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Abstract

Accurate forecasting of diesel prices is essential for Malaysia, where transpor-
tation, agriculture, and industry are highly dependent on this fuel. This study
investigates the effectiveness of the Autoregressive Integrated Moving Average
(ARIMA) model in predicting Malaysian retail diesel prices. Using the Box-
Jenkins methodology, the research process involves model identification, esti-
mation, and validation. Data stationarity is assessed through visual inspection
and the Augmented Dickey-Fuller (ADF) test, with first-order differencing
applied to achieve non-stationarity. Autocorrelation Function (ACF) and Par-
tial Autocorrelation Function (PACF) analysis guide the parameter selection,
leading to the estimation of several ARIMA (p, 1, q) models. Model adequacy
is determined using the Akaike Information Criterion (AIC) with ARIMA (1,
1, 0) identified as the optimal specification. Performance evaluation based
on Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) indi-
cates high predictive accuracy, demonstrating the model’s robustness in cap-
turing diesel price dynamics. The results practically provide value for policy-
makers and industry stakeholders by supporting evidence-based decision-
making, facilitating effective economic planning, and optimizing resource
management.
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1. Introduction

In Malaysia’s economic landscape, diesel fuel plays a very important role, and be-
comes the main source of energy that powers a wide array of sectors, including
transportation, logistics, agriculture, and various industries [1]. Therefore,
changes in diesel prices have a direct impact on the country’s economy. An in-
crease in price, for example, will raise the operating costs of companies that rely
heavily on transportation and supply chains [2]. This situation ultimately drives
up the prices of goods and services, thereby putting pressure on the inflation rate
[2] [3]. For that reason, forecasting the diesel process is not merely an academic
exercise, but an important necessity for strategic planning, risk management, and
more effective policy making by the government as well as the private sector [4].

In dynamic market, forecasting methods typically use time series analysis, and
the Autoregressive Integrated Moving Average (ARIMA) models are regarded as
a fundamental basis in the statistical approach [5]. This model is valued for its
ability to detect a temporal relationship in data, including trend patterns, seasonal
characteristics, and specific cycles [6]. However, the limitation of ARIMA be-
comes evident when the market is influenced by external factors unrelated to time,
such as changes in government policy or global market shocks [7]. Although
ARIMA is effective in identifying internal patterns, it is less suitable when dealing
with sudden, non-linear changes. The weakness has led to the development of
more advanced hybrid models, which combine time series dynamic with the ef-
fects of external variables [8].

Forecasting is an important tool in the fields of economics and business as it
provides insights that assist in strategic planning and risk management. In Malay-
sia, diesel prices as a key commodity have a significant impact on various sectors,
including transportation, logistics, manufacturing, and agriculture [9]. The price
instability makes accurate and reliable forecasting highly necessary, so that poli-
cymakers and industry players can anticipate market changes and reduce financial
risks. The task of forecasting diesel prices is highly challenging as it is influenced
by various factors, both global and economic, such as geopolitical events, crude
oil prices, and government subsidy policies. In forecasting, one of the important
aspects of this process is the selection of the most appropriate model. This selec-
tion is usually guided by statistical criteria such as Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC), which help balance forecasting
accuracy with the level of model complexity [10].

This study focuses on forecasting models by evaluating the performance of the
ARIMA model in predicting retail diesel prices in Malaysia. Several recent aca-
demic studies highlight the importance of using multiple forecasting models to
predict diesel and other energy commodity prices, particularly by emphasizing
performance comparison between these models. Recently, the research has fo-
cused on evaluating the performance of forecasting models such as ARIMA in
predicting crude oil and diesel price, usually in comparison with more advanced

methods. In addition, recent studies emphasize that ARIMA and its variants still
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serve as a benchmark method in forecasting fuel and energy prices. Sakib et al
employed ARIMA and ARIMAX approaches to forecast fuel price behaviors dur-
ing the pandemic, and the results show the reliability of these models in capturing
short term fluctuations [11]. Dar et al showed that although ARIMA is effective
in modeling crude oil price fluctuations, forecasting accuracy can be improved
when it is combined with decomposition methods, thereby reinforcing ARIMA’s
position as a fundamental tool in forecasting [12]. Similarly, Rusman et a/. com-
pared ARIMA with deep learning methods in forecasting product price and found
that ARIMA still produces good performance and results under certain condition
despite its limitations [13]. All these studies confirm that ARIMA still serves as a
solid foundation in evaluating forecasting performance in the volatile energy mar-
ket.

