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ABSTRACT 

 

Global decarbonisation efforts have intensified the demand for credible verification of 

energy performance in industrial facilities. Yet, conventional regression-based and other 

existing Measurement and Verification (M&V) methods under the International 

Performance Measurement and Verification Protocol (IPMVP) struggle to address baseline 

uncertainty, residual fluctuations, and non-routine events (NREs) in dynamic industrial 

systems. This study proposes an optimised IPMVP-compliant framework that integrates 

energy baseline prediction, anomaly detection, and energy savings verification. Baseline 

modelling was developed using deterministic deep learning models, namely deep neural 

networks (DNN), convolutional neural networks (CNN), and recurrent neural networks 

(RNN), with the DNN showing the most reliable performance. For anomaly detection, 

hybrid deep learning models combining DNN with stochastic architectures, specifically the 

Factorised Conditional Restricted Boltzmann Machine (FCRBM) and the Generative 

Adversarial Network (GAN), were introduced to detect NREs and support adjusted baseline 

calculations. The hybrid DNN-FCRBM model achieved the best balance between accuracy 

and reliability, consistently identifying downtime-related anomalies and producing realistic 

savings estimates of about 10%. Bayesian optimisation was further applied to refine 

detection thresholds and improve robustness. Overall, the framework enhances the 

transparency and scalability of industrial M&V, providing a practical solution for post-

retrofit performance verification and supporting future adaptive energy analytics.  



 

ii 

MODEL PEMBELAJARAN MENDALAM HIBRID DIOPTIMUMKAN UNTUK 

PEMODELAN TENAGA BERSEPADU DAN PENGESANAN ANOMALI DI BAWAH 

PEMATUHAN IPMVP 

 

ABSTRAK 

 

Usaha dekarbonisasi global telah meningkatkan keperluan terhadap pengesahan yang 

boleh dipercayai bagi prestasi tenaga di fasiliti industri. Walau bagaimanapun, kaedah 

Pengukuran dan Pengesahan (M&V) regresi konvensional serta kaedah lain di bawah 

International Performance Measurement and Verification Protocol (IPMVP) masih bergelut 

untuk menangani ketidakpastian garis dasar, turun naik baki, dan kejadian bukan rutin 

(NRE) dalam sistem tenaga industri yang dinamik. Kajian ini mencadangkan satu kerangka 

IPMVP yang dioptimumkan dan berasaskan data, yang menggabungkan ramalan garis 

dasar tenaga, pengesanan anomali, serta pengesahan penjimatan tenaga. Pemodelan garis 

dasar dibangunkan menggunakan model pembelajaran mendalam deterministik iaitu deep 

neural network (DNN), convolutional neural network (CNN), dan recurrent neural network 

(RNN), dengan DNN menunjukkan prestasi yang paling boleh dipercayai. Bagi pengesanan 

anomali, model pembelajaran mendalam hibrid yang menggabungkan DNN dengan seni 

bina stokastik, khususnya Factorised Conditional Restricted Boltzmann Machine (FCRBM) 

dan Generative Adversarial Network (GAN), digunakan untuk mengesan NRE dan 

menyokong pelarasan garis dasar. Model hibrid DNN-FCRBM mencapai keseimbangan 

terbaik antara ketepatan dan kebolehpercayaan, dengan konsisten mengenal pasti anomali 

berkaitan henti operasi serta menghasilkan anggaran penjimatan tenaga sekitar 10%. 

Pengoptimuman Bayesian turut diaplikasikan untuk menambah baik nilai ambang 

pengesanan dan meningkatkan kekukuhan. Secara keseluruhannya, kerangka ini 

meningkatkan ketelusan dan kebolehskalaan M&V industri, menyediakan penyelesaian 

praktikal untuk pengesahan prestasi selepas pelaksanaan EEM serta menyokong analitik 

tenaga adaptif pada masa hadapan. 
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