W) Check for updates

IET Image Processing W I L E Y

.
I | I The Institution of
| Engineering and Technology

| ORIGINAL RESEARCH @EIEDD

A DNA-Dynamic Permutation-Diffusion Algorithm for
Image Encryption Using Scaling Chaotification Models
and Advanced DNA Operations

Mustafa Kamil Khairullah! | Mohd Zafri Bin Baharuddin? | Reema Thabit® | Mohammad Ahmed Alomari* |
Gamal Alkawsi’ | Faten A. Saif®

!nstitute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Selangor, Malaysia | 2College of Engineering, Universiti Tenaga Nasional, Selangor,
Malaysia | *School of Computer Science, Faculty of Innovation and Technology, Taylor’s University, Selangor, Malaysia | *Fakulti Teknologi dan Kejuruteraan
Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia | >Institute of Informatics and Computing in Energy,
Universiti Tenaga Nasional, Kajang, Malaysia | ®Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Malaysia

Correspondence: Gamal Alkawsi (gamalalkawsi@tu.edu.ye)
Received: 6 April 2025 | Revised: 1July 2025 | Accepted: 4 August 2025

Funding: The authors received no specific funding for this work.

ABSTRACT

The rise in cyber threats to digital images over networks is a primary problem for both private and government organisations.
Image encryption is considered a useful way to secure the digital image; however, it faces critical challenges such as weak
key generation, chosen-plaintext attacks, high overhead, and scalability. To overcome these challenges, this paper proposes
the DNA-Dynamic Concurrent Permutation-Diffusion Algorithm (DNA-DCP-DA), which introduces four advanced encryption
mechanisms. Firstly, new scaling chaotification models are introduced to enhance chaotic properties, achieving superior results
in bifurcation, Lyapunov Exponent (LE), Sample Entropy (SEn), Kolmogorov Entropy (KEn) and key generation. Secondly, a
Key Vectorisation Method (KVM) is proposed to optimise execution time and reduce the computational overhead of chaotic map
iterations. Thirdly, robust non-commutative DNA operations are introduced, including DNA hybrid and circular shift operations
to enhance encryption security. Finally, integrate permutation and dynamic diffusion processes, strengthening security and
improving efficiency. To evaluate the proposed algorithm, extensive experiments have been conducted, and results have been
compared with the latest encryption algorithms. This shows the proposed encryption algorithm is better, with superior results
for correlation results close to zero and Information Entropy (IE) larger than 7.999. The Number of Pixel Change Rates (NPCR)
exceeds 99.6%, and the Uniform Average Change Intensity (UACI) is above 33.4%. The algorithm encrypts an image of size 256
X 256 in 0.1255 s, with a key space reaching 2°°7. As a result, the proposed system establishes a new benchmark for secure and
efficient image encryption against cyber threats.

1 | Introduction 2024 to $13.82 trillion by 2028 [1]. Image encryption is cru-
cial for mitigating these risks, ensuring image confidentiality,
11 | Background integrity, and privacy against unauthorised access, data breaches,

manipulation and other cyber threats in different applications,
Cyber threats to digital images are escalating, with the global ~ such as IoT devices. [2, 3]. In response, numerous encryption
cost of cybercrime projected to surge from $9.22 trillion in algorithms have been proposed, based on diverse theoretical
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foundations such as chaos theory [4], fuzzy theory [5] and S-box
theory [6].

Chaos theory, exemplified by chaotic maps, is especially valuable
in encryption due to its properties of extreme sensitivity to param-
eters, high pseudo-randomness and ergodicity, making chaotic
systems a primary choice for encryption and steganography
[7-9]. Chaotic maps in encryption are typically classified as one-
dimensional (1D) or multi-dimensional. 1D chaotic maps are
straightforward to implement in software and hardware [10-13].
Nonetheless, they have limitations, such as a limited chaotic
range, low Lyapunov Exponent (LE), periodic windows and
insufficient pseudo-randomness [10]. Multi-dimensional chaotic
maps, in contrast, exhibit greater chaotic complexity and random
pseudo-sequences but require more complex and costly hard-
ware/software implementation, as they only reach chaotic states
after extensive operations.

Chaotification models provide a general framework to maximise
the chaotic behaviour of dynamical systems [14-16]. In general,
chaotification can generate a chaotic state within a system that is
originally nonchaotic. It is also applied to chaotic maps to further
enhance their properties, making these maps more secure, effec-
tive and suitable for secure cryptographic applications. Therefore,
chaotification models are strong candidates for addressing the
limitations of chaotic maps. Despite the effectiveness of the
chaotification models, they can suffer from some drawbacks, such
as periodic windows in parameter spaces, low LE and inadequate
randomness, which can compromise their application in cryptog-
raphy and security. Moreover, the chaotic maps generated from
chaotification models involve multiple complex mathematical
operations; thus, extensive iterations of chaotic map-based key
generators result in high computational overhead. Few studies
are available that discuss the time consumption of chaotification
models, which is quite significant in enhancing efficiency [17].

Chaotic image encryption schemes typically consist of two
phases: confusion and diffusion [18-22]. In the confusion phase,
pixel locations are chaotically rearranged according to chaotic
sequences to disrupt the correlation between adjacent pixels. At
this stage, the histogram remains unchanged, as pixel values are
not modified. As a result, the confusion phase alone is vulnerable
to statistical attacks. In the diffusion phase, pixel values are
altered by directly applying a chaotic sequence, transforming the
confused image into an incomprehensible, diffused image.

Alongside chaotic encryption techniques, DNA encryption tech-
niques have emerged with advantages including low power
consumption and massive parallelism [23-25]. DNA image
encryption generally consists of three main stages: DNA encod-
ing, DNA operations and DNA decoding [26-29]. The first stage
converts the original image into a DNA sequence based on
specific encoding rules. In the second stage, DNA operations are
applied to manipulate the DNA sequence. Finally, the third stage
decodes the processed DNA sequence back into a binary format
according to decoding rules.

Integrating chaotic maps and DNA technology offers a promis-
ing strategy for enhancing both security and efficiency of
image encryption [30, 31]. However, this integration can suffer
from certain disadvantages, such as a lack of resistance to

chosen-plaintext/ciphertext attacks. The vulnerability to chosen-
plaintext/ciphertext attacks is heightened by the limited types
of existing DNA operations. Most systems rely on a few fixed
DNA operations (e.g., XOR, XNOR, subtraction and addition),
which can weaken the cryptosystem against attacks if either
the ciphertext or the key is exposed [32, 33]. Moreover, most
DNA-based image cryptosystems typically perform permutation
and diffusion in separate steps, which weakens security [34].
When the image is uniformly black or white, security relies
entirely on diffusion, leaving the system vulnerable. In that case,
attackers can use chosen plaintext attacks to bypass permutation
by targeting the diffusion phase directly.

In addition to these security challenges, efficiency issues also
persist, as many existing schemes struggle to balance robust
protection with low computational cost. This highlights the
importance of developing encryption algorithms that can simul-
taneously deliver high security, strong resistance to cryptanalysis
and practical performance suitable for real-time applications.

1.2 | Related Work

Recently, researchers have focused on developing 1D chaotic
maps and chaotification models to generate higher-quality chaos
while addressing the trade-off between security and efficiency.
These advancements in chaotic strategies directly contribute to
improving the security of image encryption systems. In [35],
a technique was introduced that uses the tent map sequence
as input for the Chebyshev map, producing pseudo-random
sequences effective in encryption systems. Similarly, [36] pre-
sented a model combining multiple 1D chaotic maps, resulting in
increased randomness. The study in [37] proposed a chaotifica-
tion model using buffeting and modulo operations to strengthen
chaos in existing maps. The work in [38] introduced an improved
chaotic map based on cascading methods, which demonstrated
effective chaotic behaviour but required substantial computa-
tional resources. Another technique includes [39], which devel-
oped a fractional sine chaotification model (FSCM) that raised
chaos performance, though at a high implementation complexity.
In [40], a cosine transformation-based chaotification framework
was proposed. Although the chaotification framework comes
with good performance, the performance gradually decreases
when the parameter is close to zero. Further, [41] suggested a
1D enhancement framework combining exponential, logarithmic
and sine functions to improve chaotic effects. The work in [42]
adapted the logistic map with perturbations to overcome its
inherent limitations, achieving satisfactory chaotic outcomes.

In addition to enhancements in 1D chaotic maps, 2D chaotic
maps have also been explored to balance security and efficiency
in image encryption. For example, in [43], a novel 2D multiple
collapse chaotic map is proposed, leveraging arctangent func-
tions to achieve enhanced chaotic characteristics and improved
uniformity in the chaotic sequence distribution. The work in
[44] proposes a novel 2D Salomon chaotic map, inspired by
the classical Salomon function. This map integrates the cosine
and modular functions to significantly enhance the complexity
of its behaviour. The study in [45] presents a novel two-
dimensional infinite logic map with enhanced chaotic properties,
aimed at improving security and performance in cryptographic

2 0f 30

IET Image Processing, 2025

85UB017 SUOLLLIOD AIERID 3ot (dde ay) Aq peupAob 812 S[o1e YO 8sN J0 S3|N 10} Akeuq1 ] 8UIIUO A8]1M UO (SUONIPUOD-PUE-SWBILIOY™ A8 | 1M AReq | puljuo//Sdny) SUONIPUOD pue swie 1 81 89S *[6202/TT/ZT] Uo Ariqiauljuo A|im esAe. I YiesH JO seimisu| feuolieN Aq T8TOL 2/dY6r0T 0T/10p/W0d A8 | Aeiqpuljuo Yo essa s //sdiy Woly papeojumod ‘T 'SZ0Z 'L996TS.LT



applications. In [46], a new 2D chaotic map was proposed by
combining the logistic map, sine map and a hyperbolic function.
This design aimed to enhance chaotic complexity and balance
security with computational efficiency in image encryption
applications.

