

Fakulti Teknologi dan Kejuruteraan Elektrik

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2025

**NEW APPROACH OF SECTOR ROTATION STRATEGIES FOR IMPROVING
THE DYNAMIC AND CAPABILITY OF INDUCTION MOTOR**

NURUL SYAHADA BINTI MUHAMAD SABRI

**A thesis submitted
in fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering**

جامعة تكنولوجيا ملاكا

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Electrical Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2025

DECLARATION

I declare that this thesis entitled “A New Approach of Sector Rotation Strategies for Improving the Dynamic and Capability of Induction Motor“ is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : Nurul Syahada Binti Muhamad Sabri

Date : 08 September 2025

جامعة ملaka التقنية

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

Signature :
Name : Dr. Siti Azura Binti Ahmad Tarusan
Date : 17 September 2025

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

A special dedication to my beloved parents,

Muhamad Sabri Bin Noor and Salome Reyes Soriano

For your endless prayers, unwavering support, and belief in myself throughout this journey. Thank you being my source of strength, inspiration, and motivation.

To My Respected Supervisor,

Dr. Siti Azura Binti Ahmad Tarusan

Thank you for your guidance, patience, and encouragement from beginning to end.

To My Respected Co-Supervisor,

Dr. Auzani Bin Jidin

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Thank you for your support, insights, and valuable advice.

May God bless all of us.

ABSTRACT

Direct Torque Control (DTC) is a well-established control technique for three-phase induction motors due to its simple structure, fast torque response, and independence from coordinate transformation. However, DTC faces notable performance degradation at low speeds, primarily caused by the influence of stator resistance. At low speed, the reduced back-electromotive force (back-EMF) makes it difficult to sustain the desired flux level, and the voltage drop across the stator resistance significantly impacts flux estimation. This condition results in flux droop, particularly evident during the application of zero-voltage vectors and across the boundaries of conventional fixed sectors. The conventional DTC's sector-based switching strategy becomes less effective as the contribution of active voltage vectors becomes uneven due to stator resistance, which disrupts flux symmetry and reduces the control accuracy of flux under dynamic and low-speed operations. To address these limitations, this thesis introduces a new approach of sector rotation strategy that dynamically adjusts the voltage vector selection based on real-time torque and speed variations. This is achieved through the development of an analytical model that calculates the appropriate shifted angle to rotate the sector position. By adjusting the sector boundaries, the proposed strategy enables the optimal alignment of voltage vectors with the stator flux trajectory, effectively minimizing the adverse effects of stator resistance and improving flux magnitude consistency during transitions. This adaptive approach retains the inherent simplicity of DTC while significantly enhancing its performance under low-speed and dynamic conditions. The effectiveness of the proposed method was validated through extensive simulations using MATLAB/Simulink and real-time experimental verification using a DS1104 dSPACE digital signal processor. The experimental testbed includes a 1.1 kW three-phase induction motor coupled with a 2 kW DC generator load and a two-level inverter for control implementation. Comparative studies were performed against the conventional DTC method under identical conditions. The results show that the proposed strategy achieves a significant improvement, including: 1) a reduction in stator flux droop up to 65.4%, 2) stabilizes flux error status, and 3) smoother current waveforms with reduced distortion, approaching a sinusoidal form. Overall, the proposed sector rotation strategy demonstrates a practical and effective enhancement to the conventional DTC method, providing improved control precision, smoother motor operation, and robustness in low-speed regions while maintaining the low computational burden and simplicity that make DTC attractive for industrial applications. This advancement holds relevance for applications requiring precise control in dynamic or low-speed environments, such as electric vehicles and robotics.

