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ABSTRACT

Sentiment intensity analysis is an advanced process within sentiment analysis that not only
determines the polarity of opinions but also measures the degree of sentiment strength,
offering deeper insights into public opinion. In the Malaysian telecommunications domain,
where customer feedback is often expressed in English, Malay, or a mixture of both on
informal and noisy social media platforms, the widely used Relative Proportional Difference
(RPD) model has been applied for proportional sentiment scoring but suffers from
instability, inconsistent outputs, and sensitivity to small threshold changes, leading to
unreliable sentiment intensity scores. Thus, this study aims to develop an Enhanced RPD
model to improve stability, sensitivity, and consistency in scoring by identifying features
that enhance sentiment analysis, designing a model that ensures consistent scoring across
multilingual datasets, and evaluating its performance against the baseline RPD. Customer
feedback was collected from social media platform and pre-processed for sentiment analysis.
The enhanced model incorporates a 0.1 smoothing factor into the original formula,
mitigating threshold instability while retaining proportional scoring logic. Its performance
was compared against the baseline model using accuracy, F1 score, and stability assessment
across multilingual data scenarios. Based on English, Malay, and mixed-language telecom
customer feedback, the Enhanced RPD model demonstrates an accuracy of 78.6%,
representing a 6.5% improvement over the baseline model, and an F1 score of 78.9%,
indicating a 5.7% improvement, and reduces Mean Squared Error by 20% from 0.089 to
0.071. The findings suggest that the Enhanced RPD model provides a more reliable and
robust approach for sentiment intensity analysis in multilingual and noisy data environments.
This contributes to more accurate sentiment-driven decision-making in the
telecommunications sector and holds potential for application in other multilingual
industries facing similar analytical challenges. These findings confirm that the Enhanced
RPD model delivers more stable, accurate, and fine-grained sentiment intensity scores,
addressing multilingual sentiment analysis gaps, providing significant and actionable
insights for industry, and offering a reliable foundation for future research in complex real-
world data environments.



MODEL PERBEZAAN BERKADARAN RELATIF YANG DIPERTINGKAT UNTUK
MENGANALISIS INTENSITI SENTIMEN PANDANGAN TELEKOMUNIKASI DI
MALAYSIA

ABSTRAK

Analisis intensiti sentimen merupakan proses lanjutan dalam analisis sentimen yang bukan
sahaja menentukan polariti pendapat tetapi juga mengukur tahap kekuatan sentimen,
sekaligus memberikan pemahaman yang lebih mendalam terhadap pandangan awam.
Dalam domain telekomunikasi Malaysia, di mana maklum balas pelanggan sering
dinyatakan dalam bahasa Melayu, bahasa Inggeris, atau gabungan kedua-duanya di
platform media sosial yang tidak formal dan bising, model Perbezaan Berkadar Relatif
(PBR) yang digunakan secara meluas untuk penilaian sentimen berkadar didapati
menghadapi masalah ketidakstabilan, hasil yang tidak konsisten, dan kepekaan terhadap
perubahan kecil pada paras penentu, yang membawa kepada skor intensiti sentimen yang
kurang dipercayai. Oleh itu, kajian ini bertujuan membangunkan model PBR yang
dipertingkat bagi menambahbaik kestabilan, kepekaan, dan konsisten dalam penilaian
dengan mengenal pasti ciri-ciri yang dapat memperkukuh analisis sentimen, mereka bentuk
model yang mengekalkan penilaian konsisten merentasi set data dwibahasa, dan menilai
prestasi PBR yang dipertingkat berbanding PBR asas. Maklum balas pelanggan telah
dikumpulkan daripada platform media sosial dan dipra-proses untuk analisis sentimen.
Model yang dipertingkat ini menggabungkan faktor pelarasan 0.1 ke dalam formula asal,
yang berupaya mengurangkan ketidakstabilan paras penentu sekaligus mengekalkan logik
penilaian berkadar. Keberkesanan model telah dibandingkan dengan model asas
menggunakan ketepatan, skor F1, dan penilaian kestabilan merentasi senario data
berbilang bahasa. Berdasarkan pandangan pelanggan telekomunikasi dalam bahasa
Inggeris, Melayu, dan bahasa campuran, model RPD dipertingkat menunjukkan ketepatan
sebanyak 78.6%, iaitu peningkatan sebanyak 6.5% berbanding model asas, serta skor F1
sebanyak 78.9% yang menunjukkan peningkatan sebanyak 5.7%, serta pengurangan Ralat
Kuasa Dua Min sebanyak 20% daripada 0.089 kepada 0.071. Hasil kajian menunjukkan
bahawa model PBR yang dipertingkat menawarkan pendekatan yang lebih boleh dipercayai
dan teguh untuk analisis intensiti sentimen dalam persekitaran data berbilang bahasa dan
terdapat gangguan. Hal ini menyumbang kepada pembuatan keputusan berasaskan
sentimen yang lebih tepat dalam sektor telekomunikasi serta berpotensi untuk diaplikasikan
dalam industri berbilang bahasa lain yang berdepan cabaran analisis yang sama.
Penemuan ini membuktikan bahawa model PBR yang dipertingkat mampu menghasilkan
skor intensiti sentimen yang lebih stabil, tepat, dan terperinci, sekaligus menangani jurang
dalam analisis sentimen pelbagai bahasa, menyediakan pandangan yang signifikan dan
boleh dilaksanakan kepada industri, serta mewujudkan asas yang kukuh untuk penyelidikan
masa hadapan dalam persekitaran data dunia sebenar yang kompleks.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This introductory chapter began with the background of the study, followed by a
discussion of the problem. Thereafter, research questions are formulated and used to
construct the research objectives. Next, the contribution of the study as well as the scope of
the study is presented. Finally, the outline of the remaining chapters of this thesis is also