In parallel, considerable efforts have focused on developing
DNA encryption techniques. For example, [47] presented an
image encryption algorithm combining DNA techniques with
spatiotemporal chaos, though authors in [48] found it remained
vulnerable to specific attacks. The authors in [49] proposed
robust encryption algorithms that resist attacks by utilising DNA
techniques and two chaotic maps: the 1D logistic map and the 2D
logistic map. However, authors in [50] demonstrated their sus-
ceptibility to chosen-plaintext attacks. In [51], a greyscale image
cryptosystem based on DNA techniques and a 2D Hénon-Sine
map was introduced, but the authors in [52] successfully breached
it using chosen-plaintext attacks. In [53], a method combining a
hyperchaotic map, Hill cipher, Feistel network and DNA coding
technique was proposed, but [54] analysed the algorithm and
showed that it could be compromised with a specific chosen-
plaintext attack. Another approach in [55] employed dynamic
DNA techniques with a 4D memristive hyperchaotic system,
applying chaotic sequences and a dynamic confusion-diffusion
mechanism to secure images. A novel image encryption scheme
using fractional chaotic systems, DNA coding and mutation
mechanisms was proposed in [56], demonstrating high random-
ness and resilience against attacks. In [26], the authors introduced
two new DNA operations: the right-circular shift operation and
the left-circular shift operation, and combined them with hash
functions to enhance security against chosen-plaintext attacks.
In [57], an image encryption method using a 4D hyperchaotic
system, SHA-512 and DNA operations showed strong security,
but the 4D system led to slower encryption speeds. In [32], an
encryption method using a hyperchaotic map and a DNA triploid
mutation was proposed to solve the limitation of DNA operations.
Another approach in [58] used hash functions (MD5, SHA-256)
for key shaping, a memristor hyperchaotic system for random
sequence generation, Arnold’s transform for image scrambling
and DNA operations for pixel value modification. The analysis
confirmed the algorithm’s resistance to various attacks. The work
in [33] proposes a new encryption system that utilises new DNA
operations and a chaotic map. The DNA operations are proposed
to address the limitations of existing DNA operations, while the
hyperchaotic map is employed to generate strong key sequences.
The authors in [59] developed a chaotic map incorporating
DNA strand exchange and DNA strand diffusion to satisfy the
confusion and diffusion properties, respectively. The authors in
[60] proposed a cryptosystem based on DNA and a hyberchaotic
map. A bidirectional spiral transformation mechanism is used
to rearrange the image pixels. To implement the dynamic DNA
technique, several DNA operations are applied, incorporating
both DNA bases and their lowercase forms. In [61], an encryption
system using a hyperchaotic map and reversible DNA subtraction
was designed to address security issues in traditional DNA
operations. While this system demonstrated strong security, it
required extensive key sequences from the hyperchaotic map,
resulting in slower encryption speeds and high computational
overhead. The work in [62] develops an S-Box design that
leverages the crossover and mutation operators of genetic algo-
rithms. This design is integrated with a 2D Styblinski-Tang

chaotic map to construct a resilient image cryptosystem. A new
colour image encryption scheme is introduced in [63] to ensure
image security, based on a 5D fractional-order hyper-chaotic
map, an extended DNA encoding/decoding scheme and four
new DNA operation methods. The algorithm employs a block-
based encryption mechanism, dividing the image into sub-blocks
for processing. In [64], a colour medical image compression-
encryption scheme is proposed, combining compressive sensing
and DNA coding operations. This method integrates position
scrambling, reduced-stiffness operations and DNA-based pixel-
level transformations for the protection of medical imaging data.
This work in [65] presents an image encryption algorithm based
on a delayed chaotic system and DNA coding with cross-layer
techniques. The initial values of the chaotic system are selected
based on the image’s entropy and correlation to strengthen
resistance against chosen-plaintext attacks. The DNA encoding
step is jointly applied with cross-layer position rearrangement,
followed by a cross-layer diffusion mechanism to complete the
encryption.

1.3 | Contribution

This work presents new chaotification models and a new encryp-
tion system based on these chaotification models and new DNA
operations. The contributions of this study are summarised as
follows:

1. Enhance chaotic maps: This study introduces new chaotifica-
tion models that strengthen chaotic maps by ensuring control
parameters cover all parameter spaces. This approach elimi-
nates periodic windows, improves randomness and increases
sensitivity, thereby generating secure and unpredictable key
sequences.

2. Superior chaotic performance: The proposed maps demon-
strate enhanced chaotic properties, including improved LE
and increased sensitivity and randomness. Experimental
results confirm that these maps outperform traditional
chaotic models in chaotic performance metrics.

3. Improved encryption speed: To address the computational
overhead of chaotic maps iteration, a Key Vectorisation
Method (KVM) is introduced. This innovative approach
effectively reduces the number of iterations required by
chaotic maps, thereby streamlining the encryption process
and substantially decreasing execution time.

4. Concurrent permutation-diffusion process: This paper pro-
poses a new technique to combine permutation and diffusion
processes into one integrated step. This integration not
only reduces the processing steps but also disables targeted
attacks, ensuring that the permutation effect remains active
even when a white or black image is selected.

5. New non-commutative DNA operations: This study proposes
innovative non-commutative DNA operations designed to
manipulate pixel values. These new operations preserve the
benefits of traditional DNA operations, such as low compu-
tational overhead, while enhancing encryption effectiveness
and resistance to attacks.
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FIGURE 1 | Principal diagram of the scaling chaotification model.

1.4 | Organisation

This paper is structured as follows. Section 2 introduces the pro-
posed chaotification models and details their enhanced chaotic
properties. Section 3 describes the new DNA operations that
improve encryption performance. Section 4 outlines the proposed
image encryption algorithm, while Section 5 presents the perfor-
mance evaluation results and comparative analyses with existing
systems. Finally, Section 6 concludes the paper.

2 | Scaling Chaotification Models

Driven by the aforementioned factors, it is evident that chaoti-
fication models are essential to ensure a high Lyapunov index
and a broad parameter range that exhibits continuous chaotic
behaviour without periodic windows, a phenomenon known as
‘robust chaos’. Recently, four chaotification models have been
proposed to enhance chaos: the Sine Chaotification Model (SCM)
[66], the Modular Chaotification Model (MCM) [67], the Sine
Transform-Based Chaotic System (STBCS) [68] and the Cosine
Transform-Based Chaotic System (CTBCS) [69]. However, these
models exhibit certain limitations, such as a finite chaotic range,
periodic behaviour and low random behaviour within specific
subsets of their parameters.

This paper proposes new scaling chaotification models by adding
a scaling function to the SCM, MCM, STBCS and CTBCS. The
scaling function is motivated by scaling and shifting properties
in trigonometric functions such as sine and cosine functions, and
can be mathematically described as:

2K

S(K,x,)=28xx,+ = )

xn

where K is a scaling parameter. The scaling function is a nonlinear
equation that scales the input of the sine, cosine and modular
functions, aiming to intensify the chaotic behaviour of these
functions. The scaling function is designed to induce dual scaling
terms: the first, a linear expansion term (2X x x,,); the second,

a reciprocal expansion term ( ) This interaction significantly

enhances both unpredlctablhty and sensitivity by two cases:

1. First term (2K x x,,): a linear expansion that scales propor-
tionally with the current state x,, , enhancing divergence
when x,, is moderately valued.

—= Scaling Chaotification Model ——=x,,

2. Second term ( ) a reciprocal amplification that dominates

when x, is small introducing strong nonlinearity and
preventing convergence.

This dual-term design ensures that chaotic behaviour is rein-
forced regardless of whether the input is large or near zero,
introducing adaptive scaling across the domain, significantly
increasing the system’s sensitivity and chaotic behaviour. The
effectiveness of these proposed models is evaluated using bifurca-
tion, LE, Sample Entropy (SEn) and Kolmogorov Entropy (KEn)
analyses. Figure 1 illustrates the basic structure of the scaling
chaotification model.

2.1 | Scaling Sine Chaotification Model (S-SCM)

The SCM is used to enhance the chaotic properties of the available
maps by adding the sine transform to the output of the chaotic
maps. The mathematical expression of SCM is as follows [66]:

Xn =sin(zw X C(a, x,)) (2)
where a illustrates the control parameter, C(a,x,) illustrates
one of the existing chaotic maps. The new scaling chaotification

model of SCM, named S-SCM, is generated by adding the scaling
function to the SCM. The mathematical expression of S-SCM is

xn+1 = Sil’l (77'- X (C (a’ xn) xS (K’ xn))) (3)
where a is in the range of (0, o). The output sequence (x,,) is
bounded between the range of [-1, 1] by the sine function.

2.2 | Scaling Modular Chaotification Model
(S-MCM)

The MCM is a kind of chaotification framework used for the
purpose of improving the chaotic complexity of the current maps
[67]. The MCM is defined as follows:

X1 = C(a,x,) mod P @

where a is the controlling parameter of MCM and mod represents
modular function. The scaling representation of MCM, namely
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TABLE 1 | Chaotic maps.

Chaotification Generated

Input (Seed) map model map Map equation
Logistic map (LM) SCM SCM-LM X4 =sin (r xaxx, X(1-x,))

S-SCM S-SCM-LM Xp4 = Sin (71’ x(axx,x(1-x,))x28xx,+ i—K>
Sine map (SM) SCM SCM-SM Xp4q = sin (7 X a X sin(7 X x,,)) '

S-SCM S-SCM-SM X,y = sin (71 x ((a x sin (77 X x,,))) X 25 X x,, + i—K>
Logistic map (LM) MCM MCM-LM Xp = (@Xx, X1 -x,)) mod 3 '

S-MCM S-MCM-LM Xpoy = <(a X %, X (1= %,)) X 2K X x,, + i—K) mod 3
Sine map (SM) MCM MCM-SM X,41 = (axsin(z X x,,)) mod 3 '

S-MCM S-MCM-SM X = ((a X Sin(z X x,)) X 2K X x,, + i—K) mod 3
Logistic map (LM) STBCS STBCS-LSM Xppp =Sin (X (@ xa; xx,x(1—x,)+a, ; sin(7r X x,,)))
and sine map (SM) S-STBCS S-STBCS-LSM  x,., = sin <7r (@, X x, X (1= x,) + a, X sin(r X x,)) X 2K x x, + i—K)
Logistic map (LM) CTBCS CTBCS-LSM Xpp =cos(m X (4% a; Xx, X (1 —Xx,)+ a, xsin(z X x,) — 0.5)) '
and sine map (SM) S-CTBCS S-CTBCS-LSM  x,,, = cos(n x (a; X x, X (1 — x,) + a, X sin(7 x x,,)) X 2X x x,, + g)

S-MCM, can be defined in the following expression:
X1 = (C (a,%,) X S (K, X,)) mod P ®)

where a is in the range of (0, o) and P € n+. The output sequence
(x,) is in the [0, P] range.

2.3 | Scaling Sine Transform Based Chaotic
System (S-STBCS)

The STBCS is a general framework that combines two chaotic
maps’ outputs and then applies sine transform to the result of the
combination [68]. The mathematical expression of STBCS is as
follows:

Xpp1 = sin (7 X (Cy (ar, X,) + C; (a3, X)) (6)
where C,(a, x,) and C,(a, x,,) are two existing maps, a, and a,
represent control parameters. After adding the scaling function

to the STBCS, the new scaling STBCS named S-STBCS is defined
as follows:

Xpp1 = Sin (7 X ((Cy (ay, x,)) + (C (az, X,))) X (S (K, x,)))  (7)
C,(a, x,) and C,(a, x,,) are two seed maps, a, and a, are control

parameters in the range of (0, + o). x,, is the output sequence.