PENDEKATAN BARU SECTOR PUTARAN STRATEGI UNTUK MENINGKATKAN DINAMIK DAN KEUPAYAAN MOTOR ARUHAN

ABSTRAK

Kawalan Tork Terus (Direct Torque Control, DTC) merupakan satu teknik kawalan yang dikenali untuk motor aruhan tiga fasa disebabkan oleh struktur kawalannya yang ringkas, tindak balas tork yang pantas, dan tidak bergantung kepada transformasi koordinat. Walau bagaimanapun, prestasi DTC merosot pada kelajuan rendah, terutamanya disebabkan oleh pengaruh rintangan stator. Pada kelajuan rendah, daya gerak balas (back-EMF) yang berkurang menyukarkan pengekalan aras fluks yang dikehendaki, dan kejatuhan voltan merentasi rintangan stator memberi kesan besar kepada anggaran fluks. Keadaan ini menyebabkan fenomena kejatuhan fluks, yang jelas kelihatan ketika penggunaan vektor voltan sifar dan di sempadan sektor tetap konvensional. Strategi pensuisan berdasarkan sektor dalam DTC konvensional menjadi kurang berkesan kerana sumbangan vektor voltan aktif yang tidak sekata disebabkan oleh rintangan stator, yang mengganggu simetri fluks dan mengurangkan ketepatan kawalan fluks semasa operasi dinamik dan berkelajuan rendah. Bagi mengatasi kekangan ini, tesis ini memperkenalkan satu pendekatan baharu iaitu strategi putaran sektor yang melaraskan pemilihan vektor voltan secara dinamik dalam jejari fluks bulat berdasarkan perubahan tork dan kelajuan masa nyata. Pendekatan ini dibangunkan melalui satu model analitik yang mengira sudut anjakan yang sesuai untuk memutarkan kedudukan sektor. Dengan melaraskan sempadan sektor, strategi yang dicadangkan ini membolehkan penyelarasan yang optimum antara vektor voltan dan trajektori fluks stator, sekaligus meminimumkan kesan negatif rintangan stator dan meningkatkan kestabilan magnitud fluks semasa peralihan. Pendekatan adaptif ini mengekalkan kesederhanaan asas DTC sambil meningkatkan prestasi kawalan dalam keadaan kelajuan rendah dan dinamik. Keberkesanannya kaedah yang dicadangkan telah disahkan melalui simulasi menyeluruh menggunakan MATLAB/Simulink dan juga ujian eksperimen masa nyata menggunakan pemproses isyarat digital (DSP) dSPACE DS1104. Sistem ujian eksperimen terdiri daripada motor aruhan tiga fasa berkuasa 1.1 kW yang digandingkan dengan beban penjana DC 2 kW serta inverter dua peringkat untuk pelaksanaan kawalan. Kajian perbandingan telah dijalankan antara kaedah DTC konvensional dan strategi yang dicadangkan di bawah keadaan operasi yang sama. Keputusan menunjukkan bahawa strategi yang dicadangkan mencapai peningkatan yang ketara, termasuk: 1) mengurangkan kejatuhan fluks stator sehingga 65.4%, 2) menstabilkan status ralat fluks, dan 3) gelombang arus yang lebih lancar dengan herotan yang berkurangan, menghampiri bentuk sinusoidal. Secara keseluruhannya, strategi putaran sektor yang dicadangkan membuktikan sebagai satu penambahbaikan praktikal dan berkesan kepada kaedah DTC konvensional, memberikan ketepatan kawalan yang lebih tinggi, operasi motor yang lebih lancar, serta ketahanan yang lebih baik pada kelajuan rendah, sambil mengekalkan beban pengiraan yang rendah dan struktur kawalan yang ringkas. Kemajuan ini amat relevan untuk aplikasi yang memerlukan kawalan tepat dalam keadaan dinamik atau kelajuan rendah seperti kenderaan elektrik dan sistem robotik.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful. *Alhamdulillah*, all praise be to Allah for His endless blessings and *rizq* for making this research complete and successful in this semester.

First and foremost, I would like to express to Universiti Teknikal Malaysia Melaka (UTeM) for providing the facilities, resources, and a supportive academic environment that enabled this research to be carried out successfully.

My deepest appreciation goes to my supervisor, Dr. Siti Azura binti Ahmad Tarusan, for her helpful supervision, valuable guidance, continuous encouragement, and constructive feedback throughout this research journey. Her mentorship has been instrumental in shaping the outcome of this project.