Simultaneously, scholars have expanded the use of ARIMA by integrating it
into a more comprehensive forecasting framework. In a study by Xu et a/, ARIMA
elements were integrated into an ensemble-based model to forecast crude oil
prices. The results indicated that ARIMA provided a strong baseline of accuracy
when compared to mixed-frequency methods and sentiment-based approaches
[14]. Similarly, Nasir et al. emphasize the effectiveness of ARIMA as part of a tra-
ditional statistical forecasting approach, thus confirming its role in predicting eco-
nomic and energy prices [15]. Overall, these findings strengthen the importance
of evaluating ARIMA’s performance in forecasting retail diesel prices in Malaysia.
At the same time, it places ARIMA within a broader context in the literature,
where this model serves not only a practical tool but also as a benchmark for com-
paring more complex approaches.

The primary objective of this study is to evaluate the forecasting performance
of the ARIMA model. By comparing models using performance metrics like Root
Mean Square Error (RMSE) and means absolute error (MAE), we aim to identify
the model that can provide the most accurate and reliable forecasts. These perfor-
mance metrics are important indicators for evaluating of forecasting models, and
they have also been commonly used by previous researchers, such as a study in
Ghana comparing ARIMA and SARIMA models for petrol and diesel prices
demonstrated the effectiveness of using RMSE and MAE to determine the supe-
rior model [16]. Similarly, a study on fuel price forecasting during the COVID-19
pandemic highlighted the efficiency of ARIMA by reporting its RMSE and MAE
performance metrics [11]. In addition, a comparative analysis between ARIMA
and LSTM in oil price forecasting also affirmed the practical importance of these
error metrics as a basis for evaluation [17]. The ARIMA component serves to cap-
ture the internal dynamics of prices. Recent research in fuel price forecasting, par-
ticularly from 2020 to 2025, also reinforces the trend toward using more inte-
grated and advanced models. Previous studies indicate that ARIMA remains rel-
evant in specific regional contexts but also highlights its limitations when facing
sudden fluctuation.

The finding of this study is expected to show that the best ARIMA model pro-
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vides higher forecasting accuracy, making it a more suitable tool for predicting
diesel prices in Malaysia. This enhanced ability to forecast prices will support
more structured economic planning, more efficient fiscal management, and oper-
ational effectiveness, thus contributing to the overall economic stability of Malay-

sia.

2. Methodology

The Autoregressive Integrated Moving Average (ARIMA) model that was intro-
duced by Box and Jenkins is among the core statistical time series analysis and
forecasting methodologies [18]. The ARIMA model is significant in the forecast-
ing of time series. The ARIMA model consists of three parts, and they are the
Autoregressive part of order p, AR(p), differencing part of order d, I(d) and the
Moving Average part of order q, MA(g) [19]. The stages in the ARIMA model are
3 in number, and they are the model identification, model estimation and model

application.

Model Identification

gresssnesinanian Model Estimation

Model

Validation :
Diagnostic & Revise Model

Statistical Test

Model Application

Stage3

Figure 1. Stages in ARIMA modeling.

Figure 1 shows the three-stage process of building and validating the statistical
in ARIMA model. The process begins with Stage 1: Model Identification, where
the initial structure of the model is determined. This step involves examining the
time series data to assess its stationary and applying differencing if necessary. The
Autocorrelation Function (AFC) and Partial Autocorrelation Function (PACF)
plots are then analyzed to guide the selection of appropriate model order (p,d,q).
The procedure continues with Stage 2: Model Estimation, Validation Diagnostic
and Statistical Test. If the model fails to meet adequacy criteria, it will revise and
the estimation validation cycle is repeated until satisfactory performance is
achieved. Finally, in stage 3: Model Application, the validated ARIMA model is
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implemented for forecasting purpose. At this stage, the model is applied to gener-
ate predictions evaluate its practical utility is capturing the underlying dynamics

of the time series.

2.1. Stage 1: Model Identification

The first step in Model Identification stage is the selection of an appropriate order

of ARIMA (p, d, q) which is guided by the properties of the time series and in-

formed by the ACF and PACF plots. This process begins with verifying the sta-
tionary of the data, followed by differencing id required, and finally analyzing the

ACF and PACEF plots to determine the autoaggressive and moving average com-

ponents.

o Stationarity Check: Establishing stationary is the most critical preliminary
step in ARIMA modeling. A time series is considered to be stationary if the
statistical characteristics, including the mean, variance, and autocorrelation
structure, are remain constant over time. Visual inspection of the time series
plot is often used to detect non-stationary patterns, such as trends or variance
shifting. To confirm this formally, the specified statistical tests like the Aug-
mented Dickey-Fuller (ADF) test, are employed to test the presence of unit
roots that indicate the presence of non-stationarity.