2.4 | Scaling Cosine Transform Based Chaotic
System (S-CTBCS)

Similar to STBCS, the CTBCS is a general framework that applies

the cosine function to the result of addition between two available
maps namely seed maps [69]. The CTBCS equation is as follows:

X1 = €08 (7 X (B + Cy (ay, x,,) + C; (a3, %,))) ©)]

C,(a;,x,) and C,(a,,x,) are two existing maps. B represents
a constant shift. a; and a, are two parameters. After adding
the scaling function to the CTBCS, the scaling CTBCS named
S-CTBCS can be defined as:

Xy = €08 (7 X ((Cy (@1, X)) + (€ (a2, %,))) X (S (K, X)) (9)

C,(a,x,) and C,(a, x,,) represent two seed maps, a, and a, are
their control parameters in the range of (0, ). x,, is the output
sequence of S-CTBCS.

2.5 | Examples of New Chaotic Maps

Using the proposed models, users can select different 1D chaotic
maps as input maps to produce many new chaotic maps. To
illustrate the efficiency of the proposed chaotification models,
the logistic map (LM) x,,; = LM(a, x,) = a X x, X (1 — x,) and
the sine map (SM) x,., = SM(a, x,,) = a X Sin(7rx,) are chosen
as seed maps in this subsection. Setting the logistic and sine
maps to be seed maps, we can obtain new chaotic maps, their
mathematical definitions are listed in Table 1. The proposed
models aim to produce chaos that can exhibit chaotic behaviour
in the whole range of parameters along with high LE (i.e., extreme
chaos complexity). The chaotic maps introduced by the proposed
models still have the advantages of 1D chaotic maps and can be
easily executed by software/hardware devices.

In the original chaotification models, the output of the seed map
has bounded behaviour before being applied to the sine, cosine
or modular transformations. The difference between the output
values of the seed map is not much, as in a logistic map where the
output value is confined to the range of [0, 1]. On the contrary,
the proposed models amplify the values of chaotic maps before
applying sine, cosine, or modular transformations via the scaling
function. To ensure a strong amplification effect, the scaling
parameter K is recommended to be within the range [8, 24].
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FIGURE 2 | Bifurcation diagrams.

2.6 | Performance Analysis of Chaotic Maps

This section presents an examination of the characteristics of
the proposed chaotification models using several evaluation
techniques. As suggested in the original work to simplify the
performance analysis, for the chaotic maps STBCS-LSM and
CTBCS-LSM, the parameters aresetasa, = aanda, = 1 — a. The
same applies to the proposed maps S-STBCS-LSM and S-CTBCS-
LSM. To highlight the strengths of our proposed chaotic maps, we
compare them with the Enhanced Logistic Map (ELM) [70] and
the Improved Sine Tangent Map (IST) [12].

2.6.1 | Bifurcation Analysis

Bifurcation is a significant factor in determining the dynamic
behaviour of chaotic maps [71, 72]. The bifurcation illustrates the
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generation steps of the chaos state by exhibiting a reflection of
the state for chaotic maps. The chaotic performance of chaotic
maps is mainly determined by their control parameters. There is
a narrow range of chaotic parameter values for several chaotic
maps that led to aperiodic behaviour, making the maps enter
a nonchaotic state. The periodic windows can be identified
using a bifurcation diagram in which the periodic windows
are revealed as narrow distinct bands concentrating at specific
values. Figure 2 presents the bifurcation diagrams. In comparison
with the maps generated by the original chaotification systems,
the maps generated by the proposed scaling models show no
periodic windows and are uniformly distributed in the [-1,1]
range in all parameter spaces. On the contrary, the periodic
windows are easy to visually distinguish in the bifurcation
diagrams of original chaotification systems’ maps. Moreover,
the bifurcation diagrams with respect to the scaling parameter
K exhibit a complete absence of periodic windows, indicating
a consistently chaotic regime across the range from 10 to 24.
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Thus, the proposed chaotic maps overcome the problems related
to periodic windows. Hence, they show better ergodicity and
performance.

2.6.2 | Lyapunov Exponent (LE) Analysis

LE is used to determine whether the map is chaotic or not,
where the positive values of the LE determine the chaotic
areas of maps and vice versa. Moreover, the larger value of
the exponent illustrates a better chaotic effect. LE of a 1D
chaotic map can be mathematically defined by the following
equation [73]:

n-1
i L ,
LE = lim ~ ;ln Lf () (10)

f'(x;) represents the time series created by a chaotic map,
while n represents the length of the time series. LE is able to
quantify the complexity of the chaos as well as assess whether
there is chaotic behaviour in a chaotic map. The results are
depicted in Figure 3. One can see that the improved models
retain positive values across the whole parameter space. On the
other hand, the original chaotification models have some negative
values across parameter space. Except the maps generated from
STBCS, and CTBCS can retrieve a positive LE over all parameter
ranges, but are relatively low (i.e., limited chaotic complexity
and randomness). The low positive values of the LE even with
indicating chaotic states, are still predictable and vulnerable.
Additionally, the proposed maps gain much larger values of LE,
demonstrating unbreakable robust chaos in the overall values of
the parameters even when they are close to zero. The LE with
respect to the parameter K is also evaluated in Figure 3. It can be
observed that parameter K yields consistently high and positive
LE values across the range from 10 to 24. Moreover, a high positive
LE with increasing K indicates that the system becomes more
chaotic and sensitive to initial conditions, due to the influence of
the scaling function. Consequentially, the results confirm that the
problem of the Low LE is addressed in the proposed chaotification
models.

2.6.3 | Sample Entropy (SEn)

SEn is one of the most effective metrics used to measure the
time series’ degree of randomness and complexity. It can quantify
chaos, unpredictability and disorder within a system by character-
ising the similarity relations of sequences generated by dynamical
systems [74]. SEn is used to verify the complexity of the proposed
chaotification model. A higher value of SEn reflects a high level
of randomness. The SEn results of different chaotification models
are depicted in Figure 4. The results show that the proposed
improved chaotic maps clearly outperform other maps in terms of
SEn. Our improved maps achieve significantly higher SEn values
across the entire parameter range compared to those generated
by other strategies. As a consequence, the maps produced by the
proposed scaling chaotification models obtain highly complex
unpredictable behaviour, beating the defects of low complex
behaviour.

2.6.4 | Kolmogorov Entropy (KEn)

KEn is an entropy metric that provides a mathematical measure
of complexity and randomness in finite dynamical systems.
It quantifies the amount of additional information needed to
accurately predict the (¢ + 1)th output of a trajectory based on
its previous ¢ outputs [75]. A higher KEn value indicates greater
unpredictability and complexity in the map’s behaviour. The KEn
results of different chaotification models are depicted in Figure 5.
The results indicate that the improved chaotic maps achieve
better KEn values compared to other maps, indicating better
unpredictability.

3 | DNA Technique

In this section, DNA bases (the four nucleotides) and the new
DNA operations are discussed.

3.1 | DNA Encoding/Decoding Rules

DNA comprises four nucleic acids: adenine (A), cytosine (C),
guanine (G) and thymine (T), in which A complements T and so
do C and G. According to the binary rule, 1 complements 0, and
thus 11 complements 00, as are 01 and 10. By encoding the DNA
bases A, C, G and T into binary format 00, 01, 10 and 11, we can
get 24 encoding rules. However, there are only 8 DNA encoding
types that satisfy the complement rules of Watson—-Crick [76, 77].
Additionally, DNA can be represented in the quaternary system in
which 0,1,2and 3 can represent A, C, G and T respectively, as well
as the complementary rules, where 0 and 3 are complementary
and so are 1 and 2 according to rule 1. In the proposed method,
every pixel of the input grey image is in the range of [0, 255].
Consequently, we can represent this value as 4 digits in the
quaternary system (8 digits in the binary system). After that,
encode the 4 digits into a DNA sequence using the listed encoding
rulesin Table 2. As an example, if a pixel equals 228 in the decimal
system, its quaternary form is 3210 (its binary form is 11100100).
Then, we can encode this number into 8 rules as follows:

TGCA,TCGA,AGCT,ACGT,GTAC,GATC,CTAG,CATG
or, equivalently in quaternary form:
3210, 3120, 0213, 0123, 2301, 2031, 1302, 1032.

DNA decoding is a reverse version of DNA encoding. There are
two types of encoding that are commonly used: static encoding
and dynamic encoding. In static encoding, the encoding scheme
is fixed, so all image pixels are encoded by applying one encoding
rule. In dynamic encoding, the image pixels are encoded by
applying different encoding rules, in which each pixel has its
own encoding rule depending on the encoding rule matrix. This
matrix is usually generated by the use of a chaotic map. Dynamic
encoding is considered more secure since the choice of encoding
rule depends on chaos. For example, suppose a pixel has a DNA
value of TCGA (quaternary 3120) and a corresponding chaotic
sequence that determines the encoding rules: 2458. The first digit
is encoded using Rule 2, the second digit using Rule 4, the third
digit using Rule 5 and the last digit using Rule 8. The final result
is TGTG (quaternary 3232).
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TABLE 2 | DNA encoding/decoding rules.

Binary Quaternary Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8
00 0 A A T T C C G G
01 1 C G C G A T A T
10 2 G C G C T A T A
1 3 T T A A G G C C

3.2 | DNA Sequence Operations

Different operations can be performed on the sequence of DNA,
such as the operations of XOR, XNOR, addition and subtraction.
DNA operations have pros such as low power consumption,
huge storage capacity and huge parallelism [78]. However, these
operations are basic, commutative and have been proven to
be vulnerable. Following the principles in [79], the security of
encryption relies heavily on nonlinear and non-commutative
operations, such as substitution through S-boxes. Inspired by this,
we propose non-commutative DNA operations that are designed
to break the algebraic symmetry of traditional DNA-based logic
operations, thereby improving resistance to cryptanalysis.

3.21 | DNA Exclusive-Or (DNAyqz) and DNA
Exclusive-Nor (DNAxnor) Operations

DNA operations are based on logical operations, including DNA
exclusive-or (DN Ay ) and DNA exclusive-nor (DN Ay yor) Oper-
ations according as shown in Figure 6. The image is encrypted
using DNA operations between the chaotic sequence and the
encoded image. The main purpose of the DNA operation rules
is to change the value of the pixels in the DNA diffusion step.
For example, suppose the DNA sequence of a pixel is X = ACGT
and the DNA key is Y = CGAT. For the encryption process, if we
apply Z = DNAyor (X,Y), the result is CTGA(ADC=C,C &
G=T,G®A=G, T®T =A). Then, for decryption process,
X =DNAyor (Z,Y), the result is ACGT (CHC=ATHG =
C,GBA=G,ADT=T).

3.2.2 | New DNA Hybrid Operations

Two new hybrid operations are presented in this subsection, in
which every single hybrid operation is formed by two different
operations. In the first hybrid operation (DN Ay;,), the first and
fourth columns are selected the same as DNAyg, while the

second and third columns are selected the same as DN Ay yog- For
example, if we perform the DN Ay, between ACGT and CGAT
AOGC=G,COG=A,G®A=G, T®T = A), the encryption
result is GAGA, and the decryption is performed between GAGA
and CGAT (GOC=A,A0G=C,GOA=G,ADT=T)to
result in ACGT. In the second hybrid operation (DN Ay;,), the
first and fourth columns are the same as DN Ayyog, While the
second and third columns are the same as DN Ay. The hybrid
operations are shown in Figure 6.