I would also like to extend my sincere thanks to my co-supervisor, Dr. Auzani bin Jidin, for his technical insights, knowledge-sharing, and active involvement in my project. His guidance has helped me improve and grow throughout the research process.

Special thanks to my lab partner, Syed Abrar bin Syed Ahmad Zawawi, for always being helpful in the lab and for his thoughtful opinions and support regarding my project work. Your presence made this journey more manageable and enjoyable.

Last but not least, I wish to express my deepest gratitude to my beloved family and siblings for their constant support, patience, and prayers. Their love and encouragement have been my source of strength and motivation.

May Allah bless all of you for your kindness and support.

TABLE OF CONTENTS

	PAGES
DECLARATION	i
APPROVAL	ii
DEDICATION	iii
ABSTRACT	iv
ABSTRAK	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiii
LIST OF SYMBOLS	xv
LIST OF APPENDICES	xvii
LIST OF PUBLICATIONS	xviii
 CHAPTER	
1. INTRODUCTION	19
1.1 Background	19
1.2 Problem Statement	23
1.3 Research Question	29
1.4 Research Objective	30
1.5 Scope of Research	30
1.6 Thesis Outline	31
2. LITERATURE REVIEW	33
2.1 Control Techniques for induction machines in AC drives	34
2.2 Three-Phase Voltage Source Inverter	39
2.2.1 Three-Phase Voltage Source Inverter (VSI) in Space Vector	42
2.3 Structure of Direct Torque Control (DTC) for Induction Motor	46
2.3.1 Principle of Direct Torque Control (DTC)	46
2.3.1.1 Direct Flux Control	47
2.3.1.2 Direct Torque Control	50
2.3.2 Torque and Flux Estimators	55
2.3.2.1 Voltage Model-Based Estimator	56
2.3.2.2 Current Model-Based Estimator	59
2.3.2.3 Model Reference Adaptive System (MRAS)	62
2.3.3 Hysteresis-Based Induction Motor	64
2.3.4 Look-up Table of DTC	65
2.4 Major Problem in Conventional DTC	66
2.5 Recent Study of Flux Droop Problem in DTC	68
2.6 Several Improvement in DTC	69
2.6.1 Flux Compensation technique	70
2.6.2 Fixed Sector Rotation Strategy	72
2.6.3 Gated Sector Rotation Strategy	73
2.6.4 Optimal Sector Definition Based Preset Voltage Ratio	75
2.6.5 Optimized Sector Rotation Strategies	77
2.7 Literature Finding and Research Gap	78

2.8	Summary	80
3.	METHODOLOGY	81
3.1	Research Development Flowchart	82
3.2	Mathematical Model of Induction Motor	83
3.2.1	Complex Space Vector Transformation Equation	84
3.2.2	The d-q Axis Transformation Equation	86
3.3	Mathematical Modelling of Stator Flux and Torque in Induction Motor	88
3.4	Investigation of DTC Characteristics at Different Speeds	90
3.5	Evaluation of Stator Flux Droop at Low-Speed and Torque Conditions	91
3.5.1	Case Study 1: Stator Flux Droop in Variation of Speed	95
3.5.2	Case Study 2: Stator Flux Droop in Variation of Torque	95
3.5.3	Case Study 3: Stator Flux Droop in Variation of Speed and Torque	97
3.6	Modelling sector rotation strategy	99
3.7	System Architecture of DTC Development with Proposed New Approach of Sector Rotation Strategy	102
3.8	Simulation and Experimental Setup	104
3.9	DTC Simulation Model	107
3.9.1	Sector Controller	109
3.9.2	Modified Sector Detector	110
3.9.3	Speed Controller	113
3.9.3.1	Load Torque-Based Speed Regulation Approach	113
3.9.3.2	Implementation of PI Speed Controller	115
3.9.4	Lookup Table	117
3.9.5	Current Calculator	118
3.9.6	Voltage Calculator	118
3.9.7	Flux and Torque Calculator	120
3.9.8	Voltage Source Inverter (VSI)	121
3.10	DTC Experimental Hardware Setup	1224
3.10.1	Controller Board: DS1104 R&D	125
3.10.2	Experimental MATLAB/Simulink Setup	126
3.10.3	Sector Controller Block Setup	129
3.10.4	Speed Error Input Block Setup	130
3.10.5	ON/OFF Switch Logic Block Setup	131
3.10.6	Current Estimation Block Setup	132
3.10.7	Input/Output Interface Block Setup	133
3.11	dSPACE CONTROLDESK Block Setup	135
3.12	Induction Motor Experiment Setup	136
3.13	Safety and Precaution	137
3.14	Summary	138
4.	RESULT AND DISCUSSION	140
4.1	Performance Analysis of Stator Flux Droop using Fixed Sector Rotation Strategy	140
4.1.1	Performance Analysis at Stator Flux Effect Based on the Speed Constant Torque	141
4.1.2	Performance Analysis at Stator Flux Effect based on the Speed and Torque	152

