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ABSTRACT 

 

Perovskite Solar Cells (PSCs) have become one of the most intriguing topics in the avant-

garde renewable energy due to their remarkable Power Conversion Efficiency (PCE). Hole 

Transport Layer (HTL) remains indispensable in all PSCs architectures as it extracts holes 

from the perovskite layer and subsequently transports to the electrodes while enriching 

contacts with other layers of the cell. Copper(I) thiocyanate (CuSCN) has garnered attention 

as an effective HTL in PSCs due to its advantageous electronic properties, high stability, and 

excellent hole mobility. Unlike the widely used Spiro-OMeTAD, which is sensitive to 

moisture and degrades rapidly, CuSCN offers a more stable alternative with excellent 

moisture resistance. CuSCN is particularly promising as it provides a robust interface with 

better resistance against environmental factors such as moisture, thereby enhancing the 

overall durability of solar cells without sacrificing efficiency. However, CuSCN's 

application is limited by its low hole concentration and conductivity. The CuSCN HTL still 

suffers from the chemical reaction at the interface, predominantly due to copper vacancies.  

This research introduces Lanthanum (La), a rare earth material, as a dopant that incorporates 

into CuSCN and acts as HTL in PSCs. The solution-processable deposition of CuSCN using 

dimethyl sulfoxide (DMSO) facilitates the formation of a highly transparent and stable HTL, 

crucial for efficient hole extraction and device durability. Experimental optimization 

identified an optimal La doping concentration of 3 mol%, which yielded a conductivity of 

4.13 S/cm, a band gap energy of 3.67 eV, a crystallite size of 8.47 nm, a grain size of 572.50 

nm, and a transmittance exceeding 40% at 500 nm of wavelength, indicating sufficient 

optical transparency for effective light harvesting. These parameters indicate improved 

charge transport and film quality, which are essential for high-performance PSCs. Using the 

SCAPS-1D simulation tool, the study further modeled the La-doped CuSCN-based PSC 

incorporating the experimentally derived parameters. MAPbI3 (methylammonium lead 

iodide) was used as the absorber layer, TiO2 (titanium dioxide) as ETL, Indium Tin Oxide 

(ITO), and gold as front and back contact. From the simulation, the fully optimized device 

structure, ITO/TiO2/MAPbI3/La-dopedCuSCN/Au attained remarkable PCE of 30.39%, 

with a fill factor (FF) of 83.63%, short-circuit current density (Jsc) of 25.163 mA/cm2, and 

open-circuit voltage (Voc) of 1.2629 V. Additionally, the simulation explored the influence 

of various factors such as HTL thickness, doping density, interface defect density, and 

operating temperature on device performance, allowing for comprehensive optimization. 
Overall, this work demonstrates that La doping in CuSCN significantly enhances the 

electrical and interfacial properties of the HTL, leading to improved PSC efficiency and 

stability.  
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PENALAAN SELAR JALUR CUSCN BERDOP LANTANUM MELALUI PROSES 

BASAH KIMIA DALAM PENAMBAHBAIKAN HTL UNTUK PSC  

ABSTRAK 

Sel Suria Perovskite (PSC) telah menjadi salah satu topik yang paling menarik dalam bidang 

tenaga boleh diperbaharui kerana Kecekapan Penukaran Kuasa (PCE) yang luar biasa. 

Lapisan Pengangkut Lubang (HTL) kekal sebagai komponen penting dalam semua seni bina 

PSC kerana ia mengekstrak lubang (holes) daripada lapisan perovskite dan seterusnya 

mengangkutnya ke elektrod, di samping memperkukuh hubungan dengan lapisan-lapisan 

lain dalam sel. Kuprum(I) tiosianat (CuSCN) telah mendapat perhatian sebagai HTL yang 

berkesan dalam PSC kerana sifat elektroniknya yang bermanfaat, kestabilan yang tinggi 

dan mobiliti lubang yang cemerlang. Berbeza dengan Spiro-OMeTAD yang digunakan 

secara meluas tetapi sensitif terhadap kelembapan dan mudah terdegradasi, CuSCN 

menawarkan alternatif yang lebih stabil dengan ketahanan kelembapan yang baik. CuSCN 

amat berpotensi kerana ia menyediakan antara muka yang kukuh dengan ketahanan yang 

lebih baik terhadap faktor persekitaran seperti kelembapan, sekali gus meningkatkan 

ketahanan keseluruhan sel suria tanpa mengorbankan kecekapan.Walau bagaimanapun, 

aplikasi CuSCN terhad oleh kepekatan lubang dan kekonduksian yang rendah. HTL CuSCN 

masih terjejas oleh tindak balas kimia pada antara muka, terutamanya disebabkan oleh 

kekosongan kuprum. Kajian ini memperkenalkan Lanthanum (La), sejenis bahan nadir 

bumi, sebagai dopan yang dimasukkan ke dalam CuSCN dan bertindak sebagai HTL dalam 