¢ Differencing (d): When the series is found to be non-stationary, differencing
is applied to stabilize the mean and remove the trends, in order to achieve sta-
tionarity. The differencing order (d) will be determined based on the mini-
mum number of differences required to achieve stationary. For example, the
first-order difference can be expressed mathematically as Equation (1):

Y=Y, -Y,, (1)

where Y, represents the original series and Y, is the differenced series.

e ACF and PACF Analysis: once stationary is achieved, the ACF and PACF
plots of first differencing series are examined. The ACF plot is used to identify
the order of the Moving Average components, q, by observing the lag values at
which autocorrelation becomes insignificant. Conversely, the PACF plot is
employed to determine the number of terms in the Autoregressive component,
p, by indicating the lag beyond which the partial autocorrelations diminish.
The characteristic patterns observed in these plots, such as significant spikes,
decay patterns, serve as diagnostic tools for specifying an appropriate ARIMA

model structure.

2.2. Stage 2: Model Estimation

From the term obtained from AR(p), I(d), and MA(q), we have the different com-
binations between those 3 terms. Hence, using the combination, the best model
to forecast is measured by using AIC (Akaike’s Information Criterion). The lowest

value indicates the best modelling model, which is given by Equation (2):

A|C=2k—2|n(£) )
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where, kis the number of estimated parameters in the model and L is the max-

imum values of likelihood function for the model.

2.3. Stage 3: Model Application

In practical use, the validated forecasting model is applied to generate predictions
of future events. This represents the final, action-oriented stage of the forecasting
process, where the model transitions from a purely statistical construct into a
functional tool for informed decision-making.

The accuracy of the ARIMA model’s forecasts is rigorously evaluated using four
performance metrics: on Mean Squared Error (MSE), Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE). These metrics quantify the average magnitude of the forecasting errors

and are given by the following Equations (3)-(6).

18 N2
MSE == (Y, -Y,) 3)
N
n A2
RMSE = lZ(Yt —Yt) (4)
n=
18 .
MAE == Y|V, -Y| (5)
nis
MAPE :@z At (6)
n =| Y,
where,
Y, =actual value at time t.

t

Y, =forecast value at time t.

n = number of observation.

3. Results and Discussion

The study uses diesel load profiling data from the Malaysian public data portal,
which is the sampling data that start in week 4 of March 2017 and concludes in week
4 of July 2025, with a weekly data frequency that allows readers to reproduce the

analysis. The descriptive statistics of the time series data are presented in Table 1:

Table 1. Descriptive statistic.

Mean 2.24
Maximum 3.35
Minimum 1.40
Standard deviation 0.37
Skewness 1.37
Kurtosis 2.00
Observation 420
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The mean of diesel fuel during the period was approximately 2.24 with values
ranging from a minimum of 1.4 to a maximum of 3.35. The standard deviation
was 0.37, indicating relatively low variation around the mean. The positive skew-
ness value of 1.36 suggests an asymmetrical distribution with a longer right tail,
reflecting the presence of unusually high prices. The kurtosis of 2.00 indicates a
flatter peak and lighter tails compared to a normal distribution, implying that ex-
treme values occurred less frequently.

In the initial stage, a preliminary data investigation was conducted to under-
stand the fundamental characteristic and to detect any unusual pattern or charac-
teristic existing. A simple time plot with a fitted linear trend was constructed for
this purpose. As illustrated in Figure 2, the series appears to be non-stationary.
No evident seasonal component is detected. However, abnormality high values
around 70" observation and unusually low values around the 280" observation
suggest the presence of outliers or irregular disturbances in the data. These values
are extreme, but they accurately reflect real, significant economic or policy shifts
that are part of the diesel price history (e.g., the high value is a spike due to a global
supply disruption; the low value is due to a sudden, temporary government sub-
sidy). However, the values are not errors but true market reflections of the price
mechanism under stress. Excluding or altering them would misrepresent the ac-
tual volatility and reduce the model’s ability to forecast during extreme condi-
tions, especially relevant for risk assessment. Despite the existence of these ex-
treme values, this time series still needs to be processed to achieve stationarity
before modeling to ensure the model’s assumptions are met. The process of con-
verting the data to a stationary time series will be implemented in the subsequent

methodology section using the differencing method.

