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ABSTRACT 

 

 

Direct Torque Control (DTC) is a well-established control technique for three-phase 

induction motors due to its simple structure, fast torque response, and independence from 

coordinate transformation. However, DTC faces notable performance degradation at low 

speeds, primarily caused by the influence of stator resistance. At low speed, the reduced 

back-electromotive force (back-EMF) makes it difficult to sustain the desired flux level, and 

the voltage drop across the stator resistance significantly impacts flux estimation. This 

condition results in flux droop, particularly evident during the application of zero-voltage 

vectors and across the boundaries of conventional fixed sectors. The conventional DTC’s 

sector-based switching strategy becomes less effective as the contribution of active voltage 

vectors becomes uneven due to stator resistance, which disrupts flux symmetry and reduces 

the control accuracy of flux under dynamic and low-speed operations. To address these 

limitations, this thesis introduces a new approach of sector rotation strategy that dynamically 

adjusts the voltage vector selection based on real-time torque and speed variations. This is 

achieved through the development of an analytical model that calculates the appropriate 

shifted angle to rotate the sector position. By adjusting the sector boundaries, the proposed 

strategy enables the optimal alignment of voltage vectors with the stator flux trajectory, 

effectively minimizing the adverse effects of stator resistance and improving flux magnitude 

consistency during transitions. This adaptive approach retains the inherent simplicity of DTC 

while significantly enhancing its performance under low-speed and dynamic conditions. The 

effectiveness of the proposed method was validated through extensive simulations using 

MATLAB/Simulink and real-time experimental verification using a DS1104 dSPACE 

digital signal processor. The experimental testbed includes a 1.1 kW three-phase induction 

motor coupled with a 2 kW DC generator load and a two-level inverter for control 

implementation. Comparative studies were performed against the conventional DTC method 

under identical conditions. The results show that the proposed strategy achieves a significant 

improvement, including: 1) a reduction in stator flux droop up to 65.4%, 2) stabilizes flux 

error status, and 3) smoother current waveforms with reduced distortion, approaching a 

sinusoidal form. Overall, the proposed sector rotation strategy demonstrates a practical and 

effective enhancement to the conventional DTC method, providing improved control 

precision, smoother motor operation, and robustness in low-speed regions while maintaining 

the low computational burden and simplicity that make DTC attractive for industrial 

applications. This advancement holds relevance for applications requiring precise control in 

dynamic or low-speed environments, such as electric vehicles and robotics. 

  



 

ii 

PENDEKATAN BARU SECTOR PUTARAN STRATEGI UNTUK MENINGKATKAN 

DINAMIK DAN KEUPAYAAN MOTOR ARUHAN 

 

ABSTRAK 

 

Kawalan Tork Terus (Direct Torque Control, DTC) merupakan satu teknik kawalan yang 

dikenali untuk motor aruhan tiga fasa disebabkan oleh struktur kawalannya yang ringkas, 

tindak balas tork yang pantas, dan tidak bergantung kepada transformasi koordinat. Walau 

bagaimanapun, prestasi DTC merosot pada kelajuan rendah, terutamanya disebabkan oleh 

pengaruh rintangan stator. Pada kelajuan rendah, daya gerak balas (back-EMF) yang 

berkurang menyukarkan pengekalan aras fluks yang dikehendaki, dan kejatuhan voltan 

merentasi rintangan stator memberi kesan besar kepada anggaran fluks. Keadaan ini 

menyebabkan fenomena kejatuhan fluks, yang jelas kelihatan ketika penggunaan vektor 

voltan sifar dan di sempadan sektor tetap konvensional. Strategi pensuisan berasaskan 

sektor dalam DTC konvensional menjadi kurang berkesan kerana sumbangan vektor voltan 

aktif yang tidak sekata disebabkan oleh rintangan stator, yang mengganggu simetri fluks 

