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ABSTRACT

Global decarbonisation efforts have intensified the demand for credible verification of
energy performance in industrial facilities. Yet, conventional regression-based and other
existing Measurement and Verification (M&V) methods under the International
Performance Measurement and Verification Protocol (IPMVP) struggle to address baseline
uncertainty, residual fluctuations, and non-routine events (NREs) in dynamic industrial
systems. This study proposes an optimised IPMVP-compliant framework that integrates
energy baseline prediction, anomaly detection, and energy savings verification. Baseline
modelling was developed using deterministic deep learning models, namely deep neural
networks (DNN), convolutional neural networks (CNN), and recurrent neural networks
(RNN), with the DNN showing the most reliable performance. For anomaly detection,
hybrid deep learning models combining DNN with stochastic architectures, specifically the
Factorised Conditional Restricted Boltzmann Machine (FCRBM) and the Generative
Adversarial Network (GAN), were introduced to detect NREs and support adjusted baseline
calculations. The hybrid DNN-FCRBM model achieved the best balance between accuracy
and reliability, consistently identifying downtime-related anomalies and producing realistic
savings estimates of about 10%. Bayesian optimisation was further applied to refine
detection thresholds and improve robustness. Overall, the framework enhances the
transparency and scalability of industrial M&V, providing a practical solution for post-
retrofit performance verification and supporting future adaptive energy analytics.



MODEL PEMBELAJARAN MENDALAM HIBRID DIOPTIMUMKAN UNTUK
PEMODELAN TENAGA BERSEPADU DAN PENGESANAN ANOMALI DI BAWAH
PEMATUHAN IPMVP

ABSTRAK

Usaha dekarbonisasi global telah meningkatkan keperluan terhadap pengesahan yang
boleh dipercayai bagi prestasi tenaga di fasiliti industri. Walau bagaimanapun, kaedah
Pengukuran dan Pengesahan (M&V) regresi konvensional serta kaedah lain di bawah
International Performance Measurement and Verification Protocol (IPMVP) masih bergelut
untuk menangani ketidakpastian garis dasar, turun naik baki, dan kejadian bukan rutin
(NRE) dalam sistem tenaga industri yang dinamik. Kajian ini mencadangkan satu kerangka
IPMVP yang dioptimumkan dan berasaskan data, yang menggabungkan ramalan garis
dasar tenaga, pengesanan anomali, serta pengesahan penjimatan tenaga. Pemodelan garis
dasar dibangunkan menggunakan model pembelajaran mendalam deterministik iaitu deep
neural network (DNN), convolutional neural network (CNN), dan recurrent neural network
(RNN), dengan DNN menunjukkan prestasi yang paling boleh dipercayai. Bagi pengesanan
anomali, model pembelajaran mendalam hibrid yang menggabungkan DNN dengan seni
bina stokastik, khususnya Factorised Conditional Restricted Boltzmann Machine (FCRBM)
dan Generative Adversarial Network (GAN), digunakan untuk mengesan NRE dan
menyokong pelarasan garis dasar. Model hibrid DNN-FCRBM mencapai keseimbangan
terbaik antara ketepatan dan kebolehpercayaan, dengan konsisten mengenal pasti anomali
berkaitan henti operasi serta menghasilkan anggaran penjimatan tenaga sekitar 10%.
Pengoptimuman Bayesian turut diaplikasikan untuk menambah baik nilai ambang
pengesanan dan meningkatkan kekukuhan. Secara keseluruhannya, kerangka ini
meningkatkan ketelusan dan kebolehskalaan M&V industri, menyediakan penyelesaian
praktikal untuk pengesahan prestasi selepas pelaksanaan EEM serta menyokong analitik
tenaga adaptif pada masa hadapan.
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