Time series with Upward Trend

Value
1.5 20 25 3.0

T T T T
0 100 200 300 400

Figure 2. Time plot of Y, and trend line.

A shown in Figure 3, the autocorrelation function (ACF) of the original series
exhibits a slow decline, indicating the diesel data are not-stationary. In contrast,
Figure 4 presents the PACF plots, which display one significant spike at lag 1 fol-
lowed by smaller spike at higher lags. This pattern suggests that the series can be

made stationary through performing first differencing.
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Figure 3. The ACF of the Diesel (Original data).
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Figure 4. The PACF of the Diesel (Original data).

Formal statistical tests were performed using the Augmented Dickey-Fuller
(ADF to evaluate the stationarity of the diesel price series. The test results indi-
cated the presence of a unit root, confirming that the original series was non-sta-
tionary. Specifically, the ADF test yielded a p-value of 0.2369 which exceeds the
standard conventional significance threshold of 0.05. Consequently, the null hy-
pothesis of non-stationary could not be rejected. To achieve stationarity, the series
was transformed through a first-order differencing (d=1).

The resulting time series of the differenced data, illustrated in Figure 5 and
Figure 6, provides a visual indication of stationarity, as the series fluctuates
around a constant mean without displaying any trend.

Since applying a single level of differencing (d = 1), the repeated ADF test con-
firmed that the new time series was now stationary, proving that a single differ-
ence was sufficient to remove the original series’ trend. Attempts to use a second
difference (d=2) were found to cause over-differencing. Therefore, the differenc-

ing order (d=1) is optimal and sufficient valid ARIMA modeling.
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Figure 5. The ACF of the Diesel (first differencing).
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Figure 6. The PACF of the Diesel (first differencing).

Following differencing, the Autocorrelation Function (ACF) and Partial Au-
tocorrelation Function (PACF) plots of the transformed diesel price series were
generated, as presented in Figure 7. These diagnostic plot serves as essential
tools for identifying the potential autoregressive (p) and moving average (q) or-
der of the ARIMA model, consistent with the methodology adopted in the ref-
erence study. The ACG plot exhibits significant spikes at several lags that grad-
ually decay, indicating the presence of a Moving Average (MA) component in
the series. Meanwhile, the PACF plot highlights distinct cut-offs at several lags
that gradually decay, indicating the presence of a Moving Average (MA) com-
ponent in the series. Meanwhile, the PACF plot highlights distinct cut-offs at
specific lags, which are suggestive of an Autoregressive (AR) process. Together,
these observations provide an initial basis for specifying the candidate ARIMA
model parameters.

Based on the patterns observed in the ACF and PACEF plots of the differenced
series, several candidate ARIMA(p,d,q) model specifications were identified.
These models were subsequently estimated, and their relative performance was
assessed using Akaike’s Information Criterion (AIC), the Bayesian Information
Criterion (BIC). In both cases, lower values indicate a better balance between
model fit and parsimony. The corresponding AIC and BIC values for the compet-

ing models are reported in Table 2. Furthermore, by examining the significant
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spikes observed in the ACF and PACEF plots (as illustrated in Figure 5 and Figure
6), the most plausible ARIMA structures were determined. A summary of these
identified models is provided in Table 2.

Forecasts from ARIMA(1,1,0)

25
|

2.0

15

T T T T I
0 100 200 300 400

Figure 7. Forecast diesel price with an ARIMA (1, 1, 0) model.

Table 2. Potential ARIMA models and AIC and BIC values.

Models AIC BIC
ARIMA (1, 1, 0) -1079.97 -1071.89
ARIMA (0,1, 1) -1079.81 -1071.74
ARIMA (1,1, 1) -1079.1 —1066.98
ARIMA (2,1, 0) -1078.43 -1066.31
ARIMA (0, 1, 2) -1078.28 -1066.17
ARIMA (2,1,1) -1077.1 -1060.94
ARIMA (1, 1, 2) -1077.1 -1060.95

Based on the results presented in Table 2, ARIMA (1, 1, 0) specification was
identified as the optimal model was, as it yielded the lowest AIC value of -1079.97,
thereby making it the most statistically appropriate choice among the competing
models. In addition, the BIC values supported this selection with the lowest BIC,
which is —1071.89, further reinforcing the robustness of the chosen model. The
ARIMA (1, 1, 0) model was implemented using the forecast package in R Studio,
and its mathematical representation is provided in Equation (7).