presented.

1.2 Background

The telecommunication industry in Malaysia has been pivotal in shaping the
country's economic landscape and technological progress. As a cornerstone of Malaysia's
digital economy, this sector has undergone significant transformations, reflecting global
trends and local demands (Tiong et al., 2022).

The Malaysian government, through the Malaysian Communications and
Multimedia Commission (MCMC) and in collaboration with various stakeholders from the
telecommunications sector, drives the Jendela initiative. It represents a significant
investment in the country's digital infrastructure, aiming to boost economic growth, support
digital education, improve access to digital services, and ensure Malaysia remains

competitive in the digital age (MCMC, 2022).
1



To ensure the success of Jendela Malaysia, leveraging big data and sentiment analysis
can provide strategic insights and drive informed decisions. This approach can enhance
network infrastructure, improve customer satisfaction, and tailor services to meet user needs
more effectively. Gathering such information from the public is vital to provide insights into
the real thoughts of people, and this challenge is the object of research in the discipline called
“Sentiment Analysis” (Rodriguez-lbanez et al., 2023).

Sentiment analysis, powered by Atrtificial Intelligence (Al), has significant potential
as an analytical tool to understand public preferences. It is a specialized field of Natural
Language Processing (NLP) that leverages Al techniques to automatically detect, classify,
and interpret opinions expressed in text (Taherdoost & Madanchian, 2023; Muhammad et
al., 2020). By integrating Machine Learning (ML) algorithms and other models, sentiment
analysis can go beyond basic polarity classification (positive, neutral, negative) and analyze
sentiment intensity, emotion detection, and contextual sentiment trends.

In recent years, there is an increase in interests by many organizations and companies
towards the application of sentiment analysis which proved the arisen importance of this
field. Furthermore, sentiment analysis has been applied to a wide variety of topics and issues
as reported in previous research such as online products reviews (Fung & Belaidan, 2021),
hotel reviews (Wen, Liang, & Zhu, 2023), political and financial analysis (Wen et al., 2023;
Mishev et al., 2020).

At present, the current approaches used for Social Networks Sites (SNS) sentiment
analysis fall into three main categories: machine learning technique, lexicon-based and
hybrid methods (Ainapure et al., 2023). The machine learning approach aims to build
classifiers by extracting features and algorithms from trained data (Aftab et al., 2023). The

other is the lexicon-based approach, which utilizes lexical resources like sentiment lexicons



or dictionaries, to determine the polarity (Mahmood et al., 2020). Lastly, the hybrid
technique combines the best of both lexicon-based and machine learning methods to improve
the system's performance (Ainapure et al., 2023).

To date, a massive volume of studies has been implemented in mining the sentiment
written in a single language, especially English. However, to perform sentiment analysis in
the Malaysian context, two things need to be considered. First, sentiment analysis should be
applied for the Malay language as Bahasa Melayu is the national language. Second,
Malaysians tend to mix both Malay and English language known as Bahasa rojak mainly
when they write on SNS. Previous sentiment analysis research is limited in fulfilling these
two needs (Mountstephens et al., 2023).

This thesis employs an aggregation formulae for sentiment intensity analysis to
evaluate public sentiment across five major Malaysian mobile telecommunication
companies: Celcom, Digi, Maxis, UMobile, and TuneTalk. A thorough search of the relevant
literature yielded that this research is among the first work to apply sentiment intensity
analysis using aggregation model for telecommunication sector and, hopefully, it will be a
valuable mechanism for the government or player to improve the execution of the project
plan in the future.

In demonstrating the performance of the proposed approach, the experimental studies
have been conducted. The findings from the research consistently demonstrate the new
Malays - English Sentiment Intensity Analysis, outperforms the current leading techniques

and enhances overall performance.