3.2.3 | New DNA Circular Shift Operations

The circular shift operation is a function that is applied to
rearrange the components of a row. The right circular shift (Rs)
moves the final element to the first position and shifts all other
elements to the next position. The left circular shift (Ls) moves
the last element to the first position and moves the other elements
to the next left position.

Rs and Ls can be applied to the DNA hybrid operations to move
the locations of DNA bases in a row and hence generate new DNA
operations. Assume that the shifting amount is equal to 1, then
the Rs of DN Ay (DN Agyy;) and Ls of DNAy (DN A, g4,) can be
represented as follows:

[rRsia,G,c,i| [1,4,6,C
DNAL. — Rs(DNA = | RICTAGH _|GCTAl
Rs{G,A,T,C}| |c.6.A,T
Rs{T,C,G,A}| |AT,c,6
[1sia,6,c,13| [6,0,T,4
DNA. — Ls(DNA, ) - L{CT.AGH _|TAGC]
Ls{G,A,T,C}| |AT,C.G
Ls{T,C,G,A}| |C.G, AT
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Algorithm 1 | Key Vectorization Method (KVM)

Input: Vector A of size N1, vector B of size N2

Output: Matrix EX of size N1 X N2

[BS, BI| = Sort (B); //BS is the sorted version of B and BI
contains the original indices of B.

a=10,1,2,..,N1— l]T; // a is column vector
representing row positions.

b = [BI,,BI,,BI,, ..., BI\,]; // b is a row vector.

S = (a+ b) mod N1; // Apply element-wise addition to
generate the shifted indices matrix S of size N1 X N2.

EX = A(S);

The circular shift functions can also be applied to DNAy, to
form two new operations, namely DN Agg;, and DN A, ¢y,. The
results are shown in Figure 6. If we alter the shifting amount
to equal 2 or 3, we can get different circular shift operations.
As there are eight encoding rules, likewise, there available eight
kinds of every single DNA operation. The DN Ay g and DN Ay yor
are commutative, while the hybrid operations and circular shift
operations are non-commutative.

3.3 | Key Vectorisation Method (KVM)

Vectorisation is a process of applying an operation to multiple
data values concurrently, thus allowing for efficient data process-
ing without the need for explicit loops that perform individual
scalar operations. This technique can be integrated with single
instruction multiple data (SIMD) extensions in modern CPUs
to enhance execution speed by leveraging parallel execution
to accelerate tasks [17]. In most DNA encryption techniques,
the key sequence dimensions must align with the input image
dimensions. Thus, instead of iterating the chaotic maps until they
fit the input image dimensions, which is time-consuming, we
define the KVM as a method to expand the length of chaotic
sequences by leveraging vectorisation and the SIMD technique.

Suppose a set A consists of N1 elements, we can get a different
set if we randomly shuffle the elements of A according to another
set B using the sort and circular shift functions. The KVM can be
expressed as follows:

EX (N1,N2) = KVM (A(N1),B(N2)) 13)

A represents a vector to be optimised, B represents a shifting
vector, and N1 and N2 represent the number of elements in A
and B respectively. Algorithm 1 illustrates the KVM.

4 | Propsed Encryption System

The DNA-DCP-DA includes four styles of processes; key sequence
generation process, DNA encoding process, DNA permutation-
diffusion process and DNA decoding process. The block diagram
of DNA-DCP-DA is shown in Figure 7. Users can select any
chaotic maps generated by proposed models, as their efficiency
is proven, and any DNA operations to be directly used in the pro-
posed encryption algorithm. In this proposed work, we used four

new chaotic maps (S-SCM-LM, S-MCM-LM, S-STBCS-LM and
S-CTBCS-LM) and six new DNA operations (DN Ay, DNAy,,
DNAgp1s DNA g1, DNAgy, and DNA, ,). Motivated by the
numeric example in [80], the encryption process is demonstrated
on a small-sized image for clarity in Figure 8.

4.1 | KeySequence Generation Process

This subsection illustrates the generation process of chaotic
sequences according to the pixels of the input image and then
sequence vectorisation.

4.1.1 | Hash Sequence

Hash functions have an important part in the process of
generating chaotic sequences. Because the hash functions
are irreversible, they endure such plaintext and ciphertext
attacks. Message Digest Algorithm (MD5) is a hash function
that generates 128-bit hash values [81]. The proposed method
uses a double-layer MD5 Algorithm to raise the security
level. The proposed method generates the hash value based
on the input image and the initial values of the chaotic maps.

Let the input image (E1) be a 2D matrix in the size of M X N,
we generate three vectors; V1, V2 and V3. V1 represents the
summation of E1, V2 of the length M represents the row-wise
summation of E; and V'3 of the length N represents the column-
wise summation of E;. Applying the double-layer MD5 process,
where the MD5 function is firstly applied to the V1, V2 and
V'3 separately to generate three individual hash values. These
individual hash values are combined and hashed again using the
MDs5 function to result in the final hash value (C). The hash value
(C) with a length of 128 bits is split into 8-bit blocks in the decimal
format as follows:

14)

C = MD5(MD5(V1),MD5 (V2),MD5(V3))
C ={c;,¢5,C35 e, C16}

After that, we generate four values that work as image keys as
follows:

Si=(®,®c;DBcy)
S, =(cs D s e, Deg)
S3=1(Co ® 1o B ¢y B C12)
Sy =1(C13D 14 D cys D cye)

1s)

Let the initial parameter keys (x’;, x',, X’5, X',) be selected
randomly. Then, the initial values of the chaotic maps are selected
based on hash values of the input image as follows:

x, (0) = (x'; +0.1 mod S;) /256
X, (0) = (x', + 0.1 mod S,) /256
x5 (0) = (x'5 + 0.1 mod S;) /256
x, (0) = (x', + 0.1 mod S,) /256

(16)
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4.1.2 | Generating Chaotic Sequences

Firstly, define the parameters a', a% a},a}, a}, a3, K',K? K* and
K* of the chaotic maps. Secondly, iterate S-SCM-LM with param-
eters a' and K! and initial value x;(0), and iterate S-STBCS-LM
with parameters a}, aé and K? and initial value x,(0), each for M
iterations. Thirdly, iterate S-S MCM-LM with parameter a? and K>
and initial value x5(0), and iterate S-CTBCS-LM with parameters
a;,a? and K* and initial value x,(0), each for 4N iterations. Lastly,
using the KVM to generate four sequences of size M X 4N to fit
the DNA encryption needs as in the following equations:

EX, (M,4N) = KVM (x, (M), x; (4N)) 17)

EX, (M,4N) = KVM (x, (M), x, (4N)) (18)

EX,(M,4N) = KVM (x, (M), x; (4N)) 19)

EX, (M,4N) = KVM (x, (M), X, (4N)) (20)
here, KVM is the same as Algorithm 1. Then, EX;, EX,, EX; and
EX, are reshaped into a 1D vector of size 1 X 4MN.

4.2 | DNA Encoding Process

The input image E1 is a 2D matrix with the size M X N. In the
step of encoding, the input image is dynamically transformed into
DNA encoded image E3 with a size of 1 Xx 4MN. The complete
steps of the DNA encoding are as follows:
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Step 1: Input Image E1 with a size of M X N is reshaped into
1D vector with a size of 1 X MN.

Step 2: Transform each element in E1 into 4 digits of quaternary
format to form the quaternary image E2 with a size of 1 X
4MN.

Step 3: Calculate the DNA rule vector R with a size of 1 x
4MN by using the chaotic sequence EX, as illustrated in the
following equation.

R(i) = floor (EX; X 1000) mod 8 + 1 (21)

i ranges from 1to 4MN. R(i) takes integer values from the set € {1,
2,3,4,5,6,7, 8}, corresponding to the number of rules in Table 2.

Step 4: Encode each element in the quaternary image E2 into
one of the DNA bases (0, 1, 2, 3) according to the rule vector
R, to form the encoded image E3 with a size 1 Xx 4MN. For
each index i, the encoding rule applied is determined by
the value of R(i), and the mapping follows a predefined
set of rules in Table 2. The encoding process for E2 can be
expressed as:

(Encode (E2(i), Rule 1), if R(i)=1
Encode (E2(i),Rule 2), if R(i)=2
Encode (E2(i),Rule 3), if R(i)=3
Encode (E2(i),Rule 4), if R(i)=4

E3(3i) = { (22)

Encode (E2(i), Rule 5), if R(i)=5

Encode (E2(i),Rule 6), if R(i))=6

Encode (E2(i),Rule 7), if R(i))=7

Encode (E2(i), Rule 8), if R(i)=8
4.3 | Permutation-Diffusion Process

The concurrent permutation-diffusion process is important to
protect the system from different attacks, such as plaintext
attacks. The complete steps are summarised as follows:

Step 1: Calculate two index vectors as follows:

[XS,,I,] = sort (EX;) (23)
[XS,,I,] = sort (EX,) 24)

I, and I, are the index values of EX; and EX,, respectively. XS,
and XS, are the sorted sequences.

Step 2: Compute the DNA operation key K., with a size of
1 X 4MN as follows:

Koper(i) = floor (EX;(i) x 1000) mod 6 + 1 (25)

where i ranges from 1 to 4MN and Ko, (i) € {1, 2, 3, 4, 5, 6}.

Algorithm 2 | Permutation-diffusion process

Input: Encoded image E3 of size 1 X 4MN, vector EX, of
size 1 Xx 4MN, vector EX, of size 1 Xx 4MN, vector EX; of
size 1 X 4MN, vector EX, of size 1 Xx 4AMN

Output: Diffused image E4 of size 1 X 4MN

[XS,,I,] = sort(EX;(i)); // I, is the first index vector.
[XS,,1,] = sort(EX,); // I, is the second index vector.
Ko per (i) = floor(EX;(i) X 1000) mod 6 + 1; // Ko e, (i) is
the DNA operation vector.

Kpna () = floor(EX,(i) x 1000 — floor(EX,(i) x 1000)) X
4; /] Kpna(i) is the DNA key vector.

DNAUI (E3(Il(l))’ KDNA(Iz(l)))s lf KOper(i) =1
DN Ay, (E3(I1(1)), Kpna(I2(1))),  if Koper(D) = 2
DN Agg1 (E3(I1(0)), Kpn a(12(0)), i.f KOper(i) =3
DNALSHI(E3(II(1))’ KDNA(Iz(l)))’ lf KOper(i) =4
DN Agyp,(E3(I1(1)), Kpy a(12(1))), if KOper(i) =5
DNALAHZ(E3(11(1))’ KDNA(IZ(I)))’ lf KOper(i) =6
// E4 is the diffused-permuted image.

