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ABSTRACT

Perovskite Solar Cells (PSCs) have become one of the most intriguing topics in the avant-
garde renewable energy due to their remarkable Power Conversion Efficiency (PCE). Hole
Transport Layer (HTL) remains indispensable in all PSCs architectures as it extracts holes
from the perovskite layer and subsequently transports to the electrodes while enriching
contacts with other layers of the cell. Copper(I) thiocyanate (CuSCN) has garnered attention
as an effective HTL in PSCs due to its advantageous electronic properties, high stability, and
excellent hole mobility. Unlike the widely used Spiro-OMeTAD, which is sensitive to
moisture and degrades rapidly, CuSCN offers a more stable alternative with excellent
moisture resistance. CuSCN is particularly promising as it provides a robust interface with
better resistance against environmental factors such as moisture, thereby enhancing the
overall durability of solar cells without sacrificing efficiency. However, CuSCN's
application is limited by its low hole concentration and conductivity. The CuSCN HTL still
suffers from the chemical reaction at the interface, predominantly due to copper vacancies.
This research introduces Lanthanum (La), a rare earth material, as a dopant that incorporates
into CuSCN and acts as HTL in PSCs. The solution-processable deposition of CuSCN using
dimethyl sulfoxide (DMSO) facilitates the formation of a highly transparent and stable HTL,
crucial for efficient hole extraction and device durability. Experimental optimization
identified an optimal La doping concentration of 3 mol%, which yielded a conductivity of
4.13 S/cm, a band gap energy of 3.67 eV, a crystallite size of 8.47 nm, a grain size of 572.50
nm, and a transmittance exceeding 40% at 500 nm of wavelength, indicating sufficient
optical transparency for effective light harvesting. These parameters indicate improved
charge transport and film quality, which are essential for high-performance PSCs. Using the
SCAPS-1D simulation tool, the study further modeled the La-doped CuSCN-based PSC
incorporating the experimentally derived parameters. MAPbI3; (methylammonium lead
iodide) was used as the absorber layer, TiO; (titanium dioxide) as ETL, Indium Tin Oxide
(ITO), and gold as front and back contact. From the simulation, the fully optimized device
structure, ITO/Ti0O2/MAPbIs/La-dopedCuSCN/Au attained remarkable PCE of 30.39%,
with a fill factor (FF) of 83.63%, short-circuit current density (Jsc) of 25.163 mA/cm?, and
open-circuit voltage (Voc) of 1.2629 V. Additionally, the simulation explored the influence
of various factors such as HTL thickness, doping density, interface defect density, and
operating temperature on device performance, allowing for comprehensive optimization.
Overall, this work demonstrates that La doping in CuSCN significantly enhances the
electrical and interfacial properties of the HTL, leading to improved PSC efficiency and
stability.