4.2	Performance Analysis of Stator Flux Droop Using New Approach of Sector Rotation Strategy	159
4.2.1	Steady State Performance Analysis	160
4.2.2	Dynamic Performance Analysis	168
4.3	Summary	173
5.	CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH	174
5.1	Conclusion	174
5.2	Contribution	175
5.3	Future work	176
REFERENCES		178
APPENDICES		187

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	The Look-up Table of DTC	66
3.1	Simulation and Experiment Data from Variables of Speed and Torque gets the Shifted Angle Value	99
3.2	Data of Torque against Y-Intersection	101
3.3	Induction Motor Parameters	106
3.4	Simulation Parameters	106
3.5	Differences between Simulation and Experiment Parameters	107
3.6	Modified Sector Detection	112
3.7	Setup of Load Torque Parameters for Torque and Speed Condition	115
4.1	The Result of the Stator Flux Droop at Different Operating Speed using 1 Nm Torque Reference	152
4.2	The Result of the Stator Flux Droop at Different Operating Speed and Torque	160
4.3	The Summarize of Steady State Result at Different Operating Speed	164

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Structure of Field Oriented Control (FOC)	20
1.2	Structure of Direct Torque Control (DTC)	21
1.3	Non-Uniform Stator Resistance Effects across Sector 3 (a) End of Sector 3 and (b) Beginning of Sector 3	25
1.4	Waveform Effect of Selecting Null Voltage Vector at the Sector Transition	26
1.5	Effect of Flux Droop on Selection Suitable Voltage Vector	26
1.6	Comparison of Low and High-Speed Flux Trajectory	27
1.7	Waveform of Sector, Stator Flux, Flux Error Status, and Status Current with Highlighting the Problem of Conventional DTC at Low Speed	28
2.1	Block Diagram of Direct Field-Oriented Control (DFOC)	37
2.2	Block Diagram of Indirect Field-Oriented Control (IFOC)	37
2.3	Block diagram of Direct Torque Control (DTC)	39
2.4	Detailed Inverter Circuit	40
2.5	Simplified Inverter Circuit	40
2.6	Three-Phase Quantities Mapping in d-q Plane	43
2.7	Mapping of Voltage Vectors in the Three-Phase Voltage Source Inverter (VSI) with Corresponding Switching Status	45
2.8	Division of Six Sector in the Stator Flux Plane	48
2.9	(a) The Stator Flux Plane Divided into Six Sectors and (b) The Stator Flux Controlled by Two Specific Active Voltage Vectors inside its Hysteresis Band	49
2.10	(a) Two-Level Hysteresis Comparator and (b) The Waveform Diagram of Stator Flux	50
2.11	Direction of Rotor and Stator Flux in Typical Motor	51