E4(i) =<

Step 3: Compute the DNA key sequence Kjy, with a size of
1 X 4MN as follows:

Kpna(@) =floor (EX,(i) x 1000 — floor (EX (i) X 1000)) X 4
(26)

wherei =1,2,...,4MN and Ky, is designed to generate quater-
nary sequences, where Ky, € {0, 1, 2, 3}.

Step 4: Execute the permutation-diffusion process by applying
the DNA operations between the encoded image E3 and the
Kpna sequence according to Ko, to obtain the diffused-
permuted image E4 with the size of 1 X 4MN as shown in
the following Equation:

DNAy,; (E3 (I1(i)), Kpya (12(2))) ifKOPer(i) =1
DNAy, (E3 (Il(i)) s Kpna (IZ(i))) > ifKOper(i) =2
DNAgqn (E3(I1(3)), Kpya (12(D)) ifKOper(i) =3
DNA g, (E3 (I1(1)), Kpna (12(D))) if KOper(i) =4
DNAgg, (E3 (I1(D) , Kpya (12(1))) ifKOper(i) =5
LDNALSHZ (E3(I1(1)), Kpna (12(D))) ifKOPer(i) =6
7)

EA®) = {

i=1,2,..,4MN. The K., sequence is used to determine which
DNA operation is to be applied, ensuring a dynamic impact.
I1 and I2 are used to dynamically select elements from the
encoded image E3 and Kjy,, hence creating a permutation
effect. The DNA operations ensure diffusion by mixing their
combined influence. This approach strengthens encryption by
integrating both diffusion and permutation, while reducing
computational overhead. The permutation-diffusion process is
outlined in Algorithm 2.
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4.4 | DNA Decoding Process

The decoding step converts the diffused image E4 into the
encrypted greyscale image E6 with a size of M X N. The steps of
decoding are as follows:

Step 1: Decode the diffused image E4 into quaternary image E5
with a size of 1 X MN according to R.

Decode (E4(i),Rule 1), if R(i)=1
Decode (E4(i),Rule 2), if R(i)=2
Decode (E4(i), Rule 3), if R(i) =3
Decode (E4(i),Rule 4), if R(i)=4

E5(i) = 1 (28)

Decode (E4(i), Rule 5), if R(i)=>5
Decode (E4(i),Rule 6), if R(i)=6
Decode (E4(i),Rule 7), if R(i)=7
Decode (E4(i),Rule 8), if R(i) =38

Step 2: Transform the quaternary image ES5 into encrypted
image E6 with the size of 1 X MN by converting every 4
digits to an integer value ranging from 0 to 255.

Step 3: Reshape the image E6 to a size of M X N to form the
final encrypted image.

4.5 | Decryption Process Details

The decryption algorithm is the same as the encryption algorithm
but in reverse way with the same encryption keys. The entire steps
are as follows:

Step 1: Reshape the encrypted image E6 to the size of 1 X MN.

Step 2: Compute the rule vector R.

Step 3: Transform the encrypted image E6 into quaternary
format to obtain the quaternary image ES5.

Step 4: Encode the quaternary image E5 as in Equation (22) to
recover the diffused-permuted image E4.

Step 5: Calculate I, I,, Kpy4 and Ko, vectors.

Step 6: Apply the inverse permutation-diffusion process to
recover E3 as detailed in the following equation.

DNAy;, (E4(D), Kpna (12(1))) ifKOper(i) =1
DNAy;, (E4(D), Kpna (12(1))) , ifKOper(i) =2
DNAggy; (E4(D), Kpna (12(1))), ifKOPer(i) =3
DNALSHI (E4(l)’ KDNA (12(1))) ’ lf KOper(i) =4
DNARSHZ (E4(i)’KDNA (12(1))) ’ ifKOper(i) =5
DNA 13 (B4(D), Kpna (12(D)) 5 ifKOper(i) =6
(29)
Step 7: Decode the encoded image E3 as in Equation (28) to
recover the quaternary image E2.
Step 8: Convert every 4 digits of the quaternary image E2 to an

integer value with a range of 0 to 255 to form E1. Then, resize
the E1 to the M X N size to recover the original image.

E3(I1(0)) = 4

4.6 | Colour Image Encryption

This work can be extended to colour images by splitting the image
into its red (R), green (G) and blue (B) channels, applying the
same encryption process as for greyscale images to each channel
separately, and then recombining the channels to produce the
encrypted colour image (see Figure 9).

5 | Performance and Security Analysis

Many experiments and analyses are conducted in this section
to accurately evaluate the proposed image encryption method.
The experiments are conducted using the MATLAB R202la,
which is a platform on Windows 10. The test images with
size of 512 x 512 (‘peppers, ‘baboon’, ‘camera man’, ‘boat’,
‘peppers (colour)’, ‘baboon (colour)’) are chosen from the CVG-
UGR database (https://ccia.ugr.es/cvg/dbimagenes/) and USC-
SIPI (https://sipi.usc.edu/database/) to be used as plain images.
Figure 10 shows the plain images with their corresponding
encrypted images. To demonstrate the superiority of the proposed
algorithm, we make a comparison with some recent algorithms
that used DNA technology with chaos in [26, 63, 82-86], S-box
technology in [62, 87] and elliptic curve technology with chaos in
[88].

5.1 | Key Security Analysis

In this subsection the security is analysed using key space
analysis, key sensitivity and key sequence analysis to prove that
the proposed algorithm can satisfy the key security requirements
and can exhibit effective performance.

5.1.1 | Key Space

The encryption algorithm is capable of withstanding brute force
attacks when it possesses a substantial key space. Generally,
the encryption algorithm resistant to brute force attacks must
own the key space that exceeds 2! [89]. In the proposed
scheme, the chaotic map’s initial values x,(0), x,(0), x5(0) and
x,(0) and parameters a',a? a},a},a?,as,K',K? K* and K* are
considered secret keys. Each of S-SCM-LM and S-MCM-LM has
two parameters and one initial value. S-STBCS-LM has three
parameters and one initial value, and so does S-CTBCS-LM.
Therefore, we own ten parameters and four initial values. If
the precision of initial values and parameters is equivalent to
107", the key space is 107" = 10°"° ~ 2974 which is larger
than 21%, So, the proposed scheme proposes a highly efficient
key space. The key space if we use the maps generated from
original chaotification models (SCM-LM, MCM-LM, STBCS-LM,
CTBCS-LM) is equal to 10""° = 10' & 2482 because we can
own 6 parameters and 4 initial values. Thus, the proposed
maps can not only generate high random sequences but also
increase the key space. Table 3 lists the results. Compared to
the other works in Table 3, the proposed work has a higher
key space, and that proved the high efficiency of the proposed
maps. Increasing the key space is a predominant requirement
in modern cryptosystems to ensure resistance against brute-force
attacks. In our design, we theoretically propose a large key space,
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FIGURE 9 | Block diagram of the RGB encryption and decryption process.

FIGURE 10

TABLE 3 | Key space results.

Simulation results of the test images with their corresponding encrypted images.

Proposed
with original
chaotification Ref.

Algorithm Proposed models

[26] Ref.[82] Ref.[83]

Ref. Ref.
Ref. [84] Ref. [86] Ref.[62] [88] [63] Ref.[87]

Key space 1020 x 26976

10150 ~ 2498.6 2512 1075 ~ 2249 10141% 2468.3 10105 ~ 2349 1079 ~ 2263 10120 ~ 2398 2512

2360 10120 ~ 2398

reaching up to 2974, to enhance security. Although this level of
precision can be supported in theory, practical implementations
of chaotic maps on finite precision computers may experience
reduced effective precision due to rounding errors or computer
limitations, particularly in floating-point representations [90].
Therefore, proposing a high theoretical key space provides an
additional security margin to compensate for such practical
limitations.

5.1.2 | Key Sensitivity

A key sensitivity test is an important parameter used to ensure
that a very tiny modification in the key can result in a huge varia-
tion in both encrypted/decrypted images [91]. The key sensitivity
test is to decrypt an encrypted image with a decryption key that
varies from the encryption key by 10™">. In this method, the initial
values and the parameters are secret keys. We add a tiny change
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FIGURE 11 | Key sensitivity test.

EX3

EX4

FIGURE 12 | Phase trajectories of the key sequences generated by KVM: (a) EX1 sequence, (b) EX2 sequence, (c) EX3 sequenceand (d) EX4 sequence.

TABLE 4 | SEN and KEN of key sequences generated by KVM.

Sequences EX1 EX2 EX3 EX4
SEn 1.92419 1.92423 1.91729 1.91726
KEn 2.25011 2.25030 2.23398 2.23404

to one of the parameters in the decryption process, and the result
can be shown in Figure 11. The results obtained demonstrate a
significant disparity between the restored decrypted image and
the original image when decrypting the image with a slightly
altered key.

5.1.3 | Key Sequences Analysis

The key sequences expanded by KVM were analysed using phase
trajectory, SEn, and KEn. Phase trajectory was employed to assess
randomness and to investigate whether the sequences’ trajecto-
ries introduce exploitable patterns. The absence of recognisable
patterns confirms that the KVM produces random sequences. The
result is shown in Figure 12. The results show that the trajectories
of the key sequences explore the entire state space without bias,
indicating strong randomness. In addition, SEn and KEn are
also invested in quantifying the complexity of the key sequences.
The results are reported in Table 4, showing the average of 10
executions with varying initial values. The results show that the
key sequences have high SEn and KEn values, close to those of
the proposed chaotic maps, demonstrating that the KVM does not
compromise security.

5.2 | Statistical Analysis

In this work, histogram analysis, correlation analysis and IE are
the three indications used in evaluating the suggested algorithm
with respect to statistical attacks.

5.2.1 | Histogram Analysis

The histogram describes the information about an image regard-
ing the intensities of pixel distribution [92]. The input image
shows the histogram with a nonuniform shape because it has a
unique shape. Conversely, the encrypted image should exhibit
a high uniformity level to prevent information from being
extracted. The attackers can effortlessly examine the encrypted
image regularity when the encrypted image has an uneven
histogram and then make statistical attacks. We analysed the
histogram of the encrypted image, as it is shown in Figure 13.
As can be noticed, the encrypted image histogram has an even
distribution, illustrating a preferable performance in terms of
histogram.

