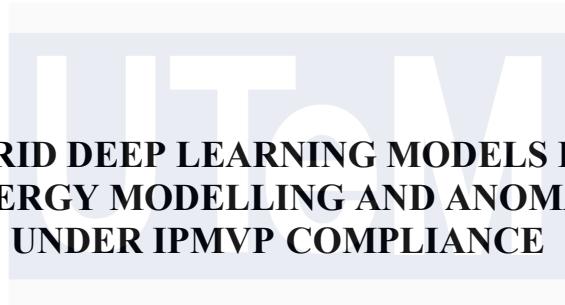
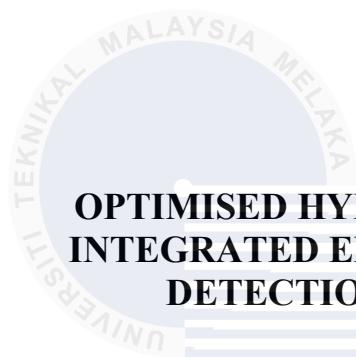


**OPTIMISED HYBRID DEEP LEARNING MODELS FOR
INTEGRATED ENERGY MODELLING AND ANOMALY
DETECTION UNDER IPMVP COMPLIANCE**

اویونسیتی تیکنیکال ملیسیا ملاک
SUZIEE BINTI SUKARTI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DOCTOR OF PHILOSOPHY



2025

اونیورسیتی تکنیکل ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Electrical Technology and Engineering

**OPTIMISED HYBRID DEEP LEARNING MODELS FOR
INTEGRATED ENERGY MODELLING AND ANOMALY
DETECTION UNDER IPMVP COMPLIANCE**

اونیورسیتی تکنیکل ملیسیا ملاک

Suziee Binti Sukarti

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Doctor of Philosophy

2025

**OPTIMISED HYBRID DEEP LEARNING MODELS FOR INTEGRATED
ENERGY MODELLING AND ANOMALY DETECTION UNDER IPMVP
COMPLIANCE**

SUZIEE BINTI SUKARTI

A thesis submitted
in fulfillment of the requirements for the degree of Doctor of Philosophy
in Electrical Engineering

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Electrical Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2025

DECLARATION

I declare that this thesis entitled “Optimised Hybrid Deep Learning Models for Integrated Energy Modelling and Anomaly Detection under IPMVP Compliance “ is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : Suziee Binti Sukarti

Date : 03 / 9 / 2025

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy

Signature :
Supervisor Name : Assoc. Prof. Ts. Dr. Mohamad Fani Bin Sulaiman
Date : 05 / 9 / 2025

جامعة ملaka التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved parents, Siti Masrah Binti Yusoff and Sukarti bin Sukimi, whose endless sacrifices, unwavering prayers, and unconditional love have carried me through every challenge. Your strength and resilience have been the foundation of my journey, and I am forever grateful for everything you have endured for my sake.

This achievement is a reflection of your love, patience, and belief in me. With all my heart, I dedicate this work to you

جامعة ملaka التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Global decarbonisation efforts have intensified the demand for credible verification of energy performance in industrial facilities. Yet, conventional regression-based and other existing Measurement and Verification (M&V) methods under the International Performance Measurement and Verification Protocol (IPMVP) struggle to address baseline uncertainty, residual fluctuations, and non-routine events (NREs) in dynamic industrial systems. This study proposes an optimised IPMVP-compliant framework that integrates energy baseline prediction, anomaly detection, and energy savings verification. Baseline modelling was developed using deterministic deep learning models, namely deep neural networks (DNN), convolutional neural networks (CNN), and recurrent neural networks (RNN), with the DNN showing the most reliable performance. For anomaly detection, hybrid deep learning models combining DNN with stochastic architectures, specifically the Factorised Conditional Restricted Boltzmann Machine (FCRBM) and the Generative Adversarial Network (GAN), were introduced to detect NREs and support adjusted baseline calculations. The hybrid DNN-FCRBM model achieved the best balance between accuracy and reliability, consistently identifying downtime-related anomalies and producing realistic savings estimates of about 10%. Bayesian optimisation was further applied to refine detection thresholds and improve robustness. Overall, the framework enhances the transparency and scalability of industrial M&V, providing a practical solution for post-retrofit performance verification and supporting future adaptive energy analytics.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