dan mengurangkan ketepatan kawalan fluks semasa operasi dinamik dan berkelajuan 

rendah. Bagi mengatasi kekangan ini, tesis ini memperkenalkan satu pendekatan baharu 

iaitu strategi putaran sektor yang melaraskan pemilihan vektor voltan secara dinamik dalam 

jejari fluks bulat berdasarkan perubahan tork dan kelajuan masa nyata. Pendekatan ini 

dibangunkan melalui satu model analitik yang mengira sudut anjakan yang sesuai untuk 

memutarkan kedudukan sektor. Dengan melaraskan sempadan sektor, strategi yang 

dicadangkan ini membolehkan penyelarasan yang optimum antara vektor voltan dan 

trajektori fluks stator, sekaligus meminimumkan kesan negatif rintangan stator dan 

meningkatkan kestabilan magnitud fluks semasa peralihan. Pendekatan adaptif ini 

mengekalkan kesederhanaan asas DTC sambil meningkatkan prestasi kawalan dalam 

keadaan kelajuan rendah dan dinamik. Keberkesanan kaedah yang dicadangkan telah 

disahkan melalui simulasi menyeluruh menggunakan MATLAB/Simulink dan juga ujian 

eksperimen masa nyata menggunakan pemproses isyarat digital (DSP) dSPACE DS1104. 

Sistem ujian eksperimen terdiri daripada motor aruhan tiga fasa berkuasa 1.1 kW yang 

digandingkan dengan beban penjana DC 2 kW serta inverter dua peringkat untuk 

pelaksanaan kawalan. Kajian perbandingan telah dijalankan antara kaedah DTC 

konvensional dan strategi yang dicadangkan di bawah keadaan operasi yang sama. 

Keputusan menunjukkan bahawa strategi yang dicadangkan mencapai peningkatan yang 

ketara, termasuk: 1) mengurangkan kejatuhan fluks stator sehingga 65.4%, 2) menstabilkan 

status ralat fluks, dan 3) gelombang arus yang lebih lancar dengan herotan yang 

berkurangan, menghampiri bentuk sinusoidal. Secara keseluruhannya, strategi putaran 

sektor yang dicadangkan membuktikan sebagai satu penambahbaikan praktikal dan 

berkesan kepada kaedah DTC konvensional, memberikan ketepatan kawalan yang lebih 

tinggi, operasi motor yang lebih lancar, serta ketahanan yang lebih baik pada kelajuan 

rendah, sambil mengekalkan beban pengiraan yang rendah dan struktur kawalan yang 

ringkas. Kemajuan ini amat relevan untuk aplikasi yang memerlukan kawalan tepat dalam 

keadaan dinamik atau kelajuan rendah seperti kenderaan elektrik dan sistem robotik. 
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter presents an overview of the research, starting with the background that 

emphasizes the importance of induction motors across various applications and outlines key 

motor control techniques, including scalar and vector control. This research specifically 

focus on Direct Torque Control (DTC), highlighting its advantages and its limitations, as 

well as modern topologies developed to enhance its performance. The problem statement 

outlines critical challenges faced by conventional DTC especially at low speeds, which lead 

to the formulation of the research questions. In response, the research objectives define the 

specific goals of this study. The scope establishes the boundaries of the work, covering 

aspects such as modelling, simulation, and experimental validation. Finally, the thesis 

outline describes the structure of the thesis and detailing the content of each chapter. 

 

1.1 Background 

Induction motors are popular because of their durability, low cost, and low 

maintenance requirements (Zhang et al., 2021; Sahoo et al., 2022; KRIM and MIMOUNI, 

2024). However, their performance is highly dependent on the employed control strategy. 

AC drive control is generally categorized into scalar control and vector control (Raja and 

Roy, 2024). Scalar control, presented by Bose in 1984, was one of the earliest methods. It 

used voltage-controlled Pulse-Width Modulation (PWM) to control induction motor (Bose, 

1984). This approach performed well in steady-state circumstances but lacked dynamic 