5.2.2 | Correlation Analysis

A secured encryption method is expected to defeat the high-
level correlation that occurs between the adjacent pixels of the
input images [93]. Statistical attacks can exploit the correlation of
adjacent encrypted pixels to retrieve some beneficial information
regarding the plain image. The correlation value within a close
range of 1 illustrates a high correlation and an unsecured encryp-
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FIGURE 13 | Histogram analysis. (a) Original greyscale image, (b) histogram of the original greyscale image, (c) encrypted greyscale image, (d)

histogram of the encrypted greyscale image, (e) original colour image, (f) histogram of the original colour image, (g) encrypted colour image and (h)

histogram of the encrypted colour image.

tion algorithm. Conversely, the correlation value within a close
range of 0 indicates that the encryption method defeats the corre-
lation and secured the encryption algorithm. The mathematical
expression of correlation is given as:

-

H((x)= X;

Z|=
™M=

|
_

V(x)= (x; — H (x))’

Z|=
™M=

-

A

(30)
1 N
Cooy) =5 2 0-H@)~H)

_ C(x,y)

E, _—
ARV,

N represents the total number of adjacent pixel pairs; x and y
represent two locationally adjacent pixels; H(x) represents the
mean; V(x) represents the variance and C(x,y) represents the
covariance. Table 5 shows the results for greyscale images, and
Table 6 shows the results for colour images. The results represent
the mean over 10 trials using different initial keys for the proposed
method. Both Tables 5 and 6 demonstrate that the correlation
coefficients of the encrypted images approached nearly O in
three orientations. Furthermore, Tables 5 and 6 showcase the
outcomes of additional references, thereby affirming the superior
efficacy of the proposed methodology in comparison with those
of other references. Consequently, the results substantiate that
the neighbouring pixels within the encrypted image exhibit a
lack of correlation, and the standard deviation of the correlation
coefficients across 10 trials is very small (approaching zero),
confirming that the proposed method consistently eliminates
correlation between adjacent pixels regardless of the initial key.
Visually, Figure 14 reveals that the distribution of pixels of
the input image is located near x =y, whereas the pixels of
the encrypted image are distributed evenly in three directions.
Consequentially, the proposed encryption method eliminates the
correlation in three directions.

5.2.3 | Information Entropy (IE)

The IE is applied as an assessing measure to determine the
distribution of pixels in the encrypted image. The ideal value of
IE equals 8 [94]. An effective algorithm should suggest a random
encrypted image; thus, its entropy reaches close to 8. The IE is
expressed as:

2H 1

IE (E)= ) P (Ei)logZL
i=0

P D
H refers to total length of pixel in bits and P(E;) refers to
probability of E; in image E. Tables 7 and 8 tabulate the results
for greyscale images and colour images. The results represent
mean =+ standard deviation over 10 trials with varying initial keys
for the proposed method. The results obtained in Tables 7 and 8
closely approximate the ideal value. Furthermore, in comparison
to alternative schemes, the proposed algorithm demonstrated
commendable outcomes.

5.3 | Diffusion and Permutation Performance
Analysis

The differential attacks and plaintext attacks are two references
to measure the effectiveness of the encryption algorithm in terms
of diffusion effect, while the permutation test is a reference to
measure the permutation effect.

5.3.1 | Differential Attacks

The differential attack is a type of plaintext attack that examines
how a change in the plain images can affect the encrypted images
[95]. Firstly, the attackers encrypt the input image to form the
first encrypted image. Secondly, they apply a small modification
to the input image and then encrypt the image to create the

17 of 30

85UB017 SUOLLLIOD AIERID 3ot (dde ay) Aq peupAob 812 S[o1e YO 8sN J0 S3|N 10} Akeuq1 ] 8UIIUO A8]1M UO (SUONIPUOD-PUE-SWBILIOY™ A8 | 1M AReq | puljuo//Sdny) SUONIPUOD pue swie 1 81 89S *[6202/TT/ZT] Uo Ariqiauljuo A|im esAe. I YiesH JO seimisu| feuolieN Aq T8TOL 2/dY6r0T 0T/10p/W0d A8 | Aeiqpuljuo Yo essa s //sdiy Woly papeojumod ‘T 'SZ0Z 'L996TS.LT



TABLE 5 | Correlation analysis results of encrypted images (greyscale image).
Encrypted image
Image Direction Proposed Ref.[26] Ref.[83] Ref.[84] Ref.[85] Ref.[86] Ref.[62] Ref.[88]
Baboon Horizontal —0.00172 0.0124 —0.0068 0.0119 —0.0009 —0.0136 —0.00004 0.0011
Vertical —0.00191 —0.0118 —0.0082 0.0014 —0.0130 —0.0075 0.00052 —0.0012
Diagonal —0.00059 —-0.0215 0.0036 —0.0055 0.0186 0.0156 0.00053 0.0014
Peppers Horizontal 0.00162 0.0049 0.0131 —0.0061 0.0052 —0.0095 0.00050 0.0017
Vertical —0.00246 0.0099 0.0022 0.0002 0.0039 —0.0115 0.00088 —0.0012
Diagonal 0.00142 0.0068 0.0030 -0.0219 0.0215 0.0118 0.00035 —0.0021
Cameraman Horizontal 0.00330 —0.0061 0.0102 0.0119 —0.0077 —0.0337 —0.00091 —0.0015
Vertical —0.00056 0.0058 0.0066 0.0175 0.0061 0.0023 —0.00065 0.0019
Diagonal —-0.00212 0.0166 —0.0202 -0.0179 0.0083 0.0101 —0.00099 0.0018
Boat Horizontal ~ —0.00002 — — — — — — —
Vertical —0.00002 — — — — — — —
Diagonal 0.00162 — — — — — — —
TABLE 6 | Correlation analysis results of encrypted images (colour images).
Encrypted image
Image Direction Channel Proposed Ref. [63] Ref. [87]
Baboon Horizontal R —0.00067 0.01478 0.0003
(colour) G 0.00206 0.02172 0.0001
B —0.00067 —0.01131 0.0001
Vertical R 0.00145 —0.00589 0.0004
G —0.00242 0.00829 —0.0002
B —0.00404 —0.01634 —0.0004
Diagonal R —0.00378 —0.03433 0.0004
G —0.00070 0.00278 0.0001
B —0.00077 0.00660 —0.0002
Peppers Horizontal R 0.00114 —0.00317 —0.0001
(colour) G ~0.00157 0.00775 ~0.0004
B 0.00227 —0.00385 —0.0003
Vertical R —0.00043 0.01419 —0.0002
G —0.00276 0.01451 0.0003
B —0.00396 0.00297 —0.0001
Diagonal R —0.00010 0.01163 —0.0001
G 0.00118 —0.00338 —0.0001
B —0.00014 0.00159 0.0002
TABLE 7 | Information entropy (IE) results (greyscale images).
Information entropy (IE)
Image Proposed Ref. [26] Ref. [83] Ref. [84] Ref. [85] Ref. [86] Ref. [62] Ref. [88]
Baboon 7.9993 + 0.00006 7.9993 7.9993 7.9992 7.9992 7.9994 9.9994 7.9997
Peppers 7.9993 + 0.00008 7.9993 7.9992 7.9993 7.9978 7.9993 9.9994 7.9993
Camera man 7.9993 + 0.00005 7.9992 7.9991 7.9993 7.9983 7.9992 9.9994 7.9990
Boat 7.9993 + 0.00007 — — — — — — —
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FIGURE 14 | Correlation analysis results.

TABLE 8 | Information entropy (IE) results (colour images).

Information entropy (IE)

Image Channel Proposed Ref. [63] Ref. [87]

Baboon R 7.9993 + 0.00008  7.9993 7.9993
G 7.9994 + 0.00004  7.9993 7.9993
B 7.9994 + 0.00003  7.9992 7.9994

Peppers R 7.9993 + 0.00010  7.9993 7.9994
G 7.9993 + 0.00010 7.9991 7.9993
B 7.9993 + 0.00008  7.9992 7.9993

second image. Thirdly, they compared the two encrypted images
to reveal the interconnection of the plain and the encrypted
images. The efficient algorithm should have a high degree of
sensitivity to any tiny change that occurs in the input image,
which means the original image possesses different encryption
results in case a single bit is changed. This is also referred to as
plaintext sensitivity. Encryption algorithms with better plaintext

(h) Vertical direction of the input colour
mnage for K. G, and B channels

k) Vernical divection of the encrypied
colour image for K. G and B channels

(i} Driagonal direction of the inpnt coloonr
mmage for B, G, and B channels

-.'.'\.l-\'l'.-\.. st (a1, ye 1)
(1} Dingonnl direction of the encrypted
colour image for R, G, and B channels

sensitivity can hold better resistance to differential attacks and
hold a better diffusion property. The number of pixel change rate
(NPCR) and uniform average change intensity (UACI) are used to
test the resistance of an encryption algorithm towards differential
attacks. The definitions of NPCR and UACI are as follows:

15H1 (l’.]) =H2 (l’J)

0,H, (i, )) # H, (i, ])

Dy, i, (65 )
M XN

DHl,Hz (i’j) = {
(32)

NPCR = Z x 100%
i,j

_ 1 |H, (i, J) — Hy (0, ))]
UACI = 7 ZJ >es x 100% (33)

H, refers to the original encrypted image, and H, refers to the
encrypted image after changing one pixel in its plain image. For a
secured algorithm, NPCR and UACI should be within 99.6% and
33.4%, respectively [26]. Tables 9 and 10 present the results for
greyscale and colour images, respectively. Values represent mean
+ standard deviation over 10 trials with varying initial keys for
the proposed method. The results are close the expected values.
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TABLE 9 | NPCR and UACI results (greyscale images).

Image Test Proposed Ref. [26] Ref. [82] Ref.[83] Ref.[84] Ref.[85] Ref.[86] Ref.[62] Ref. [88]
Baboon NPCR (%) 99.60 + 0.016 99.61 99.63 99.62 99.61 60.28 99.61 99.60 99.64
UACI (%) 33.42 + 0.020 33.47 33.30 33.51 33.46 21.40 33.39 33.44 33.18
Peppers NPCR (%) 99.60 + 0.015 99.60 99.61 99.62 99.62 51.64 99.60 99.60 99.64
UACI (%) 33.41+0.014 33.52 33.42 33.46 33.35 20.31 33.45 33.45 33.49
Cameraman NPCR (%) 99.63 + 0.005 99.61 — 99.60 99.62 76.26 99.61 99.60 99.64

UACI (%) 33.50+0.027  33.47 —
Boat NPCR (%) 99.61+0.012  — —
UACI (%) 33.54+0.016  — —

33.46 33.44 28.30 33.43 33.44 33.47

TABLE 10 | NPCR and UACI results (colour images).

Ref. Ref.

Image Test Channel Proposed [63] [87]

NPCR (%)

]

99.60 +0.016 99.62 99.61
99.59 +0.016 99.60 99.60
99.61 +£0.013 99.61 99.60
33.41+0.021 33.51 33.46
33.59 +£0.011 33.53 33.43
33.43 +0.040 33.49 33.46
99.61 + 0.010 99.60 99.60
99.60 +£0.016 99.59 99.60
99.60 + 0.015 99.61 99.61
33.46 +0.032 33.42 33.46
33.50 +£0.023 33.42 33.47
33.47+0.041 33.48 33.48

Baboon

UACI (%)

Peppers NPCR (%)

UACI (%)

m QO ® W QX B QX T Q

Consequently, our method achieves effective security against
differential attacks.