**MODEL PEMBELAJARAN MENDALAM HIBRID DIOPTIMUMKAN UNTUK
PEMODELAN TENAGA BERSEPADU DAN PENGESANAN ANOMALI DI BAWAH
PEMATUHAN IPMVP**

ABSTRAK

Usaha dekarbonisasi global telah meningkatkan keperluan terhadap pengesahan yang boleh dipercayai bagi prestasi tenaga di fasiliti industri. Walau bagaimanapun, kaedah Pengukuran dan Pengesahan (M&V) regresi konvensional serta kaedah lain di bawah International Performance Measurement and Verification Protocol (IPMVP) masih bergelut untuk menangani ketidakpastian garis dasar, turun naik baki, dan kejadian bukan rutin (NRE) dalam sistem tenaga industri yang dinamik. Kajian ini mencadangkan satu kerangka IPMVP yang dioptimumkan dan berasaskan data, yang menggabungkan ramalan garis dasar tenaga, pengesahan anomali, serta pengesahan penjimatan tenaga. Pemodelan garis dasar dibangunkan menggunakan model pembelajaran mendalam deterministik iaitu deep neural network (DNN), convolutional neural network (CNN), dan recurrent neural network (RNN), dengan DNN menunjukkan prestasi yang paling boleh dipercayai. Bagi pengesahan anomali, model pembelajaran mendalam hibrid yang menggabungkan DNN dengan seni bina stokastik, khususnya Factorised Conditional Restricted Boltzmann Machine (FCRBM) dan Generative Adversarial Network (GAN), digunakan untuk mengesan NRE dan menyokong pelarasaran garis dasar. Model hibrid DNN-FCRBM mencapai keseimbangan terbaik antara ketepatan dan kebolehpercayaan, dengan konsisten mengenal pasti anomali berkaitan henti operasi serta menghasilkan anggaran penjimatan tenaga sekitar 10%. Pengoptimuman Bayesian turut diaplikasikan untuk menambah baik nilai ambang pengesahan dan meningkatkan kekuahan. Secara keseluruhannya, kerangka ini meningkatkan ketelusan dan kebolehskalaan M&V industri, menyediakan penyelesaian praktikal untuk pengesahan prestasi selepas pelaksanaan EEM serta menyokong analitik tenaga adaptif pada masa hadapan.

ACKNOWLEDGEMENT

Alhamdulillah, all praises be to Allah, the Most Gracious and the Most Merciful, for granting me the strength, patience, and perseverance to complete this research journey.

I extend my sincere appreciation to my main supervisor, Ts. Dr. Mohamad Fani Sulaima, for his dedicated supervision, expert guidance, and continuous support throughout this research. I am also grateful to my co-supervisor, Assoc. Prof. Ir. Dr. Aida Fazliana Abdul Kadir, for her valuable advice and encouragement.

My sincere appreciation extends to the team at Top Glove Factory No. F40, whose collaboration, support, and commitment were integral to the success of this research. I am particularly indebted to Ts. Muhamad Hafizul Shamsor, Nurain Masran, Christopher Siaw Wei Yao and Mansor Daud for their exceptional assistance throughout the study. Their willingness to facilitate data access, provide operational insights, and offer practical guidance was invaluable in shaping the quality and comprehensiveness of this work. Their continuous cooperation, responsiveness, and technical support significantly contributed to overcoming challenges and ensuring the smooth progression of this research.

I am profoundly grateful to my beloved parents, Siti Masrah Binti Yusoff and Sukarti Bin Sukimi, for their unconditional love, prayers, and unwavering support. Their belief in me has been a constant source of motivation and strength. I also wish to express my heartfelt appreciation to my siblings, Mohd Hairul, Diana, Jamaliah, Junaidah and Suryani, whose encouragement and steadfast presence have been a continual source of comfort and inspiration.

To my extended family and friends, thank you for your companionship, encouragement, and the moments of respite that have helped me navigate the challenges of this academic journey.