	Operation	
2.12	Four Quadrant Operation in DTC Induction Machine Drive	52
2.13	(a) Three-Level Hysteresis Comparator and (b) The Waveform Diagram of Torque	54
2.14	Voltage Model Estimation	58
2.15	Current Model Estimation	61
2.16	MRAS Model Estimation	63
2.17	Basic DTC Hysteresis-based Induction Machine Structure	65
2.18	Problematic at Low Speeds of Graph (a) Sector, (b) Flux, (c) Flux Error Status and (d) Torque	67
2.19	Block Diagram of the Integration Algorithm for The Stator Flux Estimation	71
2.20	Block Diagram of DTC with Flux Compensation	71
2.21	Gated Sector Rotation DTC Strategy	74
2.22	Borderline for New Sector Proposed	76
2.23	Ratio of Proposed New Sector of (2) 10-to-5 and (b) 10-to-7	76
2.24	Shifted Rotation Proposed of Sector Rotation Strategy	77
2.25	Integrated Sector Rotation Strategy to Basic DTC Drive System	78
2.26	A Review of DTC via Implementation of Various Strategy	79
3.1	The Flowchart of Research Development	83
3.2	Cross-Sectional View of a Symmetrical Two-Pole Machine	85
3.3	The Phasor Diagram of Stator Voltage, Ohmic Voltage Drop and Back-Emf Vector at (a) Low and (b) High Operating Speed	91
3.4	Illustration of Stator Flux in (a) Conventional Sector (b) Proposed Sector	94
3.5	Graph of Speed Against Shifted Angle at Torque of 1 Nm	95
3.6	Graph of Torque Against Shifted Angle at Speed of 100 rpm	97
3.7	The Graph of Speed Against Shifted Angle at Three Different Reference Torque	99
3.8	Graph of Speed Interceptions Against Torque	102

3.9	The Complete Control and Power Structure	104
3.10	The PI Speed Control Structure	104
3.11	The Complete Structure of Proposed DTC	105
3.12	Full Proposed Simulation Model	109
3.13	Block Diagram of Sector Rotation Startegy Obtaining New Flux Sector Definition	110
3.14	How the Sector Rotation Strategy Change the Flux Sector	111
3.15	Flowchart Of Modified Sector Detector Coding	112
3.16	PI Speed Controller	117
3.17	Speed Setup at Low Speed	117
3.18	Structure of Implementation Current Calculator	123
3.19	Structure of Implementation Voltage Calculator	124
3.20	Structure of Implementation Flux and Torque Calculator	126
3.21	Structure of Implementation Voltage Source Inverter	127
3.22	Physical Setup for Experimental Testing	129
3.23	Experiment Hardware Build-Up Flow Process	129
3.24	DS1104 R&D Controller Board	131
3.25	Experimental in MATLAB/Simulink Setup	133
3.26	Sector Controller Block Setup in Experimental Testing	134
3.27	Speed Error Input Block Setup	136
3.28	ON/OFF Switch Logic Block Setup	137
3.29	Current Estimation Block Setup	138
3.30	Input/Output Interface Block Setup of (a) MASTER BIT OUT, (b) DAC and (c) MUX ADC	139
3.31	dSPACE ControlDesk Block Setup	141
3.32	Induction Motor Experimental Testing Setup	142
4.1	Experimental and Simulation Results at Motor Speed of 500 rpm, showing Waveforms of (i) Sector Transition, (ii) Stator Flux, and (iii) Phase Current, Comparing the Conventional Method with the Proposed Method	147
4.2	Experimental and Simulation Results at Motor Speed of 400 rpm, showing Waveforms of (i) Sector Transition, (ii) Stator	148

	Flux, and (iii) Phase Current, comparing the Conventional Method with the Proposed Method	
4.3	(a) Simulation and (b) Experiment Results of Stator Flux Locus at 500 rpm and 400 rpm, comparing the Conventional DTC and the Proposed Sector Rotation Method	149
4.4	Experimental and Simulation Results at Motor Speed of 300 rpm, showing Waveforms of (i) Sector Transition, (ii) Stator Flux, and (iii) Phase Current, comparing the Conventional Method with the Proposed Method	151
4.5	Experimental and Simulation Results at Motor Speed of 200 rpm, showing Waveforms of (i) Sector Transition, (ii) Stator Flux, and (iii) Phase Current, comparing the Conventional Method with the Proposed Method	152
4.6	Experimental and Simulation Results at Motor Speed of 100 rpm, showing Waveforms of (i) Sector Transition, (ii) Stator Flux, and (iii) Phase Current, Comparing the Conventional Method with the Proposed Method	153
4.7	(a) Simulation and (b) Experiment Results of Stator Flux Locus at 300 rpm, 200 rpm and 100 rpm, comparing the Conventional DTC and the Proposed Sector Rotation Method	154
4.8	Experimental and Simulation Results at Motor Speed of 500 rpm at (a) Torque 2 Nm and (b) Torque 3 Nm, showing Waveforms of (i) Sector Transition, (ii) Stator Flux, and (iii) Phase Current, Comparing the Conventional Method with the Proposed Method	158
4.9	Experimental and Simulation Results at Motor Speed of 300 rpm at (a) Torque 2 Nm and (b) Torque 3 Nm, showing Waveforms of (i) Sector Transition, (ii) Stator Flux, and (iii) Phase Current, Comparing the Conventional Method with the Proposed Method	160
4.10	Experimental and Simulation Results at Motor Speed of 100 rpm at (a) Torque 2 Nm and (b) Torque 3 Nm, showing	162