Yo-Ya=a(Yu-Y)te 7)
where:
Y, = the value of the time series at time 1,
¢ = the autoregressive coefficient at lag one,

& = the white noise error term at time t.

Figure 7 illustrates the time series of historical data along with the forecast gen-
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erated by the ARIMA (1, 1, 0) model. The historical observations, plotted as a solid
black line, cover approximately 420 time periods and display non-stationary char-
acteristics, including a downward trend and noticeable fluctuations. The blue line
extending beyond the end of the historical series represents the model’s point
forecasts for the future values. Accompanying the forecast are two prediction in-
tervals: the darker shade region corresponds to the 80% confident interval, while
the lighter shaded region reflects the 95% confidence interval. As expected, the
width of these intervals increases with forecast horizon, illustrating the growing
uncertainty in long-term projections, which is a well-recognized feature of the
time series forecasting.

The prediction accuracy and feasibility of the ARIMA forecasting model were
evaluated using namely Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE). The error metrics were calculated on a hold-out set to ensure an objec-
tive assessment of the model’s forecasting performance and to prevent overfitting.
For this purpose, the data sample was divided into two, which is the data from
March 2017 to March 2024 used as the training data and data from April 2024 to
July 2025 serving as the testing data (hold-out) data. All primary error metrics,
including RMSE, MAE, and MAPE, are reported based on the model’s perfor-
mance on this testing data, thereby directly presenting the out-of-sample accu-
racy, which provides a purer measure of the model’s capability to forecast future
diesel price data. The results, as summarized in Table 3, demonstrated that the
ARIMA (1, 1, 0) model produced a notably low MSE of 0.0094 and an RMSE of
0.1384. In addition, the MAE and MAPE were recorded at 0.0320 and 1.263, re-
spectively. These relatively low error values confirm that the ARIMA model pro-
vided excellent forecasting performing, reflecting both high accuracy and strong

reliability in capturing the dynamic of the diesel price series.

Table 3. ARIMA model evaluation.

Evaluation Metrics ARIMA Model
MSE 0.0094
RMSE 0.1382
MAE 0.0320
MAPE 1.263

4. Conclusions

This study successfully analyzed historical weekly diesel fuel prices using Auto-
correlation Function (ACF) and Partial Autocorrelation Function (PACF) plots
to identify non-stationary and non-seasonal patterns. The results demonstrate
that the Autoregressive Integrated Moving Average (ARIMA) model effectively
captures the stochastic behavior of the time series data, providing a robust frame-

work for forecasting. Comprehensive residual diagnostics confirmed the model’s
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reliability by showing no significant patterns in the residuals, validating that it
captured all relevant information from the dataset. Predictive performance, eval-
uated through testing data forecasts, proved the model’s accuracy.

The findings highlight the ARIMA (1, 1, 0) model as a statistically sound and
reliable forecasting tool for diesel price dynamics. This is consistent with existing
literature on commodity price forecasting, which also affirms the effectiveness of
time series models for predicting volatile energy markets. The establishment of
this validated model offers substantial value, particularly for Malaysia. Accurate
forecasts provide robust, actionable insights for policymakers and industry stake-
holders, enhancing their ability to anticipate price movements for improved eco-
nomic planning and management. For instance, the government can use these
forecasts to strategically manage fuel subsidies and ensure fiscal stability. Further-
more, businesses in the transportation and logistics sectors can leverage these in-
sights to optimize operational costs and improve supply chain efficiency. On a
microeconomic level, accurate forecasts benefit consumers by supporting in-
formed financial decisions in transportation and household budgeting, thereby
promoting effective resource allocation.

Nevertheless, future research could explore the integration of hybrid or ma-
chine learning-based models to further improve accuracy and account for exoge-
nous factors such as crude oil price fluctuations, exchange rates, or geopolitical
events that may influence diesel price volatility. Such advancements would pro-
vide a more comprehensive forecasting framework and strengthen the model’s
applicability in dynamic and uncertain energy markets. This approach would also
align with recent trends in the field that aim to incorporate a broader range of
variables for superior predictive performance. The results also practically provide
values for policymakers and industry stakeholders by supporting evidence-based
decision-making, facilitating effective economic planning, and optimizing re-

source management.
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