TABLE OF CONTENTS

	PAGES
DECLARATION	i
APPROVAL	ii
DEDICATION	iii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENT	viii
TABLE OF CONTENTS	xi
LIST OF TABLES	xv
LIST OF FIGURES	xxi
LIST OF ABBREVIATIONS	xxii
LIST OF SYMBOLS	
LIST OF APPENDICES	
LIST OF PUBLICATIONS	
 CHAPTER	
1. INTRODUCTION	1
1.1 Background	1
1.1.1 Energy Efficiency as a Strategic Solution	2
1.1.2 Global Momentum and Malaysia's Legislative Evolution	3
1.1.3 The Role of Digitalisation and Evolving Challenges in Industrial M&V	4
1.2 Problem Statement	6
1.3 Research Question	9
1.4 Research Objective	10
1.5 Research Scope	11
1.6 Significance of Study	14
1.7 Thesis Outline	15
2. LITERATURE REVIEW	19
2.1 Introduction	19
2.2 Driving Force to Closing the Energy Efficiency Gap	20
2.3 Measurement and verification (M&V): Principles, Protocols, and Practices	22
2.3.1 M&V Protocol	22
2.3.2 Evolution of M&V Frameworks	24
2.4 Overview of Energy Baseline Modelling Approaches	25
2.4.1 Traditional Modelling Techniques	25
2.4.2 Limitations in Industrial Applications	26
2.4.3 Transition to Data-Driven Models	27
2.4.4 Data-driven Trend in Industry	28
2.4.5 Applications of Data-Driven Methods in Energy Modelling	29
2.5 Deep Learning for Energy Baseline Prediction	32
2.6 Feature Engineering	39
2.6.1 Feature Types	40

2.6.2	Features Processing and Extraction	41
2.6.3	Feature Selection	41
2.7	Data Input	43
2.7.1	Dataset size and Its Influence on Model Performance	43
2.7.2	Data Quantity and Type in Energy Forecasting Research	44
2.8	Anomaly Detection in Industrial Energy Systems	45
2.8.1	Nature and Sources of Anomalies	45
2.8.2	Traditionally Anomaly Detection Methods	46
2.8.3	AI-Based and Hybrid Detection Approaches	47
2.8.4	Stochastic Modelling Approaches for Anomaly Detection	48
2.8.5	Hybrid Deep Learning-Based Anomaly Detection in Energy Consumption	51
2.8.6	Optimisation Strategies	55
2.9	Literature Gaps and Research Positioning	56
2.9.1	Gaps in Existing Research	56
2.9.2	Visual Mapping of Research Focus	58
2.10	Summary of Literature Review and Research Direction	59
3.	METHODOLOGY	60
3.1	Introduction	60
3.2	IPMVP-Compliance Performance Measurement and Evaluation	61
3.3	Performance Evaluation Across All Phases	64
3.4	Phase 1: Feature Selection and Preprocessing	64
3.4.1	Dataset	66
3.4.2	Variables Selection	67
3.4.3	Data Pre-processing	72
3.4.4	Feature selection	75
3.4.5	Data Partitioning	77
3.4.6	Neural Network Formulations	77
3.4.7	Feature-Based Model Development	79
3.5.	Phase 2: Feature-Based Baseline Energy Modelling	83
3.5.1	Dataset size	83
3.5.2	Hidden Layers	83
3.5.3	Modified Model Architecture	84
3.5.4	Model Validation, Full-Baseline Evaluation, and Application	85
3.6	Phase 3: Anomaly Detection Modelling	87
3.6.1	Mathematical Formulation for Anomaly Detection Models	87
3.6.2	Hybrid Threshold (HT) Strategy	98
3.6.3	Design and Workflow of the DNN-FCRBM and DNN-GAN	100
3.7	Phase 4: Sensitivity Analysis and Threshold Optimisation	107
3.7.1	Input data and Preliminary Considerations	108
3.7.2	Sensitivity Index	109
3.7.3	Bayesian Optimisation	111
3.7.4	Final Hybrid Threshold Chosen	112
3.8	Conclusion of Methodology	112