	Waveforms of (i) Sector Transition, (ii) Stator Flux, and (iii) Phase Current	
4.11	Waveforms of (i) Stator Flux (φ_s) and (ii) Sector Angle (θ) for Both the Conventional and Proposed Methods at Three Different Speeds, shown in (a) Simulation and (b) Experimental Results	166
4.12	Waveform of (i) Speed ω_m , and (ii) Phase Voltage, V (iii) Torque, T_e in Conventional and Proposed Method at Three Different Speeds in (a) Simulation and (b) Experiment	169
4.13	Waveform of (i) Stator Flux, φ_s and (ii) Current, I (iii) Flux Error Status, e_φ in Conventional and Proposed Method in Three Different Speeds in (a) Simulation and (b) Experiment	171
4.14	Waveforms of (i) Speed, ω_m , (ii) Torque, T_e , and (iii) Phase Voltage, V during Speed Increase and Decrease Conditions for Both the Conventional and Proposed Methods in (a) Simulation and (b) Experiment	174
4.15	Waveforms of (i) Stator Flux, φ_s (Wb), (ii) Flux Error Status, e_φ , and (iii) Phase Voltage, V (V) during Speed Increase and Decrease Conditions for Both the Conventional and Proposed Methods in (a) Simulation and (b) Experiment	175

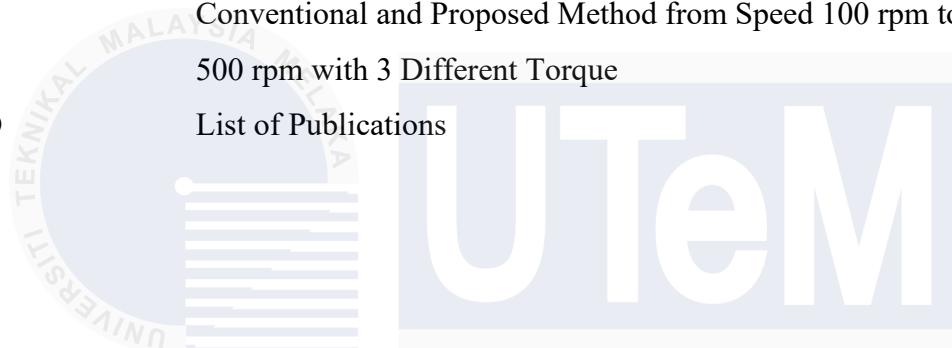
LIST OF ABBREVIATIONS

AC	- Alternating Current
ADC	- Analog-to-Digital Conversion
AI	- Artificial Intelligent
DAC	- Digital-to-Analog Conversion
DC	- Direct Current
DSC	- Direct Self-Control
DSP	- Digital Signal Processing
DTC	- Direct Torque Control
DFOC	- Direct Field-Oriented Control
EMF	- Electromotive Force
ENC	- Encoder
EV	- Electric Vehicle
EKF	- Extended Kalman Filter
FOC	- Field-Oriented Control
IFOC	- Indirect Field-Oriented Control
GUI	- Graphical User Interface
HIL	- Hardware-in-the-loop
HMI	- Human-Machine Interface
I	- Current
IGBTs	- Insulated Gate Bipolar Transistors
I/O	- Digital Input/Output
kW	- kilo Watt