1.3 Research Problem

The digital landscape in Malaysia has evolved over the past few years, and it changes
the way Malaysians communicate with each other, how they express their thoughts, and how
they make decisions. As of 2023, there were approximately 28 million active social media
users in Malaysia (Shien et al., 2023). Moreover, according to MCMC (2022) on average,
Malaysians spend about 9 hours a day on online activities such as engaging on social media
platforms, online shopping, streaming videos, and other similar activities.

Based on the statistic given, it can be seen that SNS has created a new way of
communications. Besides, this kind of platform does facilitate real-time marketing which
takes business one step ahead by enabling brands to engage with their consumers. Moreover,
it allows the business to be close to the target audience, enables the companies or
organizations to take direct action in satisfying their customers, produce insights that
facilitate the decision-making process and engage in driving business results.

A well-known social networking service (SNS), formerly called Twitter and now
rebranded as "X, is a platform where users can create and share brief posts, limited to 280
characters known as tweets. In 2022, this platform boasts over 206 million daily active users,
offering a space where individuals can share their perspectives, connect with others,
communicate, and engage in wide-ranging discussions on various subjects (Qi & Shabrina,
2023).

Leveraging the benefits of SNS, telecommunication companies should utilize
sentiment analysis on these platforms to gain deeper insights into customer preferences,
enhance services, maintain competitiveness, manage issues effectively, detect market trends,
and offer personalized experiences. The Malaysian Communications and Multimedia

Commission (MCMC) has reported a significant number of complaints related to
4



telecommunication services. For instance, between January and June 2022, there were
40,863 network-related complaints, underscoring the need for telecommunication
companies to enhance their customer service strategies (MCMC 2022b). This significant
volume of complaints reflects increasing consumer frustration over network performance,
reliability, and service responsiveness. Traditional customer service methods, such as call
centers and manual complaint processing, are often reactive and inefficient in addressing
such a high volume of grievances (Pi. S. et al., 2024)

To address these challenges, adopting sentiment analysis through social media can
be instrumental. A study by Mat Zain et al. (2022) explores the application of sentiment
analysis in understanding customer feedback in the telecommunications industry. The
researchers employed machine learning techniques to analyze sentiment from Twitter,
utilizing Support Vector Machine (SVM), Random Forest, and Naive Bayes algorithms.
Their findings indicated that SVM demonstrated the highest accuracy in detecting and
classifying customer sentiments, highlighting its effectiveness in extracting actionable
insights to enhance customer service strategies.

Another relevant study by Rahim et al. (2021) investigates public sentiment on
Twitter towards major Malaysian mobile telecommunication companies, including Celcom,
Digi, and Maxis. The researchers employed machine learning models, such as Support
Vector Machine (SVM), Naive Bayes, and Deep Learning, to classify sentiments. Their
findings demonstrated that Deep Learning classifiers achieved the highest performance in
sentiment classification, underscoring their effectiveness in analyzing customer opinions to
enhance service quality.

These studies highlight the effectiveness of sentiment analysis in understanding and

addressing customer complaints in the Malaysian telecommunication sector. By leveraging



such analytical tools, companies can gain valuable insights into customer perceptions and
improve their services accordingly.

In this thesis, there are two issues have been addressed which are:
1. The needs for social media sentiment intensity analysis to understand public

In recent years, sentiment analysis has become an indispensable tool for
organizations seeking to understand and respond to customer opinions, particularly in highly
competitive industries such as telecommunications (Smith & Lee, 2020). In the Malaysian
context, telecommunication service providers face mounting challenges in maintaining
customer satisfaction and loyalty, as customers often voice their opinions and grievances
through digital platforms such as social media and online forums (Ahmad & Lim, 2019).
Malaysia is a linguistically and culturally diverse country, with multiple languages spoken
across different regions. Opinions expressed in different languages may vary in tone,
context, and sentiment, making it challenging to accurately interpret and analyze sentiments.

Although sentiment analysis has been widely applied in the telecommunications
industry to understand customer perceptions, most studies have focused primarily on
sentiment polarity classification (positive, negative, neutral) without addressing sentiment
intensity in detail (Benoit et al., 2018). Existing techniques for sentiment intensity analysis,
such as the Relative Proportional Difference (RPD) model, offer an interpretable approach
to assess sentiment strength proportionally, but suffer from several critical shortcomings.
The baseline RPD model demonstrates inconsistency when handling sparse data or when
minor changes occur in threshold values, resulting in unstable and unreliable sentiment
intensity scores (Agarwal & Mittal, 2012; Nayak & Sinha, 2018).

To address these limitations, this study focuses on developing and evaluating a more

stable and consistent sentiment intensity analysis technique through an enhanced version of