4. RESULTS AND DISCUSSION

4.2	Variables Analysis	114
4.2.1	Pre-processing	114
4.2.2	Overview of Feature Selection Results	118
4.2.3	Evaluation of Feature Selection Impact on Model Performance	120
4.3	Influence of Feature Selection and Dataset Size on DNN and CNN Performance	123
4.3.1	IPMVP Compliance Analysis	123
4.3.2	Influence of Dataset size	129
4.4	Architectural Depth and Performance Evaluation of DNN LAS	132
4.4.1	Key Performance Trends	132
4.4.2	CVRMSE and NMBE Comparison in DNN LAS Architectures	133
4.4.3	Implications of Network Depth on the Performance and Stability of DNN LAS	133
4.5	Comparative Analysis of Baseline Period Energy	133
4.5.1	Comparison of Baseline Period Energy	134
4.5.2	Evaluation of Baseline Model Error and Bias	136
4.6	Data Exploration and Traditional Baseline Analysis	140
4.6.1	Overview of Dataset	140
4.6.2	Pre-processing of Residuals and Downtime Data	143
4.7	Initial Anomaly Detection Using Linear Regression (IPMVP-Based Method)	144
4.8	Evaluation of Adjusted Baseline Accuracy and Model Performance	147
4.8.1	Comparative Analysis of Model Performance, Reconstruction Error, and Anomaly Distribution	148
4.8.2	Anomaly Detection and Impact on Energy Savings	152
4.8.3	Key Insights and Final Consideration	156
4.9	Sensitivity Analysis and Optimisation	157
4.10	Comparative Analysis and Performance Benchmarking	159
4.11	Performance Metrics for DNN-FCRBM and DNN-GAN	161
4.12	Conclusion	163
5.	CONCLUSION AND RECOMMENDATION	165
5.1	Introduction	165
5.2	Summary of Findings and Methodological Contributions	165
5.3	Attainment of Research Objectives	166
5.4	Key Novel Contributions	167
5.5	Future Recommendations	167
REFERENCES		168
APPENDICES		203

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1.1	Research Design Alignment Matrix	11
Table 2.1	IPMVP Option C	23
Table 2.2	Limitations of Traditional Energy Modelling Techniques in Industrial Applications	27
Table 2.3	Cases That Applicable to M&V Analysis Using Data Driven Method	30
Table 2.4	Deep Learning Models for Baseline Prediction	34
Table 2.5	Core Architectural Components and Pros/Cons Across Deep Learning Models under Option C	35
Table 2.6	Hyperparameter Optimisation and Architectural Configuration in Neural Network	36
Table 2.7	Final Input Features and Corresponding Selection Methods	42
Table 2.8	Dataset Proportion and Expected Model Performance (with relevance to IPMVP and ASHRAE thresholds)	43
Table 2.9	Key Components of GAN Architecture	49
Table 2.10	Key Components of FCRBM Architecture	50
Table 2.11	Summary of Hybrid Deep Learning Models for Anomaly Detection in Energy Systems	53
Table 3.1	Key Performance Evaluation Metrics and Methods Recommended by IPMVP (<i>This study uses hourly evaluation</i>)	61
Table 3.2	Description of Variables and Metrics for Model Evaluation	63
Table 3.3	Industry Information	66
Table 3.4	Summarise of Variables Included in the Available Dataset	67
Table 3.5	Types of Downtime Events	70