PENALAAN SELAR JALUR CUSCN BERDOP LANTANUM MELALUI PROSES
BASAH KIMIA DALAM PENAMBAHBAIKAN HTL UNTUK PSC

ABSTRAK

Sel Suria Perovskite (PSC) telah menjadi salah satu topik yang paling menarik dalam bidang
tenaga boleh diperbaharui kerana Kecekapan Penukaran Kuasa (PCE) yang luar biasa.
Lapisan Pengangkut Lubang (HTL) kekal sebagai komponen penting dalam semua seni bina
PSC kerana ia mengekstrak lubang (holes) daripada lapisan perovskite dan seterusnya
mengangkutnya ke elektrod, di samping memperkukuh hubungan dengan lapisan-lapisan
lain dalam sel. Kuprum(l) tiosianat (CuSCN) telah mendapat perhatian sebagai HTL yang
berkesan dalam PSC kerana sifat elektroniknya yang bermanfaat, kestabilan yang tinggi
dan mobiliti lubang yang cemerlang. Berbeza dengan Spiro-OMeTAD yang digunakan
secara meluas tetapi sensitif terhadap kelembapan dan mudah terdegradasi, CuSCN
menawarkan alternatif yang lebih stabil dengan ketahanan kelembapan yang baik. CuSCN
amat berpotensi kerana ia menyediakan antara muka yang kukuh dengan ketahanan yang
lebih baik terhadap faktor persekitaran seperti kelembapan, sekali gus meningkatkan
ketahanan keseluruhan sel suria tanpa mengorbankan kecekapan.Walau bagaimanapun,
aplikasi CuSCN terhad oleh kepekatan lubang dan kekonduksian yang rendah. HTL CuSCN
masih terjejas oleh tindak balas kimia pada antara muka, terutamanya disebabkan oleh
kekosongan kuprum. Kajian ini memperkenalkan Lanthanum (La), sejenis bahan nadir
bumi, sebagai dopan yang dimasukkan ke dalam CuSCN dan bertindak sebagai HTL dalam
PSC. Pemendapan CuSCN yang boleh diproses melalui larutan menggunakan dimetil
sulfoksida (DMSO) memudahkan pembentukan HTL yang sangat telus dan stabil, yang
penting untuk pengekstrakan lubang yang cekap dan ketahanan peranti.Pengoptimuman
eksperimen mengenal pasti kepekatan doping La optimum sebanyak 3 mol%, yang
menghasilkan kekonduksian 4.13 S/cm, selar jalur (band gap) 3.67 eV, saiz kristalit 8.47
nm, saiz butiran 572.50 nm, dan transmisi yang melebihi 40% pada panjang gelombang 500
nm, menunjukkan ketelusan optik yang mencukupi untuk penuaian cahaya yang berkesan.
Parameter-parameter ini menunjukkan peningkatan dalam pengangkutan cas dan kualiti
filem, yang penting untuk PSC berprestasi tinggi. Menggunakan alat simulasi SCAPS-1D,
kajian ini turut memodelkan PSC berasaskan CuSCN yang didop La dengan
menggabungkan parameter yang diperoleh secara eksperimen. MAPbIs (metilammonium
plumbum iodida) digunakan sebagai lapisan penyerap, TiO: (titanium dioksida) sebagai
ETL, manakala Indium Tin Oxide (ITO) dan emas digunakan sebagai sentuhan hadapan
dan belakang. Hasil simulasi menunjukkan struktur peranti yang dioptimumkan
sepenuhnya, ITO/TiO/MAPbI3/La-dopedCuSCN/Au, mencapai PCE yang luar biasa
sebanyak 30.39%, dengan faktor isian (FF) 83.63%, ketumpatan arus litar pintas (Jsc)
25.163 mA/cm?, dan voltan litar terbuka (Voc) 1.2629 V. Selain itu, simulasi turut mengkaji
pengaruh pelbagai faktor seperti ketebalan HTL, ketumpatan doping, ketumpatan kecacatan
antara muka, dan suhu operasi terhadap prestasi peranti, membolehkan pengoptimuman
secara menyeluruh. Secara keseluruhannya, kajian ini menunjukkan bahawa doping La
dalam CuSCN meningkatkan dengan ketara sifat elektrik dan antara muka HTL, yang
membawa kepada peningkatan kecekapan dan kestabilan PSC.

il
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CHAPTER 1

INTRODUCTION

This chapter presents an overview of the research, detailing the research objectives and
problem statement. It also defines the scope of the project, outlining the limitations and
specifying the features and functions of the expected research outcomes. Additionally, the
research hypothesis, a fundamental component of the scientific method, is introduced to

propose the anticipated results of the experiments.

1.1 Background

Solar cells, which are also commonly referred to as photovoltaic (PV) cells, are
specialized devices designed to convert sunlight directly into electrical energy through the
photovoltaic effect (Baghzouz, 2015). This innovative technology plays a vital role in the
global transition toward renewable energy sources by providing a clean, sustainable, and
environmentally friendly alternative to traditional fossil fuels, which are finite and contribute
to pollution and climate change. Although the fundamental concept of photovoltaic cells was
first discovered in the 19" century, it was not until the 20" century that significant
technological advancements and practical applications began to emerge (Pastuszak et al.,
2022) . Over the decades, solar cell technology has undergone continuous improvement,
evolving from early models characterized by relatively low energy conversion efficiencies
to modern, highly efficient designs that are both more effective at capturing solar energy and

increasingly cost-competitive with conventional energy sources.



The underlying structure of most solar cells is primarily based on semiconductor
materials, with silicon being the most widely used due to its natural abundance, well-
established manufacturing processes, and excellent ability to absorb sunlight and convert it
into electricity. Typically, a solar cell consists of two distinct layers of silicon, one doped to
create a p-type semiconductor and the other doped to form an n-type semiconductor. These
two layers come together to form a p-n junction, which is essential for creating an internal
electric field that drives the movement of charge carriers when the cell is exposed to sunlight.
In addition to these basic layers, modern solar cells often incorporate several other functional
layers, such as antireflection coatings that minimize the loss of incoming light due to
reflection, as well as electrical contact layers that facilitate the efficient collection and
transport of generated electrical current (Baghzouz, 2015). The p-n junction in Figure 1.1
serves as the core region where the photovoltaic effect takes place: when photons from
sunlight strike the solar cell, they excite electrons within the semiconductor material,
generating electron-hole pairs. The internal electric field at the junction then separates these
charge carriers, causing electrons to flow through an external circuit and thereby producing

usable electrical power.

Figure 1.1: The p—n junction of photovoltaic device
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