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ABSTRACT

Direct Torque Control (DTC) is a well-established control technique for three-phase
induction motors due to its simple structure, fast torque response, and independence from
coordinate transformation. However, DTC faces notable performance degradation at low
speeds, primarily caused by the influence of stator resistance. At low speed, the reduced
back-electromotive force (back-EMF) makes it difficult to sustain the desired flux level, and
the voltage drop across the stator resistance significantly impacts flux estimation. This
condition results in flux droop, particularly evident during the application of zero-voltage
vectors and across the boundaries of conventional fixed sectors. The conventional DTC’s
sector-based switching strategy becomes less effective as the contribution of active voltage
vectors becomes uneven due to stator resistance, which disrupts flux symmetry and reduces
the control accuracy of flux under dynamic and low-speed operations. To address these
limitations, this thesis introduces a new approach of sector rotation strategy that dynamically
adjusts the voltage vector selection based on real-time torque and speed variations. This is
achieved through the development of an analytical model that calculates the appropriate
shifted angle to rotate the sector position. By adjusting the sector boundaries, the proposed
strategy enables the optimal alignment of voltage vectors with the stator flux trajectory,
effectively minimizing the adverse effects of stator resistance and improving flux magnitude
consistency during transitions. This adaptive approach retains the inherent simplicity of DTC
while significantly enhancing its performance under low-speed and dynamic conditions. The
effectiveness of the proposed method was validated through extensive simulations using
MATLAB/Simulink and real-time experimental verification using a DS1104 dSPACE
digital signal processor. The experimental testbed includes a 1.1 kW three-phase induction
motor coupled with a 2 kW DC generator load and a two-level inverter for control
implementation. Comparative studies were performed against the conventional DTC method
under identical conditions. The results show that the proposed strategy achieves a significant
improvement, including: 1) a reduction in stator flux droop up to 65.4%, 2) stabilizes flux
error status, and 3) smoother current waveforms with reduced distortion, approaching a
sinusoidal form. Overall, the proposed sector rotation strategy demonstrates a practical and
effective enhancement to the conventional DTC method, providing improved control
precision, smoother motor operation, and robustness in low-speed regions while maintaining
the low computational burden and simplicity that make DTC attractive for industrial
applications. This advancement holds relevance for applications requiring precise control in
dynamic or low-speed environments, such as electric vehicles and robotics.



PENDEKATAN BARU SECTOR PUTARAN STRATEGI UNTUK MENINGKATKAN
DINAMIK DAN KEUPAYAAN MOTOR ARUHAN

ABSTRAK

Kawalan Tork Terus (Direct Torque Control, DTC) merupakan satu teknik kawalan yang
dikenali untuk motor aruhan tiga fasa disebabkan oleh struktur kawalannya yang ringkas,
tindak balas tork yang pantas, dan tidak bergantung kepada transformasi koordinat. Walau
bagaimanapun, prestasi DTC merosot pada kelajuan rendah, terutamanya disebabkan oleh
pengaruh rintangan stator. Pada kelajuan rendah, daya gerak balas (back-EMF) yang
berkurang menyukarkan pengekalan aras fluks yang dikehendaki, dan kejatuhan voltan
merentasi rintangan stator memberi kesan besar kepada anggaran fluks. Keadaan ini
menyebabkan fenomena kejatuhan fluks, yang jelas kelihatan ketika penggunaan vektor
voltan sifar dan di sempadan sektor tetap konvensional. Strategi pensuisan berasaskan
sektor dalam DTC konvensional menjadi kurang berkesan kerana sumbangan vektor voltan
aktif yang tidak sekata disebabkan oleh rintangan stator, yang mengganggu simetri fluks
dan mengurangkan ketepatan kawalan fluks semasa operasi dinamik dan berkelajuan
rendah. Bagi mengatasi kekangan ini, tesis ini memperkenalkan satu pendekatan baharu
iaitu strategi putaran sektor yang melaraskan pemilihan vektor voltan secara dinamik dalam
Jjejari fluks bulat berdasarkan perubahan tork dan kelajuan masa nyata. Pendekatan ini
dibangunkan melalui satu model analitik yang mengira sudut anjakan yang sesuai untuk
memutarkan kedudukan sektor. Dengan melaraskan sempadan sektor, strategi yang
dicadangkan ini membolehkan penyelarasan yang optimum antara vektor voltan dan
trajektori fluks stator, sekaligus meminimumkan kesan negatif rintangan stator dan
meningkatkan kestabilan magnitud fluks semasa peralihan. Pendekatan adaptif ini
mengekalkan kesederhanaan asas DTC sambil meningkatkan prestasi kawalan dalam
keadaan kelajuan rendah dan dinamik. Keberkesanan kaedah yang dicadangkan telah
disahkan melalui simulasi menyeluruh menggunakan MATLAB/Simulink dan juga ujian
eksperimen masa nyata menggunakan pemproses isyarat digital (DSP) dSPACE DS1104.
Sistem ujian eksperimen terdiri daripada motor aruhan tiga fasa berkuasa 1.1 kW yang
digandingkan dengan beban penjana DC 2 kW serta inverter dua peringkat untuk
pelaksanaan kawalan. Kajian perbandingan telah dijalankan antara kaedah DTC
konvensional dan strategi yang dicadangkan di bawah keadaan operasi yang sama.
Keputusan menunjukkan bahawa strategi yang dicadangkan mencapai peningkatan yang
ketara, termasuk: 1) mengurangkan kejatuhan fluks stator sehingga 65.4%, 2) menstabilkan
status ralat fluks, dan 3) gelombang arus yang lebih lancar dengan herotan yang
berkurangan, menghampiri bentuk sinusoidal. Secara keseluruhannya, strategi putaran
sektor yang dicadangkan membuktikan sebagai satu penambahbaikan praktikal dan
berkesan kepada kaedah DTC konvensional, memberikan ketepatan kawalan yang lebih
tinggi, operasi motor yang lebih lancar, serta ketahanan yang lebih baik pada kelajuan
rendah, sambil mengekalkan beban pengiraan yang rendah dan struktur kawalan yang
ringkas. Kemajuan ini amat relevan untuk aplikasi yang memerlukan kawalan tepat dalam
keadaan dinamik atau kelajuan rendah seperti kenderaan elektrik dan sistem robotik.
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CHAPTER 1

INTRODUCTION

This chapter presents an overview of the research, starting with the background that
emphasizes the importance of induction motors across various applications and outlines key
motor control techniques, including scalar and vector control. This research specifically
focus on Direct Torque Control (DTC), highlighting its advantages and its limitations, as
well as modern topologies developed to enhance its performance. The problem statement
outlines critical challenges faced by conventional DTC especially at low speeds, which lead
to the formulation of the research questions. In response, the research objectives define the
specific goals of this study. The scope establishes the boundaries of the work, covering
aspects such as modelling, simulation, and experimental validation. Finally, the thesis

outline describes the structure of the thesis and detailing the content of each chapter.

1.1 Background

Induction motors are popular because of their durability, low cost, and low
maintenance requirements (Zhang et al., 2021; Sahoo et al., 2022; KRIM and MIMOUNI,
2024). However, their performance is highly dependent on the employed control strategy.
AC drive control is generally categorized into scalar control and vector control (Raja and
Roy, 2024). Scalar control, presented by Bose in 1984, was one of the earliest methods. It
used voltage-controlled Pulse-Width Modulation (PWM) to control induction motor (Bose,

1984). This approach performed well in steady-state circumstances but lacked dynamic
19





