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i 

 

ABSTRACT 

 

Electroencephalogram (EEG)-based authentication has gained increasing attention as an 

alternative to conventional biometric systems due to its resistance to spoofing and privacy 

compliance. However, practical adoption remains limited, primarily due to high noise levels 

in consumer-grade EEG devices, high signal variation in different sessions, and the extensive 

training data requirements for deep learning models. Apart from ensuring biometric system 

performance, an EEG-based authentication system must also be user-friendly with a 

reasonable acquisition time to maintain user engagement. This study explores the feasibility 

of using consumer-grade EEG devices for authentication to address challenges such as noise 

and signal variability. It involves the design of a reasonably timed word-stimulation 

acquisition protocol to enhance signal reliability while minimizing cognitive fatigue. 

Additionally, due to the limited availability of training data, the performance of deep 

learning with transfer learning using pre-trained CNN models is investigated. The frequency 

spectra of the preprocessed EEG signals were extracted and used as input for pre-trained 

models. Experiments were conducted on a database of 30 subjects recorded over two 

separate sessions to evaluate the performance of the proposed method. Baseline evaluations 

compared pre-trained CNN models against traditional classifiers: SVM and k-NN. The 

results show that deep learning provides better performance within the same session. 

However, all methods, including pre-trained CNN models, SVM, and k-NN, experience 

performance degradation when tested on a different session dataset, revealing the challenge 

of EEG variability.In order to address this issue, an adaptive retraining strategy is proposed, 

which improves classification accuracy across sessions compared to direct deep learning 

transfer. These findings confirm the applicability of consumer-grade EEG devices for 

biometric authentication while addressing key challenges such as noise reduction, limited 

training data, and session variability. The proposed methodology contributes to the 

advancement of EEG-based biometric security, paving the way for practical deployment of 

EEG authentication systems in real-world applications. 
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PEMBELAJARAN PEMINDAHAN ADAPTIF DAN RANGSANGAN PERKATAAN 

UNTUK PENGESAHAN EEG YANG KUKUH 

ABSTRAK 

 

Autentikasi berasaskan Electroencephalogram (EEG) semakin mendapat perhatian sebagai 

alternatif kepada sistem biometrik konvensional kerana ketahanannya terhadap serangan 

penipuan (spoofing) dan pematuhan terhadap privasi. Walau bagaimanapun, 

penggunaannya dalam dunia sebenar masih terhad, terutamanya disebabkan oleh tahap 

hingar yang tinggi dalam peranti EEG gred pengguna, variasi isyarat yang ketara merentasi 

sesi yang berbeza, serta keperluan data latihan yang besar bagi model pembelajaran 

mendalam. Selain memastikan prestasi sistem biometrik, sistem autentikasi EEG juga mesti 

mesra pengguna dengan masa pemerolehan yang munasabah bagi mengekalkan 

penglibatan pengguna. Kajian ini meneroka kebolehlaksanaan penggunaan peranti EEG 

gred pengguna untuk tujuan autentikasi dalam menangani cabaran seperti tahap hingar 

yang tinggi dan variasi isyarat EEG. Ia melibatkan reka bentuk protokol pemerolehan 

rangsangan perkataan yang mempunyai tempoh yang munasabah bagi meningkatkan 

kebolehpercayaan isyarat EEG sambil mengurangkan keletihan kognitif. Selain itu, 

disebabkan ketersediaan data latihan yang terhad, prestasi pembelajaran mendalam dengan 

pembelajaran pemindahan menggunakan model CNN pralatih turut dikaji. Spektrum 

frekuensi isyarat EEG yang telah dipra-proses diekstrak dan digunakan sebagai input untuk 

model pralatih.Eksperimen telah dijalankan ke atas pangkalan data yang mengandungi 30 

subjek, yang direkodkan dalam dua sesi berasingan, bagi menilai prestasi kaedah yang 

dicadangkan. Penilaian asas membandingkan model CNN pralatih dengan pengelas 

tradisional seperti SVM dan k-NN. Keputusan menunjukkan bahawa pembelajaran 

mendalam memberikan prestasi lebih baik dalam sesi yang sama. Walau bagaimanapun, 

semua kaedah, termasuk model CNN pralatih, SVM, dan k-NN, mengalami penurunan 

ketara dalam prestasi apabila diuji pada pangkalan data sesi yang berbeza, yang 

menyerlahkan cabaran variasi isyarat EEG. Bagi menangani isu ini, strategi latihan semula 

adaptif dicadangkan, yang meningkatkan ketepatan klasifikasi merentasi sesi berbanding 

pemindahan pembelajaran mendalam secara langsung. Penemuan ini mengesahkan 

kebolehlaksanaan penggunaan peranti EEG gred pengguna untuk tujuan autentikasi 

biometrik, sambil menangani cabaran utama seperti pengurangan hingar, data latihan yang 

terhad, dan variasi sesi. Metodologi yang dicadangkan ini menyumbang kepada kemajuan 

dalam keselamatan biometrik berasaskan EEG, sekali gus membuka laluan kepada 

penggunaan sistem autentikasi EEG dalam aplikasi dunia sebenar. 
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1 

CHAPTER 1 

INTRODUCTION 

1.1 Overview 

In recent years, the growing interest in brain-computer interface (BCI) has increased 

the importance of understanding brain functions. BCI refers to a communication pathway 

between an external device and the human brain without involving any physical movements. 

These days, BCI research has been extended further to cover non-medical uses. An 

authentication study is an example of a BCI employing brain signals as a biometric identifier. 

Authentication is essential in our daily lives. It is performed in almost all human-to-computer 

interactions (HCI) to verify a user’s identity through passwords, PIN codes, fingerprints, 

card readers, retina scanners, etc. Advanced biometric authentication has been developed 

with the growth of technology. Physiological biometrics uses a person’s physical 

characteristics, such as face, fingerprint, palm print, retina, and iris, to identify an individual. 

This type of biometrics can hardly be replaced once it has been compromised. 

On the other hand, behavioral biometrics analyze the digital patterns in performing a 

specific task in the authentication. Compared with the former biometrics, it is hard to mimic 

and is revocable and replaceable when compromised (Khoh et al., 2019). While these 

traditional categorizations of biometrics, cognitive characteristics have given rise as the third 

category in recent years (Traore et al., 2018). It assesses a person’s emotional and cognitive 

state (biosignals) for identification and verification. It could serve as a replacement for 

conventional physiological and behavioral biometrics. 