Table 3.6	List of Feature Selection Methods and Abbreviations	75
Table 3.7	List of Symbols for Neural Network Formulations	78
Table 3.8	Architecture of the DNN, RNN and CNN	79
Table 3.9	Final Features Retained by Each Selector and Data Treatment Summary	82
Table 3.10	Summary of Parameter Adjustments for Phase 2 Model Evaluation	85
Table 3.11	Overview of Model Training, Validation, and Full-Baseline Evaluation	86
Table 3.12	Model Architecture and Hyperparameters	107
Table 4.1	Feature Selection Matrix Across Filter, Wrapper, and Embedded Methods	119
Table 4.2	Recurrent Features Across Selection Methods	120
Table 4.3	Performance Summary of Top Five Models Based on IPMVP Compliance	121
Table 4.4	Average (a) CVRMSE, (b) NMSE, and (c) R^2 Across Feature Selection Methods and Hidden Layer Configurations, Aggregated Over All Dataset Sizes	127
Table 4.5	Average CVRMSE and Ranking by Dataset Size	130
Table 4.6	Average NMSE and Ranking by Dataset Size	131
Table 4.7	Summary of Baseline Model Error and Bias Characteristics	138
Table 4.8	Types of Downtime Events and NRE Classification	141
Table 4.9	Linear Regression Anomaly Detection Summary	145
Table 4.10	Analysis of Energy Anomalies as Non-Routine Events	146
Table 4.11	Confusion Matrix for Linear Regression Anomaly Detection	147
Table 4.12	Performance Analysis	149
Table 4.13	Summary of Mean and Standard Deviation of Reconstruction Errors for Different Models	150
Table 4.14	Anomaly Detection and Savings	153

Table 4.15	Worked Example: Weekly Energy Data with Anomalies and Adjusted Baseline (August 2022)	154
Table 4.16	Sensitivity Analysis Results for DNN-GAN and DNN-FCRBM	157
Table 4.17	Sensitivity Index Analysis for DNN-FCRBM and DNN-GAN	158
Table 4.18	Optimised Values for DNN-GAN and DNN-FCRBM	159
Table 4.19	Performance Analysis of DNN-FCRBM and DNN-GAN Before and After Optimisation	160
Table 4.20	Performance Metric	161
Table 5.1	Attainment of Research Objectives	166

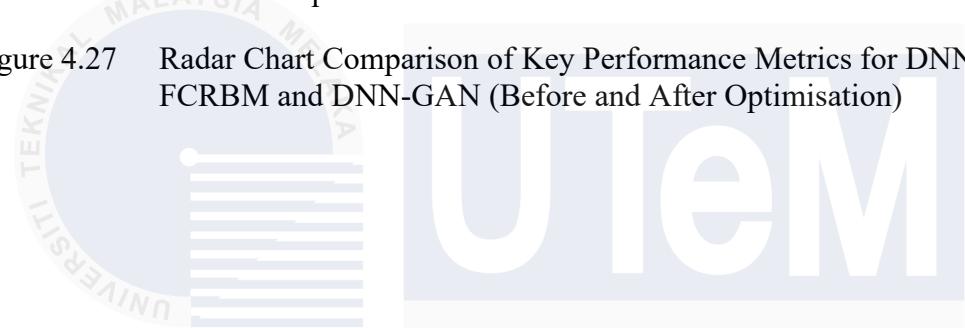

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1	Change in Total Final Consumption of Electricity for Selected Regions, 2012 Until 2024 (Source: International Energy Agency, 2024a. Licensed under CC BY 4.0)	1
Figure 1.2	Identified Core Problem Areas in Current Practices for Industrial M&V Baseline Modelling	6
Figure 1.3	Relationship Between Research Questions, Problem Descriptions, and Study Focus	10
Figure 1.4	Framework of the Research	13
Figure 1.5	Significance of the Research in Advancing Sustainable Development Goals (SDGs)	15
Figure 1.6	Thesis Structure and the Contents of Each Chapter	16
Figure 2.1	Overview of the Literature Review Structure	19
Figure 2.2	Energy Efficiency Gap in Industrial Sector	20
Figure 2.3	Standard IPMVP Framework for Measuring Energy Savings	23
Figure 2.4	Comparison Between Single and Multiple Linear Regression	25
Figure 2.5	Deep Learning Model Architectures (A) DNN With Fully Connected Layers; (B) RNN With Recurrent Connections for Temporal Learning; (C) CNN With Convolution, Pooling, and Fully Connected Layers For Feature Extraction	33
Figure 2.6	Basic Energy Modelling Workflow	39
Figure 2.7	Distribution of References Across Categorical Variables in Review (Literature reviewed from 2015–2023)	40
Figure 2.8	Types of Feature Selection Methods.	42
Figure 2.9	Sources of Anomalies in Industrial Energy Systems	45
Figure 2.10	Common Threshold Method	46
Figure 2.11	Z-Score Thresholding for Anomaly Detection	46