5.3.2 | Plaintext Attacks Analysis

The traditional attacks of cryptanalysis are chosen ciphertext
attacks, chosen-plaintext attacks, ciphertext-only attacks and
known plaintext attacks. The chosen-plaintext attack types are
the most hazardous, surpassing the other three types. Thus, if the
encryption algorithm can resist chosen-plaintext attacks, it can
also resist the other three types of attacks [96]. In the chosen-
plaintext attack, the cryptanalyst endeavours to encrypt specific
visuals to scrutinise their corresponding encrypted representa-
tions. Subsequently, the aim is to ascertain the secret key or
approximate the decryption procedure to reconstitute the original
image devoid of necessitating access to the secret key. To verify
the resistance of the proposed method against chosen-plaintext
attacks, several experimental analyses are conducted.

First, black and white image tests are commonly used because
such images have uniform pixel values, which can disable or
weaken the effect of the permutation process and make weak-

nesses in the encryption algorithm easier to detect. Table 11 shows
the value of adjacent correlation, IE, NPCR and UACI for the
white image and the black image. Figure 15 depicts the histogram
for both white and black images. As evident, for the encrypted
white image and the encrypted black image, the information
entropy is close to the optimal value; the adjacent correlation is so
close to 0; NPCR and UACTI are close to the expected value, and the
histogram is even. The obtained results indicate high resistance
against chosen-plaintext attacks in terms of black image and
white image attacks. The proposed DNA-DCP-DA ensures that
the permutation and diffusion steps are closely linked, working
together seamlessly. This guarantees that the permutation step
can’t be destroyed and protects against chosen plaintext attacks
from specifically targeting the diffusion.

Second, the evaluation method used in Ref. [97] and Ref. [98] is
adopted, where the security of the image cryptosystem is analysed
using the following equation:

PI, (i,)) ® PL,(i,)) # CL, (i, ) ® CL, (i, )) (34)

where PI, and PI, are two plain images, and CI;, and CI,
are their corresponding cipher images. For encryption schemes
that rely on simple operations such as XOR, the cipher image
can be expressed as CI = PI @ K, where PI is the plain image
and K is the key. In this case, the variation between two plain
images (PI,, PI,) can be directly deduced from their cipher images
(CI,, CL,). Specifically, the difference between ciphertexts is as
follows:

CL,®CI =PI, ®K) ®(PL®K)=PI, P, (35)

As can be seen, the K is cancelled in Equation (35), and
the attacker can compute the plain image difference from the
cipher image difference without the need to recover K. This can
create a serious security vulnerability in chosen-plaintext attack
scenarios. As visualised in Figure 16, the results of the XOR
operation on two plain images and their corresponding cipher
images are obviously different, Thus, the vulnerability that is
exploited by this type of attack is effectively disabled.

Third, the approach outlined in [50] is employed. In this
approach, the input image (PI,) is first divided into equally sized
blocks. In each block, the first pixel contains a special pixel value
(o), while the remaining pixels are filled with fixed values. This

20 of 30

IET Image Processing, 2025

85UB017 SUOLLLIOD AIERID 3ot (dde ay) Aq peupAob 812 S[o1e YO 8sN J0 S3|N 10} Akeuq1 ] 8UIIUO A8]1M UO (SUONIPUOD-PUE-SWBILIOY™ A8 | 1M AReq | puljuo//Sdny) SUONIPUOD pue swie 1 81 89S *[6202/TT/ZT] Uo Ariqiauljuo A|im esAe. I YiesH JO seimisu| feuolieN Aq T8TOL 2/dY6r0T 0T/10p/W0d A8 | Aeiqpuljuo Yo essa s //sdiy Woly papeojumod ‘T 'SZ0Z 'L996TS.LT



TABLE 11 | Statistical results for black and white images.

Correlation analysis

Information
Image entropy (IE) Horizontal Vertical Diagonal NPCR UACI
Black (1080, 256) 7.9993 0.00037 0.00100 —0.00497 99.62% 33.49%
White (256, 1080) 7.9994 —0.00316 0.00050 —0.00316 99.62% 33.45%

FIGURE 15 | Results of black and white image test.

FIGURE 16 | Results of the chosen plaintext attack method in [97]. (a) Plain peppers image (PI,), (b) plain boat image (PL,), (c) PI; @ PI, and (d)

CI, & CL,.

image is encrypted to produce the first cipher image (CI,). Next,
two pixels in the block are modified: the pixel with the special
value () is increased, while another is decreased by the same
amount to preserve the overall sum of all pixels, resulting in a
second plain image (PI,). Preserving the sum of all pixels ensures
that the key derived from this sum remains consistent, making
the key identical even after modifying the first pixels. PI, is then
encrypted to generate a second cipher image (CI,). Lastly, the
XOR of CI; and CI, reveals the affected pixel position, while
the other pixels appear as zeros, thereby exposing the pixel’s
transformation. While the original method utilises 16 x 16 blocks

in a 256 X 256 image, for illustration purposes, we adapt this
approach to a 4 X 4 image without the need for block division.
Furthermore, the initial key values are fixed when constructing
CI, and I, . The main goal of this attack is to take advantage
of the lack of an intricate relationship between the key and the
plaintext to crack the encryption system. The results are presented
in Figure 17. The result reveals that all cipher pixel values are non-
zero, illustrating that the special pixel («) transformation is not
detected. Therefore, DNA-DCP-DA can effectively resist this type
of chosen plaintext attack because it employs row-wise, column-
wise and total pixel summation combined with a double-layer
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FIGURE 17 | Results of the chosen plaintext attack method in [50].

MDS5 hash, making the relationship between the plain image and
the generated key more difficult to detect.

Fourth, the proposed DNA-DCP-DA utilises four chaotic maps (S-
SCM-LM, S-MCM-LM, S-STBCS-LM and S-CTBCS-LM), offering
an exceptionally large key space. With such a vast key space, the
encryption scheme becomes nearly impossible to break under a
ciphertext-only attack [99].

5.3.3 | Security Analysis of the Proposed DNA
Operations

To test the proposed DNA operations, the plain image is first
transformed into a quaternary sequence. Then, the proposed
encryption operations are directly applied to this quaternary
representation using the DNA key. The first test analyses the
distribution of the quaternary values after the operations are
applied to verify whether the DNA-based operations effectively
randomise the sequence by producing an equal distribution of
0, 1, 2 and 3. The second test involves converting the encrypted
quaternary sequence back into pixel values to form the encrypted
image and examining the histogram. Both of these tests pro-
vide a comprehensive evaluation of the proposed operations’
ability to obscure both quaternary patterns and pixel intensity
distributions. The results are shown in Figure 18, indicating that
the proposed DNA operations produced ciphertexts with even
histograms and uniform distributions of the quaternary symbols
(0, 1, 2 and 3). This demonstrates that the proposed operations
do not compromise security in terms of ciphertext randomness.
Moreover, the proposed DNA operations are designed to be
non-commutative. In contrast to commutative operations (e.g.,
DN Ay g 0f DN Ay yop, Where DN Ay oz (X,Y) = DNAyor(Y, X)),
the non-commutative operations (e.g., DN Ay, ) depend on the
operand order: DNAg;1(X,Y) # DNAgy (Y, X). This intro-
duces operand-order dependencies, which increase resistance to
linear cryptanalysis by complicating the relationships between
the plaintext, ciphertext and key. This can also prevent algebraic
recovery of the key. For example, let the plain image sequence
be PI = ACGT and the key be K = AGCG. Applying DN Ay,
we obtain the cipher image CI = DNAyor (PI,K) = ATTC.
If the attacker knows PI and CI, the K can be recovered as
K = DNAyor (PI,CI) = AGCG. Now, consider applying the

proposed non-commutative DNA operation DN Ay, with same
PI and K, the ciphertextis CI = DN Ay, (PI,K) = TTGC.When
attempting to recover the key using K = DNAgy;,(PI,CI) the
result is CAAT; or using K = DN Ay (CI, PI), the result is
ATAA. In both cases, the result does not match the actual key.
This demonstrates that the non-commutative operations compli-
cate algebraic key recovery based on known plaintext-ciphertext
pairs. In addition to all the aforementioned advantages, the
proposed operations can be applied using different DNA encoding
rules. As a result, each operation can appear in eight possible
forms depending on the chosen encoding rule. Generating new
DNA operations can further empower dynamic DNA encryption
schemes by providing a greater variety of operations. This is able
to increase the complexity of potential cryptanalysis by making
the operation set less predictable and more resistant to attacks.

5.3.4 | Permutation Test

The permutation process has the goal of preventing attackers
from recognising image details. In this method, the permutation
effect is evaluated by cropping a square from the middle of
the encrypted image and replacing it with a white square.
Then, visually observe how the white square spreads across the
whole decrypted image. The result in Figure 19 shows that the
white square is randomly spread across the whole decrypted
image, illustrating the strong permutation effect of DNA-DCP-
DA. Furthermore, to evaluate the separability of the concurrent
permutation-diffusion process, we conducted a simulation in
which the DNA operations were reversed (diffusion effect), while
the permutation pattern remained unreversed. The result is
shown in Figure 20. It reveals that the decrypted image remained
visually unintelligible and exhibits a uniform histogram, pro-
viding robust evidence that the permutation step is critical and
cannot be isolated from the diffused data.

5.4 | Noise and Data Loss Attacks Analysis

When images are electronically transmitted over long distances
via wired or wireless channels, they are often degraded by noise or
distortion [100]. Thus, the noise attacks and the data loss attacks
are analysed in this subsection. The analysis of noise and data
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FIGURE 19 | Permutation test.

loss attacks is independent of chaotic sequences, it depends on
the structure of the encryption algorithm regardless of whether it
uses chaotic sequences.

5.4.1 | Noise Attacks

A strong algorithm should decrease the impact of noise during
the decryption process when receiving the encrypted image. As a
consequence of examining the strength of the proposed method
toward the noise attack, the following procedure is performed:
the input image is encrypted by the proposed method, and then
various densities of noise are added to the encrypted image.

After that, we tried to decrypt the encrypted image to recover
the original image. Figure 21 depicts the results of adding noise
with densities of 0.5%, 5% and 10% to the encrypted image. The
decrypted image in Figure 21 is still recognisable. To further
evaluate the effect of noise on the proposed DNA-DCP-DA, the
quality metric peak signal-to-noise ratio (PSNR) between the
plain images and the noisy decrypted images is computed, and the
results are presented in Table 12. Visually, the results show that
the decrypted noisy images preserve fair information. Moreover,
the PSNR values demonstrate that the proposed method can still
preserve essential image details.

5.4.2 | Data Loss Attacks

During the transmission, the encrypted image is prone to loss
of data. Such a loss may lead to significant degradation of the
recovered image during the decryption process. Consequently,
minimising the effect of data loss is an important factor for the
encryption algorithm. Diverse sizes of data are cropped from
the encrypted images by replacing the data with zeros. Having
obtained that, we tried to decrypt the encrypted images with data
loss. Figure 22 shows the result with a 1/16 crop ratio, a 1/4 crop
ratio and a 1/2 crop ratio. The PSNR is also calculated between
the plain images and the decrypted images with data loss, and
the results are listed in Table 13. The results demonstrate that
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FIGURE 20 | Result of reversing diffusion with unknown permutation pattern. (a) Plain image, (b) encrypted image, (c) decrypted image with

unknown permutation pattern and (d) histogram of decrypted image.

