	-	False Acceptance Rate
FRR	-	False Rejection Rate
HTER	-	Half Total Error Rate
EER	-	Equal Error Rate
EO	-	Eyes-open
EC	-	Eyes-closed
ERP	-	Event-Related Potential
VEP	-	Visual Evoked Potentials
AR	-	Autoregressive

FT	- Fourier Transform
WT	- Wavelet Transform
PSD	- Power Spectral Density
WPD	- Wavelet Packet Decomposition
STFT	- Short-Time Fourier Transform
PCA	- Principal Component Analysis
MLP	- Multiple Layer Perceptron
IHAR	- Inter-Hemispheric Amplitude Ratio
LDA	- Linear Discriminant Analysis
SSVEP	- Steady-State Visual Evoked Potentials
LSTM	- Long Short-Term Memory
RNN	- Recurrent Neural Networks
CMS	- Common Mode Sense
DRL	- Drive Right Leg
ISI	- Inter-Stimulus Interval
FIR	- Finite Impulse Response
AAR	- Automatic Artifact Removal
DFT	- Discrete Fourier Transform
RBF	- Radial Basis Function
<i>Euc_Dist</i>	- Euclidean Distance
<i>Man_Dist</i>	- Manhattan Distance
<i>Cos_Dist</i>	- Cosine Distance
<i>ChiQ_Dist</i>	- Chi-Squared Distacne
ReLU	- Rectified Linear Unit
TP	- True Positive
FP	- False Positive

TN	-	True Negative
FN	-	False Negative
ILSVRC	-	ImageNet Large Scale Visual Recognition
RAM	-	Random Access Memory
GPU	-	Graphics Processing Unit

LIST OF PUBLICATIONS

The followings are the list of publications related to the work on this thesis:

H. Y. Yap, Y. H. Choo, and W. H. Khoh, 2017. Overview of Acquisition Protocol in EEG based Recognition System. *Brain Informatics. BI 2017. Lecture Notes in Computer Science*, vol. 10654, Springer (SCOPUS indexed, Q3)

H. Y. Yap, Y. H. Choo, I. M. Y. Zeratul, and W. H. Khoh, 2021. Person Authentication based on Eye-Closed and Visual Stimulation using EEG Signals. *Brain Informatics*, vol. 8 (21) (SCOPUS indexed, Q1)

H. Y. Yap, Y. H. Choo, I. M. Y. Zeratul, and W. H. Khoh, 2023. An Evaluation of Transfer Learning Models in EEG-based Authentication. *Brain Informatics*, vol. 10 (1) (SCOPUS indexed, Q1)

جامعة ملاكا التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1

INTRODUCTION

1.1 Overview

In recent years, the growing interest in brain-computer interface (BCI) has increased the importance of understanding brain functions. BCI refers to a communication pathway between an external device and the human brain without involving any physical movements. These days, BCI research has been extended further to cover non-medical uses. An authentication study is an example of a BCI employing brain signals as a biometric identifier. Authentication is essential in our daily lives. It is performed in almost all human-to-computer interactions (HCI) to verify a user's identity through passwords, PIN codes, fingerprints, card readers, retina scanners, etc. Advanced biometric authentication has been developed with the growth of technology. Physiological biometrics uses a person's physical characteristics, such as face, fingerprint, palm print, retina, and iris, to identify an individual. This type of biometrics can hardly be replaced once it has been compromised.

On the other hand, behavioral biometrics analyze the digital patterns in performing a specific task in the authentication. Compared with the former biometrics, it is hard to mimic and is revocable and replaceable when compromised (Khoh *et al.*, 2019). While these traditional categorizations of biometrics, cognitive characteristics have given rise as the third category in recent years (Traore *et al.*, 2018). It assesses a person's emotional and cognitive state (biosignals) for identification and verification. It could serve as a replacement for conventional physiological and behavioral biometrics.