Figure 2.12	Deep Learning Models for Anomaly Detection	48
Figure 2.13	GAN Architecture Diagram (Little et al., 2021)	49
Figure 2.14	FCRBM Architecture Diagram (Uwimana and Zhou, 2024)	50
Figure 2.15	Number of Primary Studies by Neural Network Category (Source: Adapted from Chevtchenko et al., 2023)	51
Figure 2.16	Classification of Anomalies in Energy Consumption Data	52
Figure 2.17	Mapping Key Literature Gaps Across Industrial Relevance, Methodological Robustness, and Regulatory Alignment in M&V	58
Figure 3.1	Overview of Methodological Framework	60
Figure 3.2	5-Fold Cross-Validation Behaviour	63
Figure 3.3	Framework for Feature Selection Methods	65
Figure 3.4	Regression Models with Different Input Variables	81
Figure 3.5	General Step-By-Step Flowchart	81
Figure 3.6	Workflow for Features-Based Baseline Energy Modelling and Evaluation	84
Figure 3.7	Workflow for Anomaly Detection and Energy Savings Estimation Using DNN	89
Figure 3.8	Workflow for Anomaly Detection and Energy Savings Estimation Using FCRBM	92
Figure 3.9	Workflow for Anomaly Detection and Energy Savings Estimation Using GAN	95
Figure 3.10	Workflow Hybrid Treshold for DNN-FCRBM	101
Figure 3.11	Workflow Hybrid Treshold for DNN-GAN	102
Figure 3.12	Framework for Sensitivity Analysis and Threshold Optimisation	107
Figure 3.13	Sensitivity Analysis Workflow	110
Figure 3.14	Bayesian Optimisation Process	111
Figure 4.1	Cubic Spline Interpolation	115

Figure 4.2	Heatmap Before Feature Selection	116
Figure 4.3	Sample of Dataset Showing Original, Standard-Scaled, and Normalised Distributions	118
Figure 4.4	Normalised Error Comparison for MSE, RMSE, and MAE	122
Figure 4.5	CVRMSE Across Training Data Splits	124
Figure 4.6	NMBE Across Training Data Splits	125
Figure 4.7	R^2 Across Training Data Splits	125
Figure 4.8	Excerpt from Appendix K, Showing IPMVP Compliance Status Across Model Configurations	126
Figure 4.9	Average Ranking Values Across Dataset Sizes for Each Feature Selection Method	129
Figure 4.10	Average Ranking Values Across Hidden Layer Configurations for LASSO-Based Models	132
Figure 4.11	Baseline Period Energy Comparison	135
Figure 4.12	Model-to-Model Differences Across the Baseline Period	136
Figure 4.13	Prediction Error Over Time for 3HL, 4HL, and 5HL Models. Values Represent the Deviation Between Predicted and Actual Baseline Energy at Each Time Step	137
Figure 4.14	Cumulative Mean Bias Error Across the Baseline Period. Positive Trends Indicate Persistent Overestimation Relative to Actual Measured Energy	138
Figure 4.15	Key Variables from the Industrial Energy Dataset.	140
Figure 4.16	Predicted Baseline Energy vs Measured Energy During the Reporting Period	142
Figure 4.17	Residuals from Equation (3.37)	143
Figure 4.18	Distribution of Residuals (Deviation from Predicted Baseline Energy)	144
Figure 4.19	Anomalies Detected Using Linear Regression (Traditional Method)	145
Figure 4.20	Probability Density of Reconstruction Errors for Different Models	149

Figure 4.21	Anomalies Detection Pattern	152
Figure 4.22	Adjusted Baselines Generated by Different Models	153
Figure 4.23	DNN-FCRBM Residual-Based Anomaly Detection	155
Figure 4.24	Detailed Comparison of Baseline Energy Consumption, Adjusted Baseline Values, and Measured Energy Usage Over Time	156
Figure 4.25	Sensitivity Indices	158
Figure 4.26	TPR vs. FPR Curve for DNN-FCRBM and DNN-GAN Before and After Optimisation	162
Figure 4.27	Radar Chart Comparison of Key Performance Metrics for DNN-FCRBM and DNN-GAN (Before and After Optimisation)	162