PSC. Pemendapan CuSCN yang boleh diproses melalui larutan menggunakan dimetil 

sulfoksida (DMSO) memudahkan pembentukan HTL yang sangat telus dan stabil, yang 

penting untuk pengekstrakan lubang yang cekap dan ketahanan peranti.Pengoptimuman 

eksperimen mengenal pasti kepekatan doping La optimum sebanyak 3 mol%, yang 

menghasilkan kekonduksian 4.13 S/cm, selar jalur (band gap) 3.67 eV, saiz kristalit 8.47 

nm, saiz butiran 572.50 nm, dan transmisi yang melebihi 40% pada panjang gelombang 500 

nm, menunjukkan ketelusan optik yang mencukupi untuk penuaian cahaya yang berkesan. 

Parameter-parameter ini menunjukkan peningkatan dalam pengangkutan cas dan kualiti 

filem, yang penting untuk PSC berprestasi tinggi. Menggunakan alat simulasi SCAPS-1D, 

kajian ini turut memodelkan PSC berasaskan CuSCN yang didop La dengan 

menggabungkan parameter yang diperoleh secara eksperimen. MAPbI3 (metilammonium 

plumbum iodida) digunakan sebagai lapisan penyerap, TiO2 (titanium dioksida) sebagai 

ETL, manakala Indium Tin Oxide (ITO) dan emas digunakan sebagai sentuhan hadapan 

dan belakang. Hasil simulasi menunjukkan struktur peranti yang dioptimumkan 

sepenuhnya, ITO/TiO2/MAPbI3/La-dopedCuSCN/Au, mencapai PCE yang luar biasa 

sebanyak 30.39%, dengan faktor isian (FF) 83.63%, ketumpatan arus litar pintas (Jsc) 

25.163 mA/cm², dan voltan litar terbuka (Voc) 1.2629 V. Selain itu, simulasi turut mengkaji 

pengaruh pelbagai faktor seperti ketebalan HTL, ketumpatan doping, ketumpatan kecacatan 

antara muka, dan suhu operasi terhadap prestasi peranti, membolehkan pengoptimuman 

secara menyeluruh. Secara keseluruhannya, kajian ini menunjukkan bahawa doping La 

dalam CuSCN meningkatkan dengan ketara sifat elektrik dan antara muka HTL, yang 

membawa kepada peningkatan kecekapan dan kestabilan PSC. 
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CHAPTER 1 

INTRODUCTION 

This chapter presents an overview of the research, detailing the research objectives and 

problem statement. It also defines the scope of the project, outlining the limitations and 

specifying the features and functions of the expected research outcomes. Additionally, the 

research hypothesis, a fundamental component of the scientific method, is introduced to 

propose the anticipated results of the experiments. 

1.1 Background 

Solar cells, which are also commonly referred to as photovoltaic (PV) cells, are 

specialized devices designed to convert sunlight directly into electrical energy through the 

photovoltaic effect (Baghzouz, 2015). This innovative technology plays a vital role in the 

global transition toward renewable energy sources by providing a clean, sustainable, and 

environmentally friendly alternative to traditional fossil fuels, which are finite and contribute 

to pollution and climate change. Although the fundamental concept of photovoltaic cells was 

first discovered in the 19th century, it was not until the 20th century that significant 

technological advancements and practical applications began to emerge (Pastuszak et al., 

2022) . Over the decades, solar cell technology has undergone continuous improvement, 

evolving from early models characterized by relatively low energy conversion efficiencies 

to modern, highly efficient designs that are both more effective at capturing solar energy and 

increasingly cost-competitive with conventional energy sources. 
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The underlying structure of most solar cells is primarily based on semiconductor 

materials, with silicon being the most widely used due to its natural abundance, well-

established manufacturing processes, and excellent ability to absorb sunlight and convert it 

into electricity. Typically, a solar cell consists of two distinct layers of silicon, one doped to 

create a p-type semiconductor and the other doped to form an n-type semiconductor. These 

two layers come together to form a p-n junction, which is essential for creating an internal 

electric field that drives the movement of charge carriers when the cell is exposed to sunlight. 

In addition to these basic layers, modern solar cells often incorporate several other functional 

layers, such as antireflection coatings that minimize the loss of incoming light due to 

reflection, as well as electrical contact layers that facilitate the efficient collection and 

transport of generated electrical current (Baghzouz, 2015). The p-n junction in Figure 1.1 

serves as the core region where the photovoltaic effect takes place: when photons from 

sunlight strike the solar cell, they excite electrons within the semiconductor material, 

generating electron-hole pairs. The internal electric field at the junction then separates these 

charge carriers, causing electrons to flow through an external circuit and thereby producing 

usable electrical power. 

 

Figure 1.1: The p–n junction of photovoltaic device   
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