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ABSTRACT

Electroencephalogram (EEG)-based authentication has gained increasing attention as an
alternative to conventional biometric systems due to its resistance to spoofing and privacy
compliance. However, practical adoption remains limited, primarily due to high noise levels
in consumer-grade EEG devices, high signal variation in different sessions, and the extensive
training data requirements for deep learning models. Apart from ensuring biometric system
performance, an EEG-based authentication system must also be user-friendly with a
reasonable acquisition time to maintain user engagement. This study explores the feasibility
of using consumer-grade EEG devices for authentication to address challenges such as noise
and signal variability. It involves the design of a reasonably timed word-stimulation
acquisition protocol to enhance signal reliability while minimizing cognitive fatigue.
Additionally, due to the limited availability of training data, the performance of deep
learning with transfer learning using pre-trained CNN models is investigated. The frequency
spectra of the preprocessed EEG signals were extracted and used as input for pre-trained
models. Experiments were conducted on a database of 30 subjects recorded over two
separate sessions to evaluate the performance of the proposed method. Baseline evaluations
compared pre-trained CNN models against traditional classifiers: SVM and k-NN. The
results show that deep learning provides better performance within the same session.
However, all methods, including pre-trained CNN models, SVM, and k-NN, experience
performance degradation when tested on a different session dataset, revealing the challenge
of EEG variability.In order to address this issue, an adaptive retraining strategy is proposed,
which improves classification accuracy across sessions compared to direct deep learning
transfer. These findings confirm the applicability of consumer-grade EEG devices for
biometric authentication while addressing key challenges such as noise reduction, limited
training data, and session variability. The proposed methodology contributes to the
advancement of EEG-based biometric security, paving the way for practical deployment of
EEG authentication systems in real-world applications.



PEMBELAJARAN PEMINDAHAN ADAPTIF DAN RANGSANGAN PERKATAAN
UNTUK PENGESAHAN EEG YANG KUKUH

ABSTRAK

Autentikasi berasaskan Electroencephalogram (EEG) semakin mendapat perhatian sebagai
alternatif kepada sistem biometrik konvensional kerana ketahanannya terhadap serangan
penipuan (spoofing) dan pematuhan terhadap privasi. Walau bagaimanapun,
penggunaannya dalam dunia sebenar masih terhad, terutamanya disebabkan oleh tahap
hingar yang tinggi dalam peranti EEG gred pengguna, variasi isyarat yang ketara merentasi
sesi yang berbeza, serta keperluan data latihan yang besar bagi model pembelajaran
mendalam. Selain memastikan prestasi sistem biometrik, sistem autentikasi EEG juga mesti
mesra pengguna dengan masa pemerolehan yang munasabah bagi mengekalkan
penglibatan pengguna. Kajian ini meneroka kebolehlaksanaan penggunaan peranti EEG
gred pengguna untuk tujuan autentikasi dalam menangani cabaran seperti tahap hingar
yang tinggi dan variasi isyarat EEG. la melibatkan reka bentuk protokol pemerolehan
rangsangan perkataan yang mempunyai tempoh yang munasabah bagi meningkatkan
kebolehpercayaan isyarat EEG sambil mengurangkan keletihan kognitif. Selain itu,
disebabkan ketersediaan data latihan yang terhad, prestasi pembelajaran mendalam dengan
pembelajaran pemindahan menggunakan model CNN pralatih turut dikaji. Spektrum
frekuensi isyarat EEG yang telah dipra-proses diekstrak dan digunakan sebagai input untuk
model pralatih.Eksperimen telah dijalankan ke atas pangkalan data yang mengandungi 30
subjek, yang direkodkan dalam dua sesi berasingan, bagi menilai prestasi kaedah yang
dicadangkan. Penilaian asas membandingkan model CNN pralatih dengan pengelas
tradisional seperti SVM dan k-NN. Keputusan menunjukkan bahawa pembelajaran
mendalam memberikan prestasi lebih baik dalam sesi yang sama. Walau bagaimanapun,
semua kaedah, termasuk model CNN pralatih, SVM, dan k-NN, mengalami penurunan
ketara dalam prestasi apabila diuji pada pangkalan data sesi yang berbeza, yang
menyerlahkan cabaran variasi isyarat EEG. Bagi menangani isu ini, strategi latihan semula
adaptif dicadangkan, yang meningkatkan ketepatan klasifikasi merentasi sesi berbanding
pemindahan pembelajaran mendalam secara langsung. Penemuan ini mengesahkan
kebolehlaksanaan penggunaan peranti EEG gred pengguna untuk tujuan autentikasi
biometrik, sambil menangani cabaran utama seperti pengurangan hingar, data latihan yang
terhad, dan variasi sesi. Metodologi yang dicadangkan ini menyumbang kepada kemajuan
dalam keselamatan biometrik berasaskan EEG, sekali gus membuka laluan kepada
penggunaan sistem autentikasi EEG dalam aplikasi dunia sebenar.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In recent years, the growing interest in brain-computer interface (BCI) has increased
the importance of understanding brain functions. BCI refers to a communication pathway
between an external device and the human brain without involving any physical movements.
These days, BCI research has been extended further to cover non-medical uses. An
authentication study is an example of a BCI employing brain signals as a biometric identifier.
Authentication is essential in our daily lives. It is performed in almost all human-to-computer
interactions (HCI) to verify a user’s identity through passwords, PIN codes, fingerprints,
card readers, retina scanners, etc. Advanced biometric authentication has been developed
with the growth of technology. Physiological biometrics uses a person’s physical
characteristics, such as face, fingerprint, palm print, retina, and iris, to identify an individual.
This type of biometrics can hardly be replaced once it has been compromised.

On the other hand, behavioral biometrics analyze the digital patterns in performing a
specific task in the authentication. Compared with the former biometrics, it is hard to mimic
and is revocable and replaceable when compromised (Khoh et al., 2019). While these
traditional categorizations of biometrics, cognitive characteristics have given rise as the third
category in recent years (Traore et al., 2018). It assesses a person’s emotional and cognitive
state (biosignals) for identification and verification. It could serve as a replacement for

conventional physiological and behavioral biometrics.