اویونیورسیتی تکنیکال ملیسیا ملاکا
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF ABBREVIATIONS

AM&V	- Advanced Measurement and Verification
AMI	- Automated Metering Infrastructure
ASHRAE	- American Society of Heating, Refrigerating, and Air-Conditioning Engineers
BMS	- Building Management Systems
CNN	- Convolutional Neural Networks
CUSUM	- Cumulative Sum Control Chart
DL	- Deep Learning
DT	- Decision Tree model
DNN	- Deep Neural Network
EDA	- Exploratory Data Analysis
EEM	- Energy Efficiency Measures
EEU	- Energy Use Intensity
ECCA	- Energy Efficiency and Conservation Act
EMEER	- Efficient Management of Electrical Energy Regulation
EPC	- Energy Performance Contracting
EVO	- Efficiency Valuation Organization
FCRBM	- Factored Conditional Restricted Boltzmann Machine
FFNN	- Feed Forward Neural Network
FSU	- Fractional Savings Uncertainty
HVAC	- Heating, Ventilation, and Air Conditioning
GP	- Genetic Programming

GAP	- Generative Adversarial Networks
GDP	- Gross Domestic Product
HL	- Hidden Layer
IEA	- International Energy Agency
IPCC	- Intergovernmental Panel on Climate Change
IMPVP	- International Performance Measurement and Verification Protocol
KNN	- K-Nearest Neighbors
LR	- Linear Regression
LBNL	- Lawrence Berkeley National Laboratory
ML	- Machine Learning
MV	- Measurement and Verification
MLP	- Multi-Layer Perceptron
MLR	- Multiple Linear Regression
MEPS	- Minimum Energy Performance Standards

UNIVERSITY OF TECHNOLOGICAL MALAYSIA MELAKA

NRA	- Non-Routine Adjustment
NRE	- Non-Routine Events
NEEAP	- National Energy Efficiency Action Plan
ReLU	- Rectified Linear Unit
RNN	- Recurrent Neural Networks
SDGs	- Sustainable Development Goals
SeLU	- Scaled Exponential Linear Unit
SLP	- Single Layer Perceptron
SVM	- Support Vector Machines

TMY	- Typical Meteorological Year
UNEP	United Nations Environment Programme
UNFCCC	United Nations Framework Convention on Climate Change

LIST OF SYMBOLS

y	- Actual observed value
\bar{Y}_t	- Mean of observed values
\hat{y}_t	- Predicted output at time step t for RNN
h^l	- Output of layer l in DNN or CNN
h_t	- Hidden state at time step t in RNN
ϵ_{adj}	- Adjusted residual after excluding non-routine events
ϵ_i	- Residual between baseline prediction and measured energy for observation i
$\mu_{RE_{GAN}}$	- Mean of reconstruction errors from GAN model
$\sigma_{RE_{GAN}}$	- Standard deviation of reconstruction errors from GAN model
<i>Adjusted Baseline</i> _{i}	- Adjusted baseline prediction for instance i
<i>Anomaly Flag</i> _{i}	- Binary flag indicating whether instance i is anomalous
<i>Baseline</i> _{i}	- Original baseline prediction for instance i
<i>Breakdown</i> _{i}	- Breakdown data value for instance i
<i>Energy Savings</i> _{i}	- Energy savings for instance i
$HT_{DNN-FCRBM}$	- Hybrid threshold for DNN-FCRBM combination
RE_{DNN}	- Reconstruction error from DNN model
$RE_{DNN-FCRBM}$	- Hybrid reconstruction error from DNN-FCRBM combination
$RE_{DNN-GAN}$	- Hybrid reconstruction error from DNN-GAN combination
RE_{FCRBM}	- Reconstruction error from FCRBM model
RE_{GAN}	- Reconstruction error from GAN model
W_{hh}	- Weight matrix from hidden state to hidden state in RNN
W_{hy}	- Weight matrix from hidden state to output in RNN
W^l	- Weight matrix for layer l in DNN or CNN
W_{xh}	- Weight matrix from input to hidden state in RNN
b_h	- Bias vector for hidden state in RNN