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ABSTRACT 

 

 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that severely affects 

motor functions, particularly gait and balance. The global burden of Parkinson’s disease is 

increasing. At the same time, clinical assessments require specialized settings and are not 

always accessible. For gait analysis. Detrended Fluctuation Analysis (DFA) has a problem 

of being too sensitive to noise while the use of Short-Time Fourier Transform (STFT) and 

Continuous Wavelet Transform (CWT) are not compared extensively. This thesis presents a 

comprehensive study on classifying Parkinson’s disease and its severity using both 

traditional biosignals such as stride interval and vertical ground reaction force (vGRF), and 

computer vision-based techniques derived from video analysis. DFA, STFT and CWT were 

applied to extract meaningful features from biosignals. These features were evaluated using 

machine learning classifiers, including Support Vector Machine (SVM), k-Nearest 

Neighbors (KNN), and Random Forest, along with deep learning models such as 1D-

Convolutional Neural Networks (1D-CNN), Long Short-Term Memory (LSTM), and Gated 

Recurrent Units (GRU). Results showed that SVM, KNN and random forest performed well 

in classifying both PD and healthy individuals when paired with combination of STFT, CWT 

and DFA with 100% in precision, recall and F1 – score. 1D-CNN demonstrated strong 

robustness in handling noisy stride interval data, while LSTM and GRU excelled in vGRF 

classification due to their ability to capture temporal dependencies. Additionally, walking 

videos were analyzed using the MediaPipe Pose framework, where 33 keypoints were 

extracted and features computed using the Time Series Feature Extraction Library (TSFEL) 

library. These features were used to classify PD severity using both machine learning and 

deep learning models. GRU-LSTM and Random Forest achieved classification precision, 

recall and F1 – score  above 80%. A mobile application was developed using the Flutter 

framework, integrating MediaPipe Pose and Google ML Kit to enable real-time gait analysis 

from smartphone video. The system classified subjects into healthy, mild PD, or advanced 

PD categories with high reliability. This work highlights the complementary strengths of 

signal-based and vision-based approaches for PD assessment and presents a viable 

framework for remote, non-invasive, and real-time monitoring of gait disorders using mobile 

technologies.  



 

ii 

ANALISIS PERBANDINGAN PENGELASAN PENYAKIT PARKINSON 

MENGGUNAKAN TEKNIK KECERDASAN BUATAN 

 

 

 

ABSTRAK 

 

Penyakit Parkinson (PD) adalah gangguan neurodegeneratif progresif yang memberi kesan 

teruk terhadap fungsi motor, terutamanya gaya berjalan dan keseimbangan. Beban global 

penyakit Parkinson semakin meningkat. Pada masa yang sama, penilaian klinikal 

memerlukan persediaan khusus dan tidak selalu boleh diakses. Untuk analisis gaya berjalan, 

Detrended Fluctuation Analysis (DFA) mempunyai masalah terlalu sensitif terhadap bunyi 

bising, manakala penggunaan Short-Time Fourier Transform (STFT) dan Continuous 

Wavelet Transform (CWT) belum dibandingkan secara meluas. Tesis ini membentangkan 

kajian menyeluruh mengenai pengelasan penyakit Parkinson dan tahap keparahannya 

menggunakan kedua-dua biosignal tradisional seperti selang langkah dan daya tindak balas 

tanah menegak (vGRF), serta teknik berasaskan penglihatan komputer yang diperoleh 

daripada analisis video. DFA, STFT, dan CWT digunakan untuk mengekstrak ciri bermakna 

daripada biosignal. Ciri-ciri ini dinilai menggunakan pengelasan pembelajaran mesin, 

termasuk Support Vector Machine (SVM), k-Nearest Neighbors (KNN), dan Random 

Forest, bersama model pembelajaran mendalam seperti 1D-Convolutional Neural Networks 

(1D-CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Units (GRU). 

Keputusan menunjukkan bahawa SVM, KNN, dan Random Forest mencapai prestasi 

cemerlang dalam mengelaskan kedua-dua individu PD dan sihat apabila digabungkan 

dengan STFT, CWT, dan DFA, dengan ketepatan, recall, dan F1-score mencapai 100%. 1D-

CNN menunjukkan ketahanan yang kuat dalam mengendalikan data selang langkah yang 

bising, manakala LSTM dan GRU unggul dalam pengelasan vGRF kerana keupayaan 

mereka menangkap kebergantungan temporal. Selain itu, video berjalan dianalisis 

menggunakan rangka kerja MediaPipe Pose, di mana 33 titik utama diekstrak dan ciri dikira 

menggunakan pustaka Time Series Feature Extraction Library (TSFEL). Ciri-ciri ini 

digunakan untuk mengelaskan tahap keparahan PD menggunakan model pembelajaran 

mesin dan pembelajaran mendalam. Gabungan GRU-LSTM dan Random Forest mencapai 

ketepatan, recall, dan F1-score melebihi 80%. Satu aplikasi mudah alih dibangunkan 

menggunakan rangka kerja Flutter, menggabungkan MediaPipe Pose dan Google ML Kit 

untuk membolehkan analisis gaya berjalan masa nyata daripada video telefon pintar. Sistem 

ini mengelaskan subjek kepada kategori sihat, PD ringan, atau PD tahap lanjut dengan 

kebolehpercayaan tinggi. Kajian ini menyerlahkan kekuatan pelengkap pendekatan 

berasaskan isyarat dan penglihatan untuk penilaian PD, serta membentangkan rangka kerja 

yang boleh dilaksanakan untuk pemantauan jarak jauh, tidak invasif, dan masa nyata bagi 

gangguan gaya berjalan menggunakan teknologi mudah alih.  
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