FIGURE 21 | Resultsof noise attacks. Encrypted images with (a) 0.5% noise ratio, (b) 5% noise ratio, (c) 10% noise ratio, (d) decrypted version of (a),

(e) decrypted version of (b) and (f) decrypted version of (c).

the decrypted images retain meaningful information even when
50% of the pixels have lost data. As a consequence, the proposed
DNA-DCP-DA is capable of enduring data loss attacks.

5.5 | Efficiency Analysis

This subsection evaluates the computational efficiency of the
proposed encryption scheme. We report the overall execution
time of the full algorithm and the resource performance of the
KVM, including its execution time, CPU usage, and memory
consumption.

5.5.1 | Execution Time

The speed of encryption is an important metric to evaluate
encryption system performance in real-time applications. The

experimental platform is MATLAB R2021a with an Intel Core
i7-4600 CPU at 2.7 GHz and 8 GB RAM on the Windows 10
operating system. The comparisons for 256 x 256 greyscale and
colour images are reported in Tables 14 and 15, respectively. The
results of the proposed scheme without using the KVM are also
reported in Tables 14 and 15, where the four chaotic maps are each
iterated M X N X 4 times to generate four sequences that match
the size of the DNA image. The results of the proposed algorithm
have the lowest execution time compared to the other algorithms
from other references. The computational complexity of the four
chaotic maps without employing KVM is 4 X O (M XN x 4) =
O (16MN), whereas with the application of KVM, the complexity
reduces to O (M x4+ N x4 x 2) = O (4M + 8N). Furthermore,
Table 16 reports the results of the proposed algorithm with and
without KVM for different image sizes. The results show that
using KVM can noticeably decrease the execution time, especially
for large-sized images, demonstrating the high effectiveness of
KVM in reducing processing time.
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TABLE 12 | PSNR between plain and noisy decrypted images.

Noise ratio

Image 0.5% 5% 10%

Baboon 32.2826 22.1547 19.2222

Peppers 31.4050 21.1797 18.2513

Camera man 31.3594 21.6653 18.5824

Boat 31.6853 22.0591 18.8860

Baboon (colour) R/ G /B 31.7008 / 32.2111 / 31.0705 21.5242 / 21.9324 / 20.9668 18.5219 / 18.8499 / 18.181
Peppers (colour) R/ G/ B 31.7559 / 30.1450 / 30.4237 21.5861 / 20.4222 / 20.5174 18.4916 / 17.4455 / 17.6567

FIGURE 22 | Results of data loss attacks. Encrypted images with (a) 1/16 loss ratio, (b) 1/4 loss ratio, (c) 1/2 loss ratio, (d) decrypted version of (a),

(e) decrypted version of (b) and (f) decrypted version of (c).

TABLE 13 | PSNR between plain and decrypted images with data loss.

Loss ratio

Image 1/16 1/4 1/2

Baboon 21.1972 15.2474 12.3351

Peppers 20.2968 14.3326 11.3471

Camera man 20.6660 14.6532 11.5483

Boat 21.0694 15.0528 12.1249

Baboon (colour) R/ G /B 20.6029 / 20.9307 / 20.1477 14.6266 / 14.9466 / 14.1420 11.6574 / 12.032 / 11.2134
Peppers (colour)R/ G /B 20.5547 / 19.5405 / 19.6847 14.6679 / 13.5111 / 13.6647 11.7742 / 10.548 / 10.6558

5.5.2 | KVM Execution and Resource Utilisation using three primary indicators: execution time, average CPU

The key sequence generation step is isolated and analysed
independently to evaluate the computational impact of the KVM
on the overall process. The performance of this step is measured

usage during execution and memory utilisation. These metrics
provide a comprehensive view of its efficiency. The results for the
key sequence generation step with KVM are presented in Table 17,
along with the results of the traditional chaotic map iterations
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TABLE 14 | Execution time (s) for a 256 x 256 greyscale image.

Proposed without Ref. Ref.
Algorithm  Proposed using KVM Ref. [26] Ref. [82] Ref. [83] Ref. [84] Ref. [86] [62] [88]
Encryption 0.1255 0.3276 0.2177 0.6007 2.3545 1.5210 4.3920 - —
Decryption 0.2227 0.3301 0.3551 0.3804 2.3296 1.4506 3.6577 - —
Encryption  1.91x107¢ 499 x10°° 332x10°  916x107° 3592%x10° 2320x10°% 67.01x10° — —
per pixel
Decryption  3.39 X 10~ 5.03 x 107 541107 580x10° 3554%x10° 2213x107° 5581x107¢ — —
per pixel
Processor 2.70 GHz 2.70 GHz 2.60 GHz 3.00 GHz 2.60 GHz 2.60 GHz 2.60 GHz — —
speed
Platform MATLAB MATLAB MATLAB MATLAB MATLAB MATLAB MATLAB — —
TABLE 15 | Execution time (s) for a 256 x 256 colour image.
Proposed without
Algorithm Proposed using KVM Ref. [63] Ref. [87]
Encryption 0.3003 0.74359 1.24 —
Decryption 0.3342 0.70592 1.28 —
Encryption per pixel 1.52 x 107° 3.78 x107° 6.30 x 107° —
Decryption per pixel 1.69 x 1076 3.59 x 1076 6.51x 1076 —
Processor speed 2.70 GHz 2.70 GHz 1.61 GHz —
Platform MATLAB MATLAB MATLAB —
TABLE 16 | Execution time (s) for different image sizes.
256 x 256 512 x 512 1080 x 1080 2160 x 2160

Image size Greyscale Colour Greyscale Colour Greyscale Colour Greyscale Colour
Proposed Encryption 0.1255 0.3003 0.45529 1.3376 1.8862 5.7534 7.9068 24.1369

Decryption 0.2227 0.33278 0.46159 1.3398 1.9784 5.8557 7.9814 24.2499
Proposed without  Encryption 0.3276 0.74359 2.8490 3.4123 8.9832 12.7394 37.1597 54.2940
using KVM Decryption ~ 0.3301  0.70592  2.4265 3.2701 8.8845  12.6784 362785  53.9390

method (without using KVM) for comparison. The results show
that the method with KVM achieves significant acceleration
with decreased memory utilisation. However, a corresponding
increase in CPU usage was observed during KVM execution.
This is because KVM effectively leverages more processing cores
simultaneously to achieve faster computation. As a result, the
processor works harder during execution but completes the
execution in a shorter time. Moreover, GPU execution of the
KVM is also investigated to further evaluate the parallelisation
efficiency of the proposed KVM. The GPU used in this study is
the NVIDIA GeForce RTX 4060 Laptop GPU. Table 18 shows the
comparison of resource utilisation on CPU and GPU platforms.
The results in Table 18 show that GPU execution for generating
the four key sequences using chaotic maps was actually slower
than CPU execution. This is because the nature of chaotic
maps requires sequential iterations, where the key generation
process demands M iterations for row-dependent key sequences
and 4 X N iterations column-dependent sequences, with each
next state x (i + 1) depending on the current state x (i). This

data dependency significantly limits the parallelism of GPUs, as
GPUs are most efficient when independent computations can
be distributed across many cores simultaneously. In contrast,
GPU execution of the KVM shows significantly improved parallel
efficiency and provides faster execution compared to the CPU.
This is because the KVM eliminates sequential dependencies
and employs vectorised operations, such as modular shifting
and sorting, which GPUs can process in parallel. These findings
confirm that the KVM is inherently more suitable for GPU
acceleration.

6 | Conclusion

The new scaling chaotification models are defined by adjusting
the existing chaotification models that mainly use sine, cosine,
or module functions. The performance analysis of the proposed
models proves that the periodic windows are eliminated, meaning
the chaotic performance cannot be degraded to nonchaotic,
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TABLE 17 | KVM resource utilisation.

Sequence size 256 x 256 512 x 512 1080 x 1080 2160 x 2160

Execution time for generating Using KVM 0.00700 0.015391 0.07431 0.27739

four sequences (s) Using chaotic map 0.2871 1.6003 8.0330 29.2544
iterations

Average CPU usage (%) Using KVM 35 35 34 37

Using chaotic map 25 25.91 21.57 26.08

iterations

Memory usage (mb) Using KVM 8.405 32.9769 149.2419 597.2787

Using chaotic map 8.405 33.5012 268.3863 1069.1338
iterations
TABLE 18 | Comparison of KVM resource utilisation (CPU versus GPU).

Sequence size 256 % 256 512 x 512 1080 x 1080 2160 x 2160

CPU execution time for generating 0.007 0.015 0.074 0.277

four sequences (s)

GPU execution time for generating 0.88 214 3.85 8.33

four sequences (s)

CPU execution time for KVM (s) 0.00460 0.010134 0.06940 0.26565

GPU execution time for KVM (s) 0.00196 0.003462 0.01149 0.04445

Average CPU usage (%) 35 35 34 37

Average GPU usage (%) 16.6 17.7 222 24.2

and the values of LE and entropy are increased. Increasing the
LE and entropy results means increasing the sensitivity of the
initial conditions, and that enhances unpredictability, expands
the key space, secures the key generation and enhances the
encryption step. These models are directly involved in generating
secret keys for the proposed DNA-DCP-DA. We utilised the
concurrent permutation-diffusion method to perform permu-
tation and diffusion steps simultaneously, preventing targeted
attacks on the diffusion step and increasing efficiency. We also
define new DNA computing operations, and the performance
analysis demonstrates the efficiency of the new DNA operations.
Moreover, the experimental histogram is even; the key space is
enormous, reaching 2574; the correlation analysis is near 0; the
IE is larger than 7.999, and noise and data loss attacks on the
encrypted image are ineffective. The NPCR is greater than 99.60%
and the UACI is greater than 33.46%. Many experiments validate
the endurance against chosen-plaintext attacks. Therefore, the
results prove that our algorithm achieves high-level security
outcomes. Having worked with the major aim of beating the
shortcomings of consuming an excessive amount of time and
computational overhead, we defined a new KVM to reduce the
computational overhead and the long execution time to achieve
0.1255 s for a 256 x 256 image by minimising the number of
iterations of the chaotic maps. Lower computational complexity
and execution time aid the applicability of the image encryption
system based on DNA technique in real-time applications that
allow fast data protection along with maintaining strong security,
such as image transmission security, medical image security,
cloud storage security, digital watermarking security and IoT
device security. Future work will focus on analysing the proposed

scheme’s robustness against Al-based cryptanalysis, investigating
the impact of finite precision and rounding errors in hardware
implementations, and conducting a comparative study of various
scaling functions to develop more effective chaotification models.
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