LUT	- Look-Up Table
MMF	- Magnetomotive Force
MPC	- Model Predictive Control
MRAS	- Model Reference Adaptive System
PWM	- Pulse-Width Modulation
PI	- Proportional Integrator
rpm	- Revolution Per Minute
SVM	- Space Vector Modulation
V	- Voltage
V/f	- Voltage-to-Frequency
VSI	- Voltage Source Inverter
Wb	- Weber (unit of magnetic flux)
IGBTs	- Insulated Gate Bipolar Transistors

LIST OF SYMBOLS

\bar{v}_s	-	Stator voltage
R_s	-	Stator resistance
\bar{i}_s	-	Stator current
$\bar{\varphi}_s$	-	Stator flux
v_x	-	Voltage vector
V_{dc}	-	DC voltage
S_x^+	-	Switching state
$\Delta\varphi_s$	-	Stator flux angular velocity
δ_{sr}	-	Load angle
T_e	-	Torque
P	-	Pole


L_m	-	Motor inductance
L_s	-	Stator inductance
L_r	-	Rotor inductance
σ	-	Status
φ_r	-	Rotot flux
$\Delta\theta_{sh}$	-	Fixed angular shift
f_s	-	Switching frequency
ρ_s	-	Stator flux angle
ρ'_s	-	Flux sector
φ_d	-	Flux linkages
$\Delta\theta$	-	Shifted angle

ω_m - Motor speed
 ΔT - Sampling time

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	The MATLAB Code Program of the Modified Sector Detector	188
B	The MATLAB Code Program of the Look Up Table Waveform of Fixed Rotation Strategy Compare Between	189
C	Conventional and Proposed Method from Speed 100 rpm to 500 rpm with 3 Different Torque	192
D	List of Publications	236

جامعة تكنولوجيا ملاكا

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF PUBLICATIONS

Journal Articles

Sabri, N.S.M., Tarusan, S.A.A., Zawawi, S.A.S.A., Jidin, A., Sutikno, T., 2025. Optimizing low-speed DTC performance for three-phase induction motors with sector rotation strategy. *International Journal of Power Electronics and Drive Systems*, 16(1), pp. 464–471. (Scopus)

Sabri, N.S.M., Tarusan, S.A.A., Zawawi, S.A.S.A., Jidin, A., Aihsan, M.Z., 2025. Mitigating Flux Droop in Low-Speed Steady-State DTC for Three-Phase Induction Motors. *IEEE 8TH International Conference on Electrical, Control and Computer Engineering, ECCE 2025*. (Scopus)

Zawawi, S.A.S.A., Jidin, A., Sabri, N.S.M., Tarusan, S.A.A., 2025. Enhanced torque control in high-speed DTC using modified stator flux locus. *International Journal of Power Electronics and Drive Systems*, 16(1), pp. 457–463. (Scopus)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1

INTRODUCTION

This chapter presents an overview of the research, starting with the background that emphasizes the importance of induction motors across various applications and outlines key motor control techniques, including scalar and vector control. This research specifically focus on Direct Torque Control (DTC), highlighting its advantages and its limitations, as well as modern topologies developed to enhance its performance. The problem statement outlines critical challenges faced by conventional DTC especially at low speeds, which lead to the formulation of the research questions. In response, the research objectives define the specific goals of this study. The scope establishes the boundaries of the work, covering aspects such as modelling, simulation, and experimental validation. Finally, the thesis outline describes the structure of the thesis and detailing the content of each chapter.

1.1 Background

Induction motors are popular because of their durability, low cost, and low maintenance requirements (Zhang *et al.*, 2021; Sahoo *et al.*, 2022; KRIM and MIMOUNI, 2024). However, their performance is highly dependent on the employed control strategy. AC drive control is generally categorized into scalar control and vector control (Raja and Roy, 2024). Scalar control, presented by Bose in 1984, was one of the earliest methods. It used voltage-controlled Pulse-Width Modulation (PWM) to control induction motor (Bose, 1984). This approach performed well in steady-state circumstances but lacked dynamic