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ABSTRACT

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that severely affects
motor functions, particularly gait and balance. The global burden of Parkinson’s disease is
increasing. At the same time, clinical assessments require specialized settings and are not
always accessible. For gait analysis. Detrended Fluctuation Analysis (DFA) has a problem
of being too sensitive to noise while the use of Short-Time Fourier Transform (STFT) and
Continuous Wavelet Transform (CWT) are not compared extensively. This thesis presents a
comprehensive study on classifying Parkinson’s disease and its severity using both
traditional biosignals such as stride interval and vertical ground reaction force (vGRF), and
computer vision-based techniques derived from video analysis. DFA, STFT and CWT were
applied to extract meaningful features from biosignals. These features were evaluated using
machine learning classifiers, including Support Vector Machine (SVM), k-Nearest
Neighbors (KNN), and Random Forest, along with deep learning models such as 1D-
Convolutional Neural Networks (1D-CNN), Long Short-Term Memory (LSTM), and Gated
Recurrent Units (GRU). Results showed that SVM, KNN and random forest performed well
in classifying both PD and healthy individuals when paired with combination of STFT, CWT
and DFA with 100% in precision, recall and F1 — score. 1D-CNN demonstrated strong
robustness in handling noisy stride interval data, while LSTM and GRU excelled in vGRF
classification due to their ability to capture temporal dependencies. Additionally, walking
videos were analyzed using the MediaPipe Pose framework, where 33 keypoints were
extracted and features computed using the Time Series Feature Extraction Library (TSFEL)
library. These features were used to classify PD severity using both machine learning and
deep learning models. GRU-LSTM and Random Forest achieved classification precision,
recall and F1 —score above 80%. A mobile application was developed using the Flutter
framework, integrating MediaPipe Pose and Google ML Kit to enable real-time gait analysis
from smartphone video. The system classified subjects into healthy, mild PD, or advanced
PD categories with high reliability. This work highlights the complementary strengths of
signal-based and vision-based approaches for PD assessment and presents a viable
framework for remote, non-invasive, and real-time monitoring of gait disorders using mobile
technologies.



ANALISIS PERBANDINGAN PENGELASAN PENYAKIT PARKINSON

MENGGUNAKAN TEKNIK KECERDASAN BUATAN

ABSTRAK

Penyakit Parkinson (PD) adalah gangguan neurodegeneratif progresif yang memberi kesan
teruk terhadap fungsi motor, terutamanya gaya berjalan dan keseimbangan. Beban global
penyakit Parkinson semakin meningkat. Pada masa yang sama, penilaian klinikal
memerlukan persediaan khusus dan tidak selalu boleh diakses. Untuk analisis gaya berjalan,
Detrended Fluctuation Analysis (DFA) mempunyai masalah terlalu sensitif terhadap bunyi
bising, manakala penggunaan Short-Time Fourier Transform (STFT) dan Continuous
Wavelet Transform (CWT) belum dibandingkan secara meluas. Tesis ini membentangkan
kajian menyeluruh mengenai pengelasan penyakit Parkinson dan tahap keparahannya
menggunakan kedua-dua biosignal tradisional seperti selang langkah dan daya tindak balas
tanah menegak (VGRF), serta teknik berasaskan penglihatan komputer yang diperoleh
daripada analisis video. DFA, STFT, dan CWT digunakan untuk mengekstrak ciri bermakna
daripada biosignal. Ciri-ciri ini dinilai menggunakan pengelasan pembelajaran mesin,
termasuk Support Vector Machine (SVM), k-Nearest Neighbors (KNN), dan Random
Forest, bersama model pembelajaran mendalam seperti 1D-Convolutional Neural Networks
(ID-CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Units (GRU).
Keputusan menunjukkan bahawa SVM, KNN, dan Random Forest mencapai prestasi
cemerlang dalam mengelaskan kedua-dua individu PD dan sihat apabila digabungkan
dengan STFT, CWT, dan DFA, dengan ketepatan, recall, dan F1-score mencapai 100%. 1D-
CNN menunjukkan ketahanan yang kuat dalam mengendalikan data selang langkah yang
bising, manakala LSTM dan GRU unggul dalam pengelasan vGRF kerana keupayaan
mereka menangkap kebergantungan temporal. Selain itu, video berjalan dianalisis
menggunakan rangka kerja MediaPipe Pose, di mana 33 titik utama diekstrak dan ciri dikira
menggunakan pustaka Time Series Feature Extraction Library (TSFEL). Ciri-ciri ini
digunakan untuk mengelaskan tahap keparahan PD menggunakan model pembelajaran
mesin dan pembelajaran mendalam. Gabungan GRU-LSTM dan Random Forest mencapai
ketepatan, recall, dan Fl-score melebihi 80%. Satu aplikasi mudah alih dibangunkan
menggunakan rangka kerja Flutter, menggabungkan MediaPipe Pose dan Google ML Kit
untuk membolehkan analisis gaya berjalan masa nyata daripada video telefon pintar. Sistem
ini mengelaskan subjek kepada kategori sihat, PD ringan, atau PD tahap lanjut dengan
kebolehpercayaan tinggi. Kajian ini menyerlahkan kekuatan pelengkap pendekatan
berasaskan isyarat dan penglihatan untuk penilaian PD, serta membentangkan rangka kerja
yang boleh dilaksanakan untuk pemantauan jarak jauh, tidak invasif, dan masa nyata bagi
gangguan gaya berjalan menggunakan teknologi mudah